• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      玉米秸稈覆蓋與深翻兩種還田方式對(duì)黑土有機(jī)碳固持的影響

      2021-04-01 02:01:02蔡紅光張水梅袁靜超劉劍釗劉松濤
      關(guān)鍵詞:耕層黑土粒級(jí)

      梁 堯,蔡紅光,楊 麗,程 松,張水梅,袁靜超,劉劍釗,劉松濤,任 軍

      玉米秸稈覆蓋與深翻兩種還田方式對(duì)黑土有機(jī)碳固持的影響

      梁 堯1,蔡紅光1,楊 麗2,程 松1,張水梅1,袁靜超1,劉劍釗1,劉松濤1,任 軍1※

      (1. 吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,農(nóng)業(yè)部東北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130033; 2. 中國(guó)標(biāo)準(zhǔn)化研究院,北京 100091)

      秸稈還田是實(shí)現(xiàn)東北黑土肥力提升與保障區(qū)域生態(tài)環(huán)境安全的有效措施。明確玉米秸稈覆蓋與深翻還田下土壤有機(jī)碳(SOC, Soil Organic Carbon)的變化及其在團(tuán)聚體中的固持特征,對(duì)于揭示秸稈還田后黑土有機(jī)碳的穩(wěn)定機(jī)制與固碳潛力具有重要意義。該研究基于黑土區(qū)中部6 a定位試驗(yàn),選擇常規(guī)種植(CK)、秸稈覆蓋還田(SM, Stovers Mulching)和秸稈深翻還田(SI, Stovers Incorporation)3個(gè)處理,對(duì)0~10、>10~20、>20~30及>30~40 cm土層SOC含量、容重、水穩(wěn)性團(tuán)聚體分布及團(tuán)聚體中有機(jī)碳(OC, Organic Carbon)含量進(jìn)行了分析與測(cè)定,并對(duì)各處理年均碳投入量、SOC儲(chǔ)量與土壤固碳速率等進(jìn)行了估算。與CK相比,SM處理顯著增加了0~10 cm土層SOC含量,增幅為22.4%,但對(duì)10~40 cm土層SOC含量無(wú)顯著影響;SI處理顯著增加了0~40 cm土層SOC含量,增幅為18.1%~41.5%,以>20~30 cm的增幅最突出。與SM處理相比,SI處理0~10 cm土層SOC儲(chǔ)量顯著低于前者,而>20~30 cm土層SOC儲(chǔ)量反之。6 a間,SM處理耕層(0~20 cm)與亞耕層(>20~40 cm)土壤固碳速率分別為1.34和0.77 Mg/(hm2·a),SI處理為0.85和1.74 Mg/(hm2·a)。秸稈不同還田方式顯著改變了0~40 cm土層團(tuán)聚體分布及其中OC含量。與CK相比,SM顯著增加了耕層大團(tuán)聚體(>0.25 mm)比例與平均質(zhì)量直徑(MWD, Mean Weight Diameter),SI顯著提高了0~40 cm土層團(tuán)聚體MWD,且對(duì)10~40 cm土層團(tuán)聚結(jié)構(gòu)的改善作用優(yōu)于SM;SM處理顯著增加了0~10 cm土層>2和<0.053 mm粒級(jí)團(tuán)聚體OC含量,SI處理不僅增加了0~10 cm土層>2 mm粒級(jí)團(tuán)聚體OC含量,也顯著提高了10~40 cm土層各粒級(jí)團(tuán)聚體OC含量。在黑土區(qū),秸稈覆蓋還田對(duì)SOC的提升主要集中于表層,秸稈深翻還田促進(jìn)了0~40 cm 土層SOC積累與土壤團(tuán)聚結(jié)構(gòu)的改善。

      有機(jī)碳;土壤;團(tuán)聚體;秸稈還田;黑土;固碳速率

      0 引 言

      土壤有機(jī)碳(SOC, Soil Organic Carbon)是土壤肥力形成的基礎(chǔ),也是全球氣候變化的主要影響因子。農(nóng)田土壤SOC庫(kù)受人為活動(dòng)干預(yù)、并可在較短的時(shí)間尺度進(jìn)行調(diào)控,因此,農(nóng)田土壤固碳成為全球固碳減排的有效途徑[1]。秸稈還田作為重要的農(nóng)業(yè)管理措施,其通過(guò)增加有機(jī)物質(zhì)的投入、影響土壤有機(jī)碳的礦化過(guò)程,使土壤碳庫(kù)的源匯效應(yīng)發(fā)生改變[2]。據(jù)估計(jì),全球每年約有0.6~1.2 Pg碳能通過(guò)秸稈還田固定到土壤中[3]。基于176項(xiàng)研究結(jié)果的Meta分析指出[4],秸稈碳的輸入可使SOC含量平均增加12.8%。在中國(guó)傳統(tǒng)耕作與免耕條件下,秸稈還田土壤年均土壤固碳速率分別為0.22和0.52 g/kg[5]。秸稈還田對(duì)SOC儲(chǔ)量和固碳速率的影響與氣候條件、土壤類型、耕作方式和秸稈還田方式等密切相關(guān)[6-8]。

      團(tuán)聚體與SOC相互作用緊密,一方面SOC是團(tuán)聚體形成過(guò)程的重要膠結(jié)物質(zhì),決定了團(tuán)聚體的粒徑分布與結(jié)構(gòu)穩(wěn)定[9],另一方面團(tuán)聚體為SOC提供了物理保護(hù),避免其受微生物和胞外酶的分解,同時(shí)通過(guò)改變氣體環(huán)境和養(yǎng)分供應(yīng),使微生物的群落結(jié)構(gòu)發(fā)生變化,進(jìn)而間接影響SOC的分解與轉(zhuǎn)化過(guò)程[10-11]。土壤團(tuán)聚體對(duì)SOC的物理、化學(xué)和生物保護(hù)作用是決定SOC穩(wěn)定性的重要機(jī)制。外源秸稈碳的投入將促進(jìn)大團(tuán)聚體形成,大團(tuán)聚體內(nèi)顆粒有機(jī)物的增加又推動(dòng)微團(tuán)聚體的形成,隨著這些有機(jī)物質(zhì)的分解,大團(tuán)聚體破碎,微團(tuán)聚體釋放出來(lái)。當(dāng)新鮮秸稈再次加入時(shí),這些組分將粘結(jié)成大團(tuán)聚體,參與到新一輪的大團(tuán)聚體循環(huán)中[12-13]。探討秸稈還田條件下團(tuán)聚體分布和有機(jī)碳固持間的相互作用對(duì)于闡明土壤固碳潛力具有重要意義。

