丁文峰,林慶明,李 昊,康靖羚,韓昊宇,張平倉
海藻多糖抗蝕劑對紅壤坡面侵蝕過程的影響
丁文峰1,2,林慶明3,李 昊1,2,康靖羚1,2,韓昊宇1,2,張平倉1,2※
(1. 長江水利委員會長江科學院,武漢 430010;2. 水利部山洪地質災害防治工程技術研究中心,武漢 430010; 3. 長江水利委員會水土保持監(jiān)測中心站,武漢 430010)
為探究海藻多糖抗蝕劑(SA-01)在控制坡面水土流失中的效果及作用機理,該研究以南方紅壤區(qū)典型紅壤為例,通過人工模擬降雨試驗(雨強90 mm/h,坡度5°、10°、15°),設置不同施加濃度(0、0.25%、0.50%、0.75%、1.00%),分析SA-01施加濃度對紅壤坡面產流產沙過程的影響,并結合土樣斥水性試驗、團聚體穩(wěn)定性試驗和電鏡掃描分析SA-01影響坡面土壤侵蝕的作用機理。結果表明:與不施加SA-01的坡面相比,施加SA-01后坡面產流時間提前,穩(wěn)定徑流量增大。隨施加濃度增大,坡面產流量增加比例也增大。施加SA-01后能顯著降低坡面土壤侵蝕產沙量,這主要是由于土壤施加SA-01后,與土壤中的Ca2+等陽離子發(fā)生螯合反應,在土壤顆粒表面生成有一定強度的保護層有關,保存層的存在使土壤斥水性增大,減少了土壤團聚體的遇水分散性,提高了各級粒徑土壤團聚體的穩(wěn)定性。0.25%的施加濃度即可將團聚體水穩(wěn)性提升到70%以上,這為中國南方以排水保土為核心的水土保持工作提供了新思路。
土壤;侵蝕;抗蝕劑;海藻多糖;紅壤坡面
坡耕地是水土流失的主要策源地,坡耕地水土流失不僅使土地生產力下降,而且水土流失引起的泥沙輸移會對下游河道及江河湖庫等造成淤積和污染問題,因此控制坡耕地水土流失意義重大[1]。長期以來,生物措施、耕作措施和工程措施是坡耕地水土流失調控的三大措施類型,在中國坡耕地水土流失防治中發(fā)揮了重要作用。土壤抗蝕劑作為減少土壤侵蝕的一種新方法,能在一定程度上改善土體結構,強化土壤抗剪強度,提高水穩(wěn)性及土壤抗蝕性等[2-6]。目前常見的土壤抗蝕劑有聚丙烯酰胺(PAM)[7-11]、新型親水性聚氨酯復合材料(W-OH)[12-13],路邦EN-1固化劑[14-16]、STW型高分子土壤穩(wěn)定劑[17]、LY-1離子型土壤抗蝕劑[18]、大豆中提取天然聚合物[19-20]等,這些材料在增加土壤抗蝕性、減少地表徑流和減少土壤侵蝕等方面效果明顯,已經部分應用于生態(tài)環(huán)境保護領域。盡管上述抗蝕劑在各類工程邊坡、侵蝕劣地、甚至部分坡耕地等環(huán)境中表現(xiàn)出良好效果,但多為工業(yè)合成物,存在實際應用流程復雜和成本高等問題,是否適應耕地等對環(huán)保要求高的區(qū)域有待研究。因此,開發(fā)具有良好生態(tài)效益、施工簡單方便的新型抗蝕材料是耕地水土流失防治新材料領域研究的關鍵。項目組近年來通過研究,從海洋植物中提取合成了一種天然多糖聚合物——海藻多糖抗蝕劑SA-01[21-22],它不僅成本低廉(每公斤成本在10元以內),可自動降解且對環(huán)境無害。李昊等[23]分析了SA-01對坡面土壤抗剪與入滲特性的影響。為驗證SA-01在控制坡面水土流失中的作用,本研究采用人工模擬降雨試驗,通過施加不同濃度的海藻多糖抗蝕劑SA-01,闡明其對坡面產流產沙變化規(guī)律及土壤斥水性、團聚體穩(wěn)定性等的影響,并結合電鏡掃描等揭示其水土保持原理,以期為今后水土保持提供新思路。
試驗用土取自于湖北省武漢市長江科學院沌口基地,試驗土樣屬中國土壤系統(tǒng)分類(2001年)中的紅壤,土壤質地為壤質砂土,試驗前,將野外采集的表層20 cm的土樣風干后用吸管法測其土壤結構組成,并過篩(10 mm)以避免存在雜草與石塊對試驗的干擾,試驗用土沙粒、粉粒和黏粒的質量分數(shù)分別為35.08%,46.45%,18.47%,有機質為1.78%。