      東北黑土以土質(zhì)肥沃、有機(jī)碳含量高而聞名,在保障國(guó)家糧食安全、促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展與改善區(qū)域生態(tài)環(huán)境安全等方面發(fā)揮著重要作用。黑土區(qū)作為中國(guó)玉米主產(chǎn)區(qū),玉米秸稈資源豐富,秸稈還田是實(shí)現(xiàn)黑土生產(chǎn)力提升與秸稈資源高效利用“雙贏”的首選途徑。免耕秸稈覆蓋還田在增加?xùn)|北黑土表層SOC儲(chǔ)量方面具有較大優(yōu)勢(shì)[14],但連年秸稈覆蓋還田不利于改變土壤犁底層結(jié)構(gòu),其對(duì)翌年地溫回升與玉米播種的負(fù)面效應(yīng)也備受爭(zhēng)議[15-16]。近年來(lái),秸稈深翻還田作為一種新型的耕種方式在東北地區(qū)展開應(yīng)用,其通過(guò)機(jī)械翻耕將秸稈翻壓于土壤深層,具有加厚耕層、優(yōu)化亞耕層土壤結(jié)構(gòu)與改善養(yǎng)分供應(yīng)的特點(diǎn)[17-18]。然而,翻耕將加快SOC的礦化過(guò)程[19],秸稈還田又增加了深層土壤外源碳的輸入,在高強(qiáng)度碳輸出與碳輸入的作用下,SOC儲(chǔ)量與固持特征將如何變化仍缺乏深入研究。因此,本研究基于黑土區(qū)中部6 a玉米秸稈還田定位試驗(yàn),探討玉米秸稈覆蓋還田與深翻還田對(duì)0~40 cm土層SOC儲(chǔ)量與固碳速率的影響,明確SOC在團(tuán)聚體中的固持特征,以期為揭示玉米秸稈還田后黑土有機(jī)碳的穩(wěn)定機(jī)制與固碳潛力提供理論依據(jù)。

      1 材料與方法

      1.1 研究區(qū)概況

      試驗(yàn)地位于吉林省公主嶺市吉林省農(nóng)業(yè)科學(xué)院試驗(yàn)田(43°29′55″N,124°48′43″E),該地區(qū)屬于溫帶大陸性季風(fēng)氣候,冬季寒冷、夏季高溫多雨,年均降水量450~650 mm,年均氣溫4~5 ℃,無(wú)霜期110~140 d,有效積溫2 600~3 000 ℃。試驗(yàn)區(qū)土壤類型為中層黑土。試驗(yàn)起始于2011年秋季,試驗(yàn)前該區(qū)域土壤基本理化性質(zhì)為0~20 cm土層:有機(jī)碳15.1 g/kg、全氮1.56 g/kg、全磷0.54 g/kg、全鉀18.0 g/kg、pH值6.20、容重1.40 g/cm3,>20~40 cm土層:有機(jī)碳11.9 g/kg、全氮1.34 g/kg、全磷0.41 g/kg、全鉀17.5 g/kg、pH值6.21,容重1.43 g/cm。

      1.2 試驗(yàn)設(shè)計(jì)

      共選取3個(gè)處理,1)常規(guī)種植,無(wú)秸稈還田(CK):玉米收獲后采用人工方式將秸稈割出,采用旋耕機(jī)滅茬整地,翌年春季免耕播種機(jī)平播;2)秸稈覆蓋還田(SM, Stovers Mulching):采用玉米收獲機(jī)收獲的同時(shí)將秸稈粉碎、切斷后均勻平鋪于地表,翌年春季采用免耕播種機(jī)平播;3)秸稈深翻還田(SI, Stovers Incorporation):玉米機(jī)械收獲的同時(shí)將秸稈粉碎、切斷平鋪于地表,采用液壓翻轉(zhuǎn)犁進(jìn)行翻耕作業(yè),翻耕深度≥30 cm,采用聯(lián)合整地機(jī)耙壓整地,翌年春季采用免耕播種機(jī)平播。每個(gè)處理3次重復(fù),各小區(qū)面積為702 m2。各處理年均化肥施用量分別為N 200 kg/hm2、P2O590 kg/hm2、K2O 75 kg/hm2,磷、鉀肥和40%氮肥以底肥施入,60%的氮肥在玉米拔節(jié)期追肥施入。作物種植方式為玉米連作,種植密度為6萬(wàn)/hm2。每年于4月下旬播種,10月上旬收獲。其他環(huán)節(jié)同田間常規(guī)管理。

      1.3 樣品采集與測(cè)定

      土壤樣品于2017年秋玉米收獲后采集,每個(gè)小區(qū)隨機(jī)選取3點(diǎn),采用原狀土鉆分別采集0~10、>10~20、>20~30和>30~40 cm 4個(gè)土層的土壤樣品,將各土層3點(diǎn)土壤樣品放入同一取樣盒作為一個(gè)混合樣品,在采集和運(yùn)輸過(guò)程中減少對(duì)土壤樣品的擾動(dòng),盡量避免破壞土壤結(jié)構(gòu)。土樣帶回實(shí)驗(yàn)室后,用手將大土塊沿自然裂隙輕輕掰開,剔除土壤樣品中的礫石、植物殘?bào)w及粗有機(jī)體等雜質(zhì),過(guò)8 mm篩。待土樣完全風(fēng)干后,分成2部分,一部分進(jìn)行水穩(wěn)性團(tuán)聚體的篩分,一部分過(guò)0.15 mm篩,用于測(cè)定SOC含量。在采集土樣的同時(shí),用容積為100 cm3的環(huán)刀分層取原狀土土樣,測(cè)定土壤容重。

      水穩(wěn)性團(tuán)聚體篩分采用改進(jìn)的濕篩法[20],于團(tuán)聚體分析儀(TTF-100,浙江舜龍)上進(jìn)行。具體操作如下,將土樣于60°烘箱烘干24 h后,稱取土樣25 g放置于篩組(自上而下為2 mm、0.25 mm、0.053 mm)的最上層,浸潤(rùn)5 min后,篩分2 min(振幅3 cm,頻率30次/min),到達(dá)設(shè)定時(shí)間后,用去離子水把各層篩子上的團(tuán)聚體分別洗至燒杯(50 mL)中,置于60°C烘箱烘干至恒質(zhì)量,依次獲得>2、2~0.25、0.25~0.053和<0.053 mm各粒級(jí)團(tuán)聚體。SOC和各粒級(jí)團(tuán)聚體有機(jī)碳(OC)含量采用元素分析儀(Vario ELⅢ,德國(guó)Elementar)測(cè)定。

      2011-2016年間,在玉米成熟期進(jìn)行玉米籽粒產(chǎn)量與地上生物量的測(cè)定,每小區(qū)選取5點(diǎn),每點(diǎn)按13 m2測(cè)定籽粒產(chǎn)量(以烘干質(zhì)量計(jì)算),同時(shí)各點(diǎn)收集5株地上植株,去除果穗后的秸稈生物量以烘干質(zhì)量計(jì)算。

      1.4 計(jì)算方法

      1.4.1 外源碳投入量

      土壤外源植物碳的來(lái)源主要包括秸稈、根茬與根際沉積3部分。根茬生物量按秸稈生物量(烘干質(zhì)量)的23%計(jì)算[21],秸稈與根茬中的碳質(zhì)量分?jǐn)?shù)以40%計(jì)算[22],根際沉積碳總量等于成熟期根茬碳量[23]。

      1.4.2 土壤有機(jī)碳儲(chǔ)量

      土壤有機(jī)碳儲(chǔ)量、固碳量及固碳速率的計(jì)算方法[24]如下:

      式中SOCstock為某土壤深度的SOC儲(chǔ)量,Mg/hm2;SOC為第層SOC含量,g/kg;BD為第層土壤容重,g/cm3;H為第層土壤厚度,cm;10為轉(zhuǎn)化系數(shù);為土層數(shù);ΔSOCstock、SOCstock-treatment和SOCstock-initial分別為固碳量、處理后SOC儲(chǔ)量、初始時(shí)SOC儲(chǔ)量;SOCSR為土壤固碳速率,Mg/(hm2·a);yr為處理年限,a。

      1.4.3 土壤團(tuán)聚體穩(wěn)定性及團(tuán)聚體碳貢獻(xiàn)率

      團(tuán)聚體穩(wěn)定性以平均質(zhì)量直徑(MWD, Mean Weight Diameter)表示[9],計(jì)算方法如下

      式中W為各粒級(jí)團(tuán)聚體的質(zhì)量百分?jǐn)?shù),%;X為各粒級(jí)的平均直徑,mm。

      各粒級(jí)團(tuán)聚體碳對(duì)SOC的貢獻(xiàn)率(SOC)計(jì)算如下,

      SOC=SOCai·W/SOC(5)

      式中SOCai為第級(jí)團(tuán)聚體的有機(jī)碳含量,g/kg;SOC為土壤有機(jī)碳含量,g/kg。

      1.5 數(shù)據(jù)處理

      采用SPSS19.0進(jìn)行單因素方差分析與多重比較(Duncan法),及相關(guān)指標(biāo)之間的線性回歸分析。圖形繪制采用Origin 2019進(jìn)行。

      2 結(jié)果與分析

      2.1 秸稈不同還田方式對(duì)碳投入量、土壤有機(jī)碳儲(chǔ)量與固碳速率的影響

      2011年至2016年間,各處理年均碳投入量如表1所示。各處理年均玉米籽粒產(chǎn)量與秸稈生物量均表現(xiàn)為SI>CK>SM,SM和SI處理年均碳投入總量分別是CK的1.9倍和2.5倍。

      表1 秸稈不同還田方式下年均碳的投入量

      注:表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差。

      Note: Values represent the mean±standard deviation.

      秸稈不同還田方式強(qiáng)烈地影響著0~40 cm土層SOC含量(表2)。與CK相比,SM處理顯著增加了0~10 cm土層SOC含量,增幅為22.4%,對(duì)10~40 cm各土層SOC含量的影響不顯著;SI處理顯著增加了0~40 cm各土層SOC質(zhì)量分?jǐn)?shù),增幅為18.1%~41.5%,以>20~30 cm土層SOC含量的增幅最突出。2種秸稈還田方式相比,SI處理>20~30 cm土層SOC含量顯著高于SM處理,二者其他土層SOC含量間無(wú)顯著差異。從SOC含量在0~40 cm土層的空間分布來(lái)看,隨著土層的加深,CK和SM處理SOC含量呈現(xiàn)逐漸降低的趨勢(shì),而SI處理0~10、>10~20和>20~30 cm土層SOC含量間無(wú)顯著差異,但顯著高于>30~40 cm土層。

      表2 秸稈不同還田方式下土壤有機(jī)碳含量、儲(chǔ)量及固碳速率

      注:表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差,同行數(shù)值后不同小寫字母表示同一土層不同處理間差異顯著(<0.05),同列數(shù)值后不同大寫字母表示同一處理不同土層間差異顯著(<0.05),下同。

      Note: Values represent the mean±standard deviation, values followed by different small letters in one row indicate significant difference among treatments in the same soil depth of aggregate at 0.05 level, values followed by different capital letters in one column indicate significant difference among soil depths of aggregate and the same treatment at 0.05 level, the same as below.