海藻多糖是一種從海洋植物中提取的由1-4聚-D-甘露糖醛酸和-L古羅糖醛酸組成的天然多糖聚合物,能溶于水形成透明有一定黏度的溶液,能與土壤中的Ca2+等高價陽離子發(fā)生螯合反應作用,生成三維網(wǎng)狀結構。試驗所用的海藻多糖抗蝕劑(SA-01)是一種以海藻多糖高分子材料為主要成分,添加醇類助劑、黏度調節(jié)劑、表面活性劑、去離子水等組成的一種土壤抗蝕劑(各成分質量分數(shù)分別為海藻酸鹽5%,大豆分離蛋白5%,醇類助劑1%,黏度調節(jié)劑2%,表面活性劑1%,其余為去離子水)。SA-01天然狀態(tài)下為白色粉末狀固體,可在室溫干燥條件下長期保存,遇水后可較快完全溶解,形成具有一定黏度的無色無味水溶液[21-23],根據(jù)上述添加物質配比的不同,其黏度為50~1 000 mPa·s,密度為1.02~1.09 g/cm3,凝固時間為60~3 600 s。
1.2.1 掃描電鏡測試
掃描電子顯微鏡是一種利用電子與物質的相互作用來對物質微觀形貌進行表征的方法,常用于測定各種固體的表面形貌,其放大倍數(shù)為1.0×102~1.0×105。本試驗測試儀器為Sigma場發(fā)射掃描電鏡,所有測試樣品放大倍數(shù)為1 000倍,測試前將處理好的樣品在60 ℃條件下真空干燥4 h,并噴金以增強其導電性,減小干擾。
1.2.2 SA-01對紅壤坡面產流產沙的影響
試驗采用人工模擬降雨法,試驗土槽規(guī)格為2.0 m×1.0 m×0.5 m(長×寬×高)。試驗前,先在土槽底層鋪15 cm厚的細沙,以保證試驗土層的透水性與天然坡面相近。之后將土分層裝填于土槽內,每層填土5 cm,邊填土邊壓實,填土總厚度為30 cm。填土容重保持為1.25 g/cm3左右。填土后在土槽表面噴灑不同濃度的SA-01水溶液(0.25%、0.50%、0.75%、1.00%),并設置不添加對照土槽(0%),為保證所有試驗場次土槽內的土壤含水率基本一致,所有試驗土槽噴灑量均為5 L。
由于本研究側重于分析施加不同濃度SA-01對坡面土壤侵蝕過程的影響及機理,若雨強過小,坡面產流產沙量小,不能客觀反映其在水土保持中的作用,因此,本研究選取暴雨級別進行研究,雨強選擇90 mm/h,坡度分別選取5°、10°、15°,降雨時間為60 min。由于不同SA-01濃度凝固時間不同,為保證施加SA-01后在坡面充分凝固,統(tǒng)一選擇在噴灑SA-01后24 h進行人工模擬降雨試驗。試驗前1 d用20 mm/h雨強濕潤土壤,降雨時間30 min,以保證每次土壤含水率基本一致。試驗開始后,當土槽下方集水口產流時記錄產流時間。坡面產流后,用500 mL燒杯接樣,前7 min,每分鐘接一次樣,8~10 min接一次樣,10 min后,每隔5 min接一次樣,直至降雨結束,接樣時間均設置為20 s。試驗結束后,用量筒測定采集的徑流泥沙樣體積,用烘干法測定各個樣品中的泥沙量。取3次重復試驗的產流產沙平均值作為最終試驗結果。
1.2.3 SA-01對土壤斥水性的影響
為保證測得土壤斥水性有代表性,采用目前國內外最常用的2種測定方法,滴水穿透時間法(Water Drop Penetration Time,WDPT)和酒精溶液入滲法(Molarity of an Ethanol Droplet,MED)分別測試。試驗前,將預備的土壤風干后過2 mm篩,按試驗要求將試樣置于干凈的玻璃培養(yǎng)皿(115 mm×22 mm)中。測定之前在土壤表面噴灑一定量不同濃度的SA-01溶液(0.25%、0.50%、0.75%、1.00%),并設置不添加對照(0 %),噴灑SA-01溶液量固定為0.4 g/cm2。
1)滴水穿透時間法(WDPT)