      秸稈不同還田方式對(duì)SOC儲(chǔ)量、土壤固碳數(shù)量與速率的影響如表2所示。與CK相比,SM處理顯著增加了0~10 cm土層SOC儲(chǔ)量,增幅為31.0%,但對(duì)其他土層SOC儲(chǔ)量影響不顯著;SI處理顯著增加了0~10、>20~30和>30~40 cm各土層SOC儲(chǔ)量,增幅為15.0%~34.9%,由于SI處理>10~20 cm土層土壤容重較低,因此其對(duì)該土層SOC儲(chǔ)量無(wú)顯著影響。與SM處理相比,SI處理0~10 cm土層SOC儲(chǔ)量顯著低于前者,而>10~40 cm各土層SOC儲(chǔ)量高于前者,特別是>20~30 cm土層SOC儲(chǔ)量的增量最顯著。與試驗(yàn)初期(2011年)相比,0~20 cm土層土壤固碳量與固碳速率均表現(xiàn)為SM>SI>CK,>20~40 cm土層固碳量與固碳速率表現(xiàn)為SI>SM>CK。

      2.2 秸稈不同還田方式對(duì)土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響

      秸稈不同還田方式下水穩(wěn)性團(tuán)聚體分布及其穩(wěn)定性的變化如表3。2~0.25與0.25~0.053 mm 粒級(jí)是團(tuán)聚體的主體,分別占46.0%~52.6%和21.7%~33.7%。與CK相比,SM與SI處理對(duì)0~10 cm和>10~20 cm土層各粒級(jí)團(tuán)聚體分布的影響一致,即顯著增加了>2 mm和2~0.25 mm粒級(jí)比例,降低了0.25~0.053和<0.053 mm粒級(jí)比例,進(jìn)而使大團(tuán)聚體(>0.25 mm)比例和MWD得以顯著提高;SM處理對(duì)>20~30和>30~40 cm土層各粒級(jí)團(tuán)聚體比例及MWD的影響不顯著,而SI處理顯著增加了>20~30 cm土層>2 mm粒級(jí)比例及>30~40 cm土層2~0.25 mm粒級(jí)比例,使得這2個(gè)土層大團(tuán)聚體和MWD均得以顯著增加,且顯著高于SM處理。

      秸稈不同還田方式改變了各粒級(jí)團(tuán)聚體在0~40 cm土層的空間分布特征(表3)。CK處理>20~30 cm土層大團(tuán)聚體比例顯著低于其他土層,SM處理0~20 cm土層大團(tuán)聚體比例均顯著高于>20~40 cm土層,SI處理0~40 cm 各土層大團(tuán)聚體比例間差異不顯著。從MWD的空間變化來(lái)看,CK處理0~40 cm各土層MWD間差異不顯著,SM處理MWD值隨著土層的加深逐漸降低,SI處理0~10、>10~20、>20~30 cm土層MWD間差異不顯著,但均顯著高于>30~40 cm土層。

      表3 秸稈不同還田方式下土壤水穩(wěn)性團(tuán)聚體分布及其穩(wěn)定性

      注:表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差,同列數(shù)值后不同小寫字母表示同一土層同一粒級(jí)不同處理間差異顯著(<0.05),同列數(shù)值后不同大寫字母表示同一粒級(jí)同一處理不同土層間差異顯著(<0.05)。

      Note: Values represent the mean±standard deviation, values followed by different small letters in one column indicate significant difference among treatments in the same soil depth and the same size of aggregate at 0.05 level, values followed by different capital letters in one column indicate significant difference among soil depths in the same size of aggregate and the same treatment at 0.05 level.

      2.3 秸稈不同還田方式對(duì)團(tuán)聚體中有機(jī)碳含量及其貢獻(xiàn)率的影響

      秸稈不同還田方式對(duì)土壤各粒級(jí)團(tuán)聚體OC含量及其貢獻(xiàn)率的影響如表4所示。與CK相比,SM處理顯著增加了0~10和>20~30 cm土層中>2和<0.053 mm兩粒級(jí)團(tuán)聚體OC的含量,但對(duì)其他土層各粒級(jí)團(tuán)聚體OC含量的影響不顯著;SI處理不僅顯著增加了0~10 cm土層>2 mm粒級(jí)OC含量,同時(shí)顯著提高了>10~20、>20~30、>30~40 cm土層各粒級(jí)團(tuán)聚體OC含量。在0~10和>10~20 cm土層,SM和SI處理各粒級(jí)團(tuán)聚體OC含量間差異不顯著,但在>20~30和>30~40cm土層,SI處理大團(tuán)聚體OC含量顯著高于SM處理。從不同處理對(duì)各粒級(jí)團(tuán)聚體OC的貢獻(xiàn)率來(lái)看,2~0.25 mm粒級(jí)是SOC固持的主體,其對(duì)SOC的貢獻(xiàn)率占47.3%~55.0%,其次為0.25~0.053 mm粒級(jí)團(tuán)聚體,占19.9%~31.3%,>2和<0.053 mm粒級(jí)團(tuán)聚體對(duì)SOC貢獻(xiàn)率相對(duì)較低。與CK相比,SM和SI處理增加了0~40 cm土層>2 mm粒級(jí)對(duì)SOC的貢獻(xiàn)率,降低了各土層0.25~0.053 mm粒級(jí)OC的貢獻(xiàn)率及0~10、>10~20和>20~30 cm土層<0.053mm粒級(jí)團(tuán)聚體OC的貢獻(xiàn)率;秸稈還田處理顯著增加了0~10 cm土層2~0.25 mm粒級(jí)團(tuán)聚體OC的貢獻(xiàn)率,但對(duì)10~20、>20~30和>30~40 cm土層該粒級(jí)團(tuán)聚體OC貢獻(xiàn)率無(wú)顯著影響。在0~10 cm土層,SI處理>2 mm粒級(jí)團(tuán)聚體OC的貢獻(xiàn)率低于SM,而>10~20、>20~30和>30~40 cm土層該粒級(jí)團(tuán)聚體OC貢獻(xiàn)率的變化與之相反。此外,在>10~20和20~30 cm土層,SI處理<0.053 mm粒級(jí)OC的貢獻(xiàn)率明顯低于SM處理。

      從各粒級(jí)團(tuán)聚體OC含量在0~40 cm土層的空間變化(表4)來(lái)看,CK和SM處理各粒級(jí)團(tuán)聚體OC含量均隨著土層深度的增加逐漸降低,而SI處理0~10、>10-20和>20-30 cm土層各粒級(jí)團(tuán)聚體OC含量間差異不顯著,但均高于>30~40 cm土層相應(yīng)粒級(jí)團(tuán)聚體的OC含量。各處理各粒級(jí)團(tuán)聚體OC的貢獻(xiàn)率隨著土層深度的增加呈現(xiàn)波動(dòng)變化。

      表4 玉米秸稈不同還田方式下各粒級(jí)團(tuán)聚體有機(jī)碳含量及其貢獻(xiàn)率

      2.4 土壤有機(jī)碳與平均質(zhì)量直徑及各粒級(jí)團(tuán)聚體中有機(jī)碳的相關(guān)關(guān)系

      對(duì)SOC含量與團(tuán)聚體MWD及各粒級(jí)團(tuán)聚體OC含量進(jìn)行回歸分析可知(圖1和圖2),SOC含量與MWD、>2和2~0.25 mm粒級(jí)團(tuán)聚體OC含量間均呈現(xiàn)出極顯著的正相關(guān)關(guān)系(<0.01),與0.25~0.053和<0.053 mm粒級(jí)團(tuán)聚體OC含量間未表現(xiàn)出顯著的相關(guān)性(>0.05)。

      3 討 論

      免耕秸稈覆蓋還田通過(guò)減少土壤擾動(dòng)、增加外源碳的投入,從而促進(jìn)了SOC的積累[14,25],本研究由于地處東北寒區(qū),覆蓋于地表的玉米秸稈腐解相對(duì)較慢,其對(duì)SOC的補(bǔ)給主要集中于0~10 cm的表層,雖然部分溶解性有機(jī)質(zhì)將隨著土壤水分向下運(yùn)移[26],但短期內(nèi)其未引起10~30 cm土層SOC含量的顯著變化。以往研究多表明,深翻耕作將加快SOC的礦化分解,造成SOC的虧缺[27],然而,本研究中將深翻與秸稈還田相結(jié)合,0~40 cm土層SOC的含量得以明顯提升。深翻后大部分秸稈分布于25 cm土層,秸稈與土壤充分接觸加速了秸稈的腐解與腐殖化過(guò)程[8,28],極大地促進(jìn)了SOC的積累。此外,連年翻耕促使0~30 cm土層土壤趨于均質(zhì)化,SOC含量未出現(xiàn)明顯的分層現(xiàn)象,且>20~40 cm土層SOC含量也顯著高于CK與秸稈覆蓋處理,由此說(shuō)明,秸稈覆蓋還田有助于0~10 cm表層SOC的積累,而秸稈深翻還田可顯著提升0~40 cm土層SOC的固持能力。

      碳的收支情況決定了土壤有機(jī)碳庫(kù)的源匯效應(yīng)。6 a間單施化肥處理通過(guò)根茬、根際沉積等形式外源碳的輸入使得耕層(0~20 cm)SOC庫(kù)略有盈余。據(jù)估算,中國(guó)單施化肥耕層平均土壤固碳速率可達(dá)0.38 Mg/(hm2·a)[29],本研究中單施化肥耕層(0~20 cm)土壤固碳速率為0.08 Mg/(hm2·a),低于全國(guó)平均值,主要是氣候、土壤類型與種植制度等因素的差異造成的[30]。研究表明,秸稈免耕覆蓋還田12 a黑土耕層SOC庫(kù)的年均增速為0.80 Mg/(hm2·a)[27],秸稈旋耕還田5 a間白漿土(Alfisol)耕層土壤固碳速率可達(dá)1.03 Mg/(hm2·a)[31]。本研究中,秸稈覆蓋還田耕層與亞耕層(>20~40 cm)土壤固碳速率分別為1.34和0.77 Mg/(hm2·a),秸稈深翻還田的固碳速率分別為0.85和1.74 Mg/(hm2·a)。需要注意的是,短期(<11 a)試驗(yàn)結(jié)果可能會(huì)高估處理的固碳速率[5],因此,仍需更長(zhǎng)時(shí)間尺度的觀測(cè)來(lái)探究黑土固碳速率的變化。一些研究表明,外源碳投入量與土壤固碳速率呈顯著的正相關(guān)關(guān)系[31-32],也有基于長(zhǎng)期定位試驗(yàn)的研究指出隨著外源碳投入量的增加,土壤有機(jī)碳庫(kù)出現(xiàn)飽和現(xiàn)象,土壤固碳速率趨于平緩[33]。本研究中,外源碳投入量與土壤固碳速率呈現(xiàn)增加趨勢(shì),表明本試驗(yàn)土壤仍有著較大的固碳潛力。

      秸稈不同還田方式對(duì)土壤團(tuán)聚體分布及其穩(wěn)定性有著強(qiáng)烈的影響[34]。本研究中,秸稈覆蓋還田比CK顯著增加了耕層大團(tuán)聚體的比例與團(tuán)聚體穩(wěn)定性,但對(duì)亞耕層土壤團(tuán)聚體穩(wěn)定性的影響并不顯著,表明秸稈覆蓋還田積極改善了耕層土壤結(jié)構(gòu),這與前人研究結(jié)果相一致[24,35]。與CK相比,秸稈深翻還田顯著增加了0~40 cm土層大團(tuán)聚體的比例,團(tuán)聚體穩(wěn)定性也隨之增加。雖然翻耕對(duì)土壤團(tuán)聚體結(jié)構(gòu)產(chǎn)生較大擾動(dòng),但秸稈輸入對(duì)SOC的提升作用為土壤顆粒的團(tuán)聚提供了良好的膠結(jié)物質(zhì),這種膠結(jié)效應(yīng)有效抵消了翻耕對(duì)團(tuán)聚體的分散作用,有效促進(jìn)了大團(tuán)聚體的形成,為SOC提供更好的保護(hù)。這與秸稈深翻還田對(duì)沙壤土團(tuán)聚體穩(wěn)定性的研究結(jié)果不一致[18],其原因在于土壤質(zhì)地與深翻機(jī)械操作存在較大差異。SOC含量與團(tuán)聚體MWD間極顯著的正相關(guān)關(guān)系(<0.01)驗(yàn)證了SOC對(duì)于提高團(tuán)聚體穩(wěn)定性的重要作用。與覆蓋還田相比,秸稈深翻還田處理顯著增加了20~40 cm土層大團(tuán)聚體比例和MWD,說(shuō)明秸稈深翻還田增加了耕層厚度,具有更好的亞耕層土壤結(jié)構(gòu)。