用滴定管將10滴純凈水滴到制備的土壤樣品上,記錄每一滴純凈水滲入土壤表面所需的時間,取10滴純凈水所用時間的算術平均值作為土壤樣品的最終取值。為防止水滴高度過高,勢能轉化的動能過大對土壤表面產生沖擊,滴管高度設置在樣品上方5 mm處。試驗時根據(jù)Dekker等[24]提出的斥水性分類標準,按水滴消失時的時間分出等級如下:無斥水性、輕微、中等、嚴重和極度斥水性的穿透時間分別為5、>5~60、>60~600、>600~3 600、>3 600 s。
2)酒精溶液入滲法(MED)
用純度為95%的酒精配制成不同濃度的溶液,用滴定管將6滴不同的酒精+水溶液滴到制備的土壤樣品上,觀察其在5 s內能否完全滲入土壤。試驗時根據(jù)觀察的實際入滲時間,將溶液按酒精所占百分數(shù)從低到高逐一測試,直到選取到滿足要求的酒精濃度,根據(jù)Doerr等[25]的研究分類標準,采用其摩爾濃度值作為該土壤樣品的土壤斥水性(表1)。
表1 酒精溶液入滲法(MED)測定土壤斥水性分類標準
1.2.4 SA-01對土壤團聚體穩(wěn)定性的影響
將預備土樣經過風干、過篩后,選出粒徑分別為2~<5、5~<10、10~<20、≥20 mm的團聚體顆粒,然后分組將不同濃度SA-01溶液(0.25%、0.50%、0.75%、1.00%)均勻噴灑在團聚體表面,進行團聚體水穩(wěn)性試驗。每種濃度條件下,分別選上述4個粒徑組團聚體各50顆,放置在口徑0.5 mm的篩子上,平行試驗3組。將團聚體放置于篩網(wǎng)上,向容器中加水,直至水面高于篩網(wǎng)5 cm,而后將團聚體浸入水中開始計時。每組試驗共進行10 min,每分鐘記錄一次分散個數(shù)。本研究采用水穩(wěn)性指數(shù)反應團聚體遇水后穩(wěn)定的性能,按下列公式計算(無量綱)[17,26-27]:
式中P為時間為時分散的團粒數(shù);為時間,min;P為10 min內未分散的團粒數(shù);K為時間為時的校正系數(shù);為供試團聚體總數(shù),本次試驗為50。
不同坡度紅壤坡面施加不同濃度SA-01條件下的產流時間見表2。從表2可見,在相同坡度條件下,產流時間隨施加濃度的增大呈先增大后減小趨勢,各施加濃度條件下坡面產流時間差異顯著(<0.05)。0.25%施加濃度條件下坡面產流時間大于對照坡面,這主要是由于低濃度條件下SA-01與坡面土壤顆粒作用后形成的凝膠層薄,土壤孔隙仍存在且一定程度上增大了團聚體的穩(wěn)定性,入滲速率增大,產流時間延長。隨施加濃度的增大,SA-01與土壤中的陽離子發(fā)生反應形成的凝膠層厚度增大,使得土體中孔隙被堵塞,減小了入滲速率,致使產流時間減小[23]。在相同施加濃度條件下,產流時間隨坡度增大而減小,但施加濃度為0.75%和1.00%時,3個坡度坡面產流時間差異不顯著,對照組和施加濃度為0.25%和0.50%條件下15°坡面產流時間顯著小于5°和10°(<0.05)。這主要是由于施加濃度越大,SA-01在土壤顆粒表面形成的保護層強度越大,保護層對坡面產流的影響大于坡度對坡面產流的影響所致。
表2 不同坡度條件下不同海藻多糖抗蝕劑(SA-01)濃度對坡面初始產流時間的影響
注:不同小寫字母表示同一坡度下不同SA-01濃度間差異顯著(<0.05),不同大寫字母表示同一SA-01濃度下不同坡度間差異顯著(<0.05)。下同。
Note: Different lowercase letters indicate the significant difference among SA-01 concentrations at the same slope gradients, and different capital letters indicate the significant difference among slopes at the same SA-01 concentration(<0.05 ). Same as below.
圖1為不同坡度、不同施加濃度條件下的坡面產流過程。從圖中可以看到,未施加SA-01與施加SA-01的坡面產流過程均呈現(xiàn)先增加后趨于穩(wěn)定的趨勢??傮w上來看,在相同坡度條件下,施加SA-01的坡面穩(wěn)定產流率均大于未施加坡面,5°條件下,施加SA-01與未施加SA-01坡面穩(wěn)定產流率差異顯著,10°和15°條件下,除施加濃度0.25%條件下穩(wěn)定產流率與未施加條件下穩(wěn)定產流率差異不顯著外,其余施加濃度條件下的穩(wěn)定產流率與未施加條件下穩(wěn)定產流率均差異顯著,最大施加濃度條件下(1.00%)的坡面產流率是未施加坡面產流率的2倍左右。這主要是由于施加SA-01后,SA-01在土壤表面形成一層保護膜,土壤的斥水性增大,入滲量減小,坡面徑流量增大。
對比施加與不施加SA-01坡面的徑流總量可知(圖2),同樣坡度條件下,除施加SA-01濃度為0.25%坡面總徑流量與對照坡面總徑流量間差異不顯著(>0.05)外,其余施加SA-01濃度條件下的坡面總徑流量與未施加SA-01坡面總徑流量間差異均表現(xiàn)為在0.05水平上顯著,且坡面總徑流量均大于對照坡面,隨施加濃度增大,坡面產流量間差異逐漸增大。如當坡度為5°,施加SA-01濃度為0.50%時,坡面產流量為對照組的1.77倍;當施加濃度增大到1.00%時,坡面產流量為對照組的4.97倍。在相同施加濃度條件下,3個坡度間的產流量無顯著差異,不施加SA-01的坡面徑流總量與施加SA-01的坡面徑流總量相比,后者徑流量較前者徑流量僅增加4.7%~6.1%。
不同坡度、不同SA-01施加濃度條件下坡面侵蝕產沙過程如下圖3所示。從圖3中可以看出,坡面侵蝕產沙率隨降雨時間的延長先減小后增大,然后又緩慢波動下降并趨于穩(wěn)定。這主要是由于坡面侵蝕產沙過程初期坡面松散土壤顆粒多,雨滴擊濺侵蝕占主導地位,侵蝕產沙率較大。隨著降雨時間的延長,坡面徑流侵蝕開始占主導地位,同時由于雨滴擊濺等作用,坡面土壤結皮開始產生,土壤侵蝕產沙率逐漸減小;隨著降雨時間繼續(xù)延長,坡面土壤含水率增大,入滲量減小,坡面徑流進一步增大,剝蝕輸移能力增大,侵蝕產沙率增大,最后隨著坡面徑流的穩(wěn)定,侵蝕產沙率也逐漸趨于穩(wěn)定。
從施加和未施加SA-01的坡面產沙率對比來看,在相同坡度條件下,隨施加SA-01濃度的增大,坡面侵蝕產沙率降低。如對照坡面在5°、10°、15°時穩(wěn)定產沙率分別為0.67、0.78、0.81 g/(m2·min);而施加SA-01濃度為0.25%時,其穩(wěn)定產沙率為0.45、0.42、0.45 g/(m2·min),分別為對照組的67%、53%、56%;當濃度增加到1.00%時,其穩(wěn)定產沙率分別為對照組的45%、38%、44%。從圖中還可以看出,施加SA-01坡面達到穩(wěn)定產沙率的時間也比對照組提前,如對照坡面產沙率穩(wěn)定時間都在40 min以后,且隨著坡度的增加還會相應的延遲,而施加SA-01的坡面侵蝕產沙率達到穩(wěn)定的時間均在15~20 min內。這主要是由于SA-01遇水后與土壤中的Ca2+等高價陽離子發(fā)生螯合反應,生成三維網(wǎng)狀結構,這種三維網(wǎng)狀結構具有較強的凝結力,增強了土壤團聚體的水穩(wěn)性,土壤可蝕性降低,因此,土壤侵蝕產沙率與對照組相比降低。
從圖4中可以看到,施加SA-01的坡面侵蝕累積產沙量均小于對照坡面,施加濃度越大,累積產沙量越小。如對照坡面在坡度為5°、10°、15°時累積產沙量分別為22.9、23.25、22.35 g,施加SA-01濃度為0.25%的坡面累積產沙量分別為6.25、6.33、6.26 g,為對照組的27.29%、27.23%、28.01%;當施加SA-01濃度為0.50%時,坡面累積產沙量分別為照組的19.26%、19.05%、19.78%;當施加SA-01濃度繼續(xù)增加到1.00%時,其累積產沙量僅分別為對照組坡面的5.24%、4.81%、5.27%。
滴水穿透時間法(WDPT)和酒精溶液入滲法(MED)測定不同濃度SA-01對土壤樣品斥水性的影響的結果見表3。從表3可以看出,2種方法測得的土壤斥水性結果一致,不施加SA-01和施加濃度0.25%的土壤樣品呈現(xiàn)親水性特征,施加SA-01濃度大于0.50%的土壤樣品均表現(xiàn)出不同程度的斥水性。
表3 滴水穿透時間法(WDPT)和酒精溶液入滲法(MED)測定土壤斥水等級
表4給出了不同SA-01施加濃度條件下不同粒徑土壤團聚體在靜水中浸泡10 min的崩解情況,可以看出,與未施加SA-01相比,施加SA-01后土壤各個粒級團聚體崩解率都下降,施加濃度越大,各個粒級團聚體崩解數(shù)量越少,當施加濃度到1.00%時,土壤團聚體幾乎不發(fā)生崩解。
表4 不同粒徑團聚體在不同SA-01施加濃度下的崩解個數(shù)
圖5給出了不同粒徑團聚體在不同SA-01施加濃度條件下的水穩(wěn)定性指數(shù),由圖可知,施加SA-01可大幅提升團聚體水穩(wěn)定性,當施加濃度為0.25%時,4種粒徑的團聚體水穩(wěn)性指數(shù)均較未施加組提高,最低提高到原來的1.71倍,團聚體穩(wěn)定性指數(shù)達到78.9%。當施加濃度為1.00%時,土壤團聚體的水穩(wěn)性指數(shù)基本達到100%。施加相同濃度SA-01條件下,水穩(wěn)性指數(shù)隨著團聚體粒徑的增大而減小,而當粒徑相同時,水穩(wěn)性指數(shù)與SA-01施加濃度呈顯著的正相關關系。
通過不同坡度、不同施加SA-01濃度條件下坡面產流產沙結果看,SA-01能顯著降低坡面侵蝕產沙量,施加濃度越大,土壤侵蝕量減少越顯著,0.25%施加濃度條件下坡面產流量與對照坡面差異不顯著,施加濃度大于0.50%后,坡面徑流總量明顯增大,分析產生這種現(xiàn)象的原因主要與SA-01的固土機理有關。通過對未施加SA-01的對照組與施加濃度分別為0.25%、0.50%、0.75%和1.00%濃度的SA-01團聚體表面進行掃描電鏡測試,結果如圖6所示。從圖6中可以看出,未施加SA-01的對照組團聚體表面具有很多直徑小于10m的顆粒狀結構,顆粒結構間有許多孔隙,隨施加SA-01濃度的增大,這種顆粒狀多孔結構發(fā)生改變,孔隙被填充逐漸變得光滑,類似覆蓋了一層薄膜狀涂層。這主要與施加SA-01后,土壤顆粒表面被以多糖為基材的SA-01覆蓋,其中親水羥基(-OH)基團可通過氫鍵作用連接土壤顆粒,且其中活性基團可與土壤中的Ca2+等陽離子發(fā)生反應,在土壤顆粒表面生成有一定強度的保護層有關,保護層的存在,使得土壤團聚體遇水崩解概率降低,增強了土壤抗蝕性,且一定程度上減少了土壤水分的入滲,增大了地表徑流。SA-01濃度越大,與土壤團聚體發(fā)生相互作用越強烈,團聚體表層形成的保護膜強度就越大,團聚體顆粒越難崩解,水穩(wěn)定性越大,因此土壤抗蝕性值隨著SA-01濃度的增加而增加。由此也可以看出,SA-01與以往聚丙烯酰胺(PAM)、新型親水性聚氨酯復合材料(W-OH)等通過自身對水的親和性,增加入滲減少坡面徑流的水土保持機理有所不同,SA-01通過覆蓋土壤顆粒表面,形成保護層增大土壤斥水性,增強土壤團聚體的穩(wěn)定性而減少水土流失,這可為中國南方以排水保土為核心的水土保持工作提供新思路。
1)在相同坡度條件下,各施加SA-01濃度坡面穩(wěn)定產流率均大于對照坡面,隨施加濃度增大,坡面產流量增加比例也增大。施加SA-01能顯著降低坡面土壤產沙量,在相同坡度條件下,隨施加SA-01濃度的增大,坡面侵蝕產沙率降低。
2)土壤施加SA-01后,斥水性隨施加濃度的增大而增大,SA-01施加后能顯著提高各粒級團聚體的水穩(wěn)性,在粒徑相同時,團聚體水穩(wěn)性隨施加濃度增加而增大。
3)從不同施加濃度條件下的坡面累計產流量、累計產沙量、斥水性等級以及團聚體穩(wěn)定性等指標看,0.25%的施加濃度即可獲得較為滿意的水土流失控制效果,這為中國南方以排水保土為核心的水土保持工作提供了新思路。
[1]張平倉,丁文峰. 長江中上游坡耕地侵蝕產沙調控理論與實踐[J]. 人民長江,2018,49(1):23-27.
Zhang Pingcang, Ding Wenfeng. Theory and practice of sediment erosion control on slope cropland in upper and middle reaches of Yangtze River[J]. Yangtze River, 2018, 49(1): 23-27. (in Chinese with English abstract)
[2]García-orenes F, Guerrero C, Mataix-solera J, et al. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids[J]. Crossref, 2005, 82(1): 65-76.
[3]王浩然. 土壤結構改良劑的改土效果及其使用的探討[J]. 北京農業(yè),2011(33):103-104.
Wang Haoran. Study on the effects of soil structural amendment on soil properties and its utilization[J]. Beijing Agriculture, 2011(33): 103-104. (in Chinese with English abstract)
[4]Kukal S S, Kaur M, Bawa S S, et al. Water-drop stability of PVA-treated natural soil aggregates from different land uses[J]. Catena, 2007, 70(3): 475-479.
[5]Li Qiang, Liu Guobin, Zhang Zheng, et al. Relative contribution of root physical enlacing and biochemistrical exudates to soil erosion resistance in the Loess soil[J]. Catena, 2017, 153: 61-65.
[6]Reverchon F, Yang H, Ho T Y, et al. A preliminary assessment of the potential of using an acacia-biochar system for spent mine site rehabilitation[J]. Environmental Science and Pollution Research, 2015, 22(3): 2138-2144.
[7]雷廷武,唐澤軍,張晴雯,等. 聚丙烯酰胺增加土壤降雨入滲減少侵蝕的模擬試驗研究Ⅱ.侵蝕[J]. 土壤學報,2003,40(3):401-406.
Lei Tingwu, Tang Zejun, Zhang Qingwen, et al. Effects of polyacrylamid application on infiltration and soil erosion under simulated rainfalls Ⅱ. erosion control[J]. Acta Pedologica Sinica, 2003, 40(3): 401-406. (in Chinese with English abstract)
[8]Mcneal J P, Krutz L J, Locke M A, et al. Application of Polyacrylamide (PAM) through Lay-Flat Polyethylene Tubing: Effects on Infiltration, Erosion, N and P Transport, and Corn Yield[J]. Journal of Environmental Quality, 2017, 46(4): 855.
[9]Wang A, Li F, Yang S. Effect of polyacrylamide application on runoff, erosion, and soil nutrient loss under simulated rainfall[J]. Pedosphere, 2011, 21: 628-638.
[10]Yu J, Lei T, Shainberg I, et al. Infiltration and erosion in soils treated with dry PAM and gypsum[J]. Soil Sci. Soc. Am. J, 2003, 67: 630-636.
[11]劉紀根,張平倉,陳展鵬. 聚丙烯酰胺對擾動紅壤可蝕性及臨界剪切力的影響[J]. 農業(yè)工程學報,2010,26(7):45-49.
Liu Jigen, Zhang Pingcang, Chen Zhanpeng. Effects of polyacrylamide (PAM) on soil erodibility and critical shear stresses for disturbed red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 45-49. (in Chinese with English abstract)
[12]梁止水,吳智仁,楊才千,等. 基于W-OH的砒砂巖抗蝕促生機理研究[J]. 水利學報,2016,47(9):1160-1166.
Liang Zhishui, Wu Zhiren, Yang Caiqian, et al. Mechanism of erosion resistance and vegetation prom otion by W-OH in Pisha sandstone[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1160-1166. (in Chinese