      秸稈不同還田方式對(duì)0~40土層各粒級(jí)團(tuán)聚體OC含量的影響各異,秸稈覆蓋還田對(duì)團(tuán)聚體OC含量的影響主要表現(xiàn)為其增加了0~10 cm土層>2和<0.053 mm兩粒級(jí)團(tuán)聚體OC的含量,相比之下,秸稈深翻還田不僅增加了0~10 cm土層>2 mm團(tuán)聚體OC的含量,同時(shí)顯著提高了10~40 cm土層各粒級(jí)團(tuán)聚體OC的含量,說(shuō)明秸稈覆蓋還田對(duì)表層SOC含量的增加主要通過(guò)促進(jìn)>2和<0.053 mm粒級(jí)團(tuán)聚體對(duì)OC的固持來(lái)實(shí)現(xiàn),而秸稈深翻還田對(duì)深層SOC水平的大幅度提升則體現(xiàn)在其對(duì)各粒級(jí)團(tuán)聚體OC的累積作用。從各粒級(jí)團(tuán)聚體對(duì)SOC的貢獻(xiàn)率來(lái)看,秸稈還田顯著增加了SOC在大團(tuán)聚體中的固持比例,特別是在>2 mm粒級(jí)團(tuán)聚體,此外,SOC含量與>2和2~0.25 mm粒級(jí)團(tuán)聚體OC含量間呈現(xiàn)極顯著的正相關(guān)關(guān)系(<0.01,圖2),可見,無(wú)論覆蓋還是深翻還田,外源秸稈新碳進(jìn)入土壤后更多地固持于大團(tuán)聚體中。盡管大團(tuán)聚體周轉(zhuǎn)速率較快,不能為OC提供長(zhǎng)期的保護(hù),但其包裹了更多OC,并將促進(jìn)微團(tuán)聚體的形成,這些閉蓄在大團(tuán)聚體中的微團(tuán)聚體碳對(duì)于SOC的長(zhǎng)期固持具有重要意義[36-37]。37 a長(zhǎng)期定位試驗(yàn)表明,有機(jī)培肥顯著增加了黑土微團(tuán)聚體對(duì)SOC的貢獻(xiàn)率,而大團(tuán)聚體的貢獻(xiàn)率則反之[38]。本研究中秸稈還田顯著降低了微團(tuán)聚體對(duì)SOC的貢獻(xiàn)率,但<0.053 mm團(tuán)聚體中較高的OC含量從某種程度驗(yàn)證了SOC在各粒級(jí)團(tuán)聚體中的轉(zhuǎn)化過(guò)程。

      4 結(jié) 論

      與常規(guī)種植相比,玉米秸稈還田改變了0~40 cm土層SOC的含量、儲(chǔ)量及其固持特征。覆蓋還田顯著增加了表層(0~10 cm)SOC的含量與儲(chǔ)量,深翻還田大幅提高了0~40 cm土層SOC含量與儲(chǔ)量,特別對(duì)>20~30 cm土層SOC的積累作用更為突出,使0~30 cm土層SOC含量無(wú)明顯分層現(xiàn)象;覆蓋還田顯著增加了耕層(0~20 cm)大團(tuán)聚體比例及團(tuán)聚體穩(wěn)定性,深翻還田對(duì)團(tuán)聚體穩(wěn)定性的積極作用不僅局限于耕層,更重要的是提高了亞耕層(20~40 cm)大團(tuán)聚體比例與團(tuán)聚體穩(wěn)定性。覆蓋還田對(duì)表層SOC的積累主要通過(guò)提高>2和<0.053 mm粒級(jí)團(tuán)聚體對(duì)OC的固持來(lái)實(shí)現(xiàn),深翻還田促進(jìn)了表層>2 mm粒級(jí)團(tuán)聚體中OC的積累,對(duì)10~40 cm 土層SOC含量的提升體現(xiàn)在其增加了各粒級(jí)團(tuán)聚體OC含量。在黑土區(qū),秸稈覆蓋還田對(duì)SOC的提升主要集中于表層,秸稈深翻還田大幅提高了0~40 cm土層SOC的固持能力,并使土壤深層結(jié)構(gòu)得以顯著改善。

      [1]Tao F, Palosuo T, Valkama E, et al. Cropland soils in China have a large potential for carbon sequestration based on literature survey[J]. Soil and Tillage Research, 2019, 186: 70-78.

      [2]Li S, Li Y, Li X, et al. Effect of stovers management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong plain[J]. Soil and Tillage Research, 2016, 157: 43-51.

      [3]Lal R. Soil quality impacts of residue removal for bioethanol production[J]. Soil and Tillage Research, 2009, 102: 233-241.

      [4]Liu C, Lu M, Cui J, et al. Effects of stovers carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20: 1366-1381.

      [5]Tian K, Zhao Y, Xu X, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2015, 204: 40-50.

      [6]Zhao X, Zhang R, Xue J F, et al. Management-induced changes to soil organic carbon in China: A meta-analysis[J]. Advances in Agronomy, 2015, 134: 1-50.

      [7]孟慶英,鄒洪濤,韓艷玉,等. 秸稈還田量對(duì)土壤團(tuán)聚體有機(jī)碳和玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):119-125.

      Meng Qingying, Zou Hongtao, Han Yanyu, et al. Effects of stovers application rates on soil aggregates, soil organic carbon content and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 119-125. (in Chinese with English abstract)

      [8]Han Y S, Yao H, Jiang H X, et al. Effects of mixing maize stovers with soil and placement depths on decomposition rates and products at two cold sites in the Mollisol region of China[J]. Soil and Tillage Research, 2020, 197: 104519.

      [9]Six J, Paustian K, Elliott E T, et al. Soil structure and soil organic matter: distribution of aggregate-size classes and aggregate associated carbon[J]. Soil Science Society of American Journal, 2000, 64: 681-689.

      [10]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79: 7-31

      [11]徐嘉暉,孫穎,高雷,等. 土壤有機(jī)碳穩(wěn)定性影響因素的研究進(jìn)展[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2018,26(2):222-230.

      Xu Jiahui, Sun Ying, Gao Lei, et al. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 222-230. (in Chinese with English abstract)

      [12]Xu X G, Schaeffer S, Sun Z H, et al. Carbon stabilization in aggregate fractions responds to stovers input levels under varied soil fertility levels[J]. Soil and Tillage Research, 2020, 199: 10459

      [13]田慎重,王瑜,李娜,等. 耕作方式和秸稈還田對(duì)華北地區(qū)農(nóng)田土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2013,33(22):7116-7124.

      Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and stovers systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)

      [14]Liang A Z, Yang X M, Zhang X P, et al. Short-term impacts of no tillage on aggregate-associated C in black soil of northeast China[J]. Agricultural Sciences in China, 2010, 9(1): 93-100.

      [15]陳軍鋒,鄭秀清,秦作棟,等. 凍融期秸稈覆蓋量對(duì)土壤剖面水熱時(shí)空變化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(20):102-110.

      Chen Junfeng, Zheng Xiuqing, Qin Zuodong, et al. Effects of maize stovers mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 102-110. (in Chinese with English abstract)

      [16]蔡紅光,梁堯,閆孝貢,等. 東北黑土區(qū)秸稈不同還田方式下玉米產(chǎn)量及養(yǎng)分累積特征[J]. 玉米科學(xué),2016,24(5):68-74.

      Cai Hongguang, Liang Yao, Yan Xiaogong, et al. The grain yield and characteristic of nutrient accumulation for maize under different stovers return modes in black soil region of northeast[J]. Journal of Maize Sciences. 2016, 24(5): 68-74. (in Chinese with English abstract)

      [17]梁堯,蔡紅光,閆孝貢,等. 玉米秸稈不同還田方式對(duì)黑土肥力特征的影響[J]. 玉米科學(xué),2016,24(6):68-74.

      Liang Yao, Cai Hongguang, Yan Xiaogong, et al. The Grain yield and characteristic of nutrient accumulation for maize under different stovers return modes in black soil region of Northeast[J]. Journal of Maize Sciences. 2016, 24(5): 68-74. (in Chinese with English abstract)

      [18]于博,高聚林,胡樹平,等. 玉米秸稈全量深翻還田對(duì)高產(chǎn)田土壤結(jié)構(gòu)的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2018,26(4):584-592.

      Yu Bo, Gao Julin, Hu Shuping, et al. Effects of deep tillage and stovers returning on spring maize field of soil structure [J]. Chinese Journal of Eco-Agriculture, 2018, 26(4): 584-592. (in Chinese with English abstract)

      [19]Cuzman J, Al-kaisi M, Parkin T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system[J]. Soil Science Society of American Journal, 2015, 79: 612-625.

      [20]Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of American Journal, 1986, 50: 627-633.

      [21]Kong A Y Y, Six J, Bryant D C, et al. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems[J]. Soil Science Society of American Journal, 2005, 69: 1078-1085.

      [22]Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database[J]. Agronomy Journal, 2006, 98: 622-636.

      [23]Bolinder M A, Angers D A, Giroux M, et al. Estimating C inputs retained as soil organic matter from corn (L.)[J]. Plant Soil, 1999, 215: 85-91.

      [24]Kan Z R, Ma S T, Liu Q Y, et al. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain[J]. Catena, 2020, 188: 104428

      [25]Lu X, Liao Y. Effect of tillage practices on net carbon flux and economic parameters from farmland on the loess plateau in China[J]. Journal of Cleaner Production, 2017, 162: 1617-1624.

      [26]Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under stovers mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297.

      [27]Zhang Y, Li X, Gregorich E G, et al. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China[J]. Geoderma, 2018, 330: 204-211.

      [28]高燕,張延,郭亞飛,等. 不同秸稈還田模式對(duì)土壤有機(jī)碳周轉(zhuǎn)的影響[J]. 土壤與作物,2019,8(1):93-101.

      Gao Yan, Zhang Yan, Guo Yafei, et al. Effect of residue return patterns on soil organic carbon turnover- A review[J]. Soil and Crop, 2019, 8(1): 93-101. (in Chinese with English abstract)

      [29]韓冰,王效科,逯非,等. 中國(guó)農(nóng)田土壤生態(tài)系統(tǒng)固碳現(xiàn)狀和潛力[J]. 生態(tài)學(xué)報(bào),2008,28(2):612-619.

      Han Bing, Wang Xiaoke, Lu Fei, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 612-619. (in Chinese with English abstract)

      [30]田康,趙永存,徐向華,等. 不同施肥下中國(guó)旱地土壤有機(jī)碳變化特征-基于定位試驗(yàn)數(shù)據(jù)的Meta分析[J]. 生態(tài)學(xué)報(bào),2014,34(13):3735-3743.

      Tian Kang, Zhao Yongcun, Xu Xianghua, et al. Meta-analysis of field experiment data for characterizing the topsoil organic carbon changes under different fertilization treatments in uplands of China[J]. Acta Ecologica Sinica, 2014, 34(13): 3735-3743. (in Chinese with English abstract)

      [31]Jiang C M, Yu W T, Ma Q, et al. Alleviating global warming potential by soil carbon sequestration: A multi-level stovers incorporation experiment from a maize cropping system in northeast China[J]. Soil and Tillage Research, 2017, 170: 77-84.

      [32]Hua K, Wang D, Guo X, et al. Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai plain, China[J]. PLoS One, 2014, 29(9): e108594.

      [33]Yan X, Zhou H, Zhu Q H, et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J]. Soil and Tillage Research, 2013, 130: 42-51.

      [34]田慎重,王瑜,張玉鳳,等. 旋耕轉(zhuǎn)深松和秸稈還田增加農(nóng)田土壤團(tuán)聚體碳庫(kù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):133-140.

      Tian Shenzhong, Wang Yu, Zhang Yufeng, et al. Residue returning with subsoiling replacing rotary tillage improving aggregate nd associated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 32(24): 133-140. (in Chinese with English abstract)

      [35]Modak K, Biswas D R, Ghosh A, et al. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical india[J]. Soil and Tillage Research, 2020, 202: 104649.

      [36]Zhao H L, Ning P, Chen Y L, et al. Effect of stovers amendment modes on soil organic carbon, nitrogen sequestration, and crop yield on the north-central plain of China[J]. Soil Use Manage, 2019, 35(3): 511-525.

      [37]Pang D, Chen J, Jin M, et al. Changes in soil micro- and macro-aggregate associated carbon storage following stovers incorporation[J]. Catena, 2020, 190: 104555.

      [38]張秀芝,李強(qiáng),高洪軍,等. 長(zhǎng)期施肥對(duì)黑土水穩(wěn)性團(tuán)聚體穩(wěn)定性及有機(jī)碳分布的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(6):1214-1223.

      Zhang Xiuzhi, Li Qiang, Gao Hongjun, et al. Effects of long-term fertilization on the stability of black soil water stable aggregates and the distribution of organic carbon[J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223. (in Chinese with English abstract)

      Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol

      Liang Yao1, Cai Hongguang1, Yang Li2, Cheng Song1, Zhang Shuimei1, Yuan Jingchao1, Liu Jianzhao1, Liu Songtao1, Ren Jun1※

      (1.,,130033; 2.100091,)

      Maize stovers returning is an effective approach to improve soil fertility of Mollisol, thereby to maintain safety of regional environment. However, the understanding of maize stovers returning with no tillage or deep tillage is still limited on Soil Organic Carbon (SOC) sequestration and distribution of aggregates associated Organic Carbon (OC). In this study, a six-year field experiment was carried out, which located in the middle of Mollisol region in northeast China. Three treatments were selected as follow: conventional tillage (CK), stovers mulching with no tillage (SM), and stovers incorporation with deep tillage (SI). Soil samples were collected from 0-10, >10-20, >20-30, and >30-40 cm depth. In addition, the specific parameters were estimated, including the SOC content, bulk density, aggregate size distribution and aggregate associated OC content, annual carbon input, SOC stock, and soil carbon sequestration rate. Compared with CK, SMR significantly increased by 22.4% SOC content at 0-10 cm soil depth, but no notable change in the SOC content at 10-40 cm soil depth. SI significantly increased by 18.1%-41.5% SOC content at 0-40 cm soil depth, with the greatest increasement at >20-30 cm soil depth. The SOC content in CK and SMR treatment was in a decreasing trend as soil depth increased, but no significant change was found in the SOC content among 0-10, >10-20 and >20-30 cm soil depths in SIR. The SOC stock changed in the same way as its content. The SMR had a high SOC stock at 0-10 cm soil depth than SIR, however, greater SOC stock at >20-30 cm soil depth was found in SIR than that in SMR. In the initial condition, the amount of carbon sequestration decreased as follow: SM>SI>CK at topsoil (0-20 cm), and SI>SM>CK at subsoil (>20-40 cm). The soil carbon sequestration rate at topsoil and subsoil were 1.34 and 0.77 Mg/(hm2·a) in SM treatment, and 0.85 and 1.74 Mg/(hm2·a) in SI treatment, respectively. Aggregate distribution and aggregate associated OC content were strongly affected by different stovers returning treatments. The SM significantly increased the proportion of macroaggregate and Mean Weight Diameter (MWD) at topsoil, and the SI significantly increased the aggregate stability at 0-40 cm soil layer, compared with CK. The SIR treatment had higher MWD at 10-40 cm soil layer than the SM. The 2-0.25 mm aggregate accounted for 48.3%-55.0% of the SOC, indicating the crucial role of macroaggregate in SOC sequestration in the Mollisol. Compared with CK, higher OC contents of >2 and <0.053 mm aggregated at 0-10 cm layer were observed in SM, where the SI resulted in greater OC content of >2 mm at 0-10 cm layer, as well as OC contents in each size of aggregate at 10-40 cm soil depth. The SOC content was significant positive correlations with MWD, OC contents of >2 mm and 2-0.25 mm aggregate, respectively, indicating that more exogenous organic carbon has been preserved in macroaggregates. In the Mollisol region, maize stovers returning can be used to improve the SOC sequestration and aggregate stability, where the positive effect of maize stovers mulching on SOC retention mainly focused on 0-10 cm soil depth. Furthermore, the maize stovers incorporation with deep tillage can contribute to great SOC sequestration and physical structure at 0-40 cm soil depth.

      organic carbon; soils; aggregate; maize stovers returning; Mollisol; carbon sequestration rate

      梁堯,蔡紅光,楊麗,等. 玉米秸稈覆蓋與深翻兩種還田方式對(duì)黑土有機(jī)碳固持的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):133-140.doi:10.11975/j.issn.1002-6819.2021.01.017 http://www.tcsae.org

      Liang Yao, Cai Hongguang, Yang Li, et al. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 133-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.017 http://www.tcsae.org

      2020-07-16

      2020-12-07

      國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFF0213501-1);吉林省農(nóng)業(yè)科技創(chuàng)新工程人才基金(C8223001201);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-07-G-6);吉林省科技發(fā)展計(jì)劃項(xiàng)目(20200403167SF,20200702008NC)資助

      梁堯,博士,研究方向?yàn)橥寥烙袡C(jī)培肥。Email:liangyaosmart@163.com

      任軍,博士,研究員,研究方向?yàn)橥寥栏牧?。Email:renjun557@163.com

      10.11975/j.issn.1002-6819.2021.01.017

      S343.1

      A

      1002-6819(2021)-01-0133-08

      猜你喜歡
      耕層黑土粒級(jí)
      國(guó)外某大型銅礦選礦廠流程考查與分析①
      礦冶工程(2022年6期)2023-01-12 02:15:10
      自然資源部:加強(qiáng)黑土耕地保護(hù)
      基于Sentinel-2遙感影像的黑土區(qū)土壤有效磷反演
      山地暗棕壤不同剖面深度的團(tuán)聚體分布
      輪作制度對(duì)敦化市土壤主要理化性狀影響的研究
      吉林蔬菜(2021年2期)2021-07-19 08:09:24
      紅壤坡耕地耕層質(zhì)量特征與障礙類型劃分
      不同粒級(jí)再生骨料取代的混凝土基本性能試驗(yàn)研究
      魯西南夏玉米區(qū)土壤耕層情況調(diào)查研究
      典型黑土區(qū)不同尺度觀測(cè)場(chǎng)地融雪徑流
      多菌靈在酸化黑土中遷移性能的抑制
      剑河县| 民乐县| 通辽市| 枣阳市| 兴山县| 伊宁市| 武山县| 吉林市| 凤阳县| 商丘市| 靖宇县| 汝州市| 宽城| 文登市| 盘锦市| 凤凰县| 毕节市| 普兰店市| 镇坪县| 卫辉市| 广昌县| 墨玉县| 广河县| 山西省| 宁津县| 漯河市| 景泰县| 鹿泉市| 鹤山市| 兴隆县| 乐亭县| 封开县| 资溪县| 自贡市| 龙胜| 嘉黎县| 贡觉县| 大英县| 延川县| 江津市| 莱芜市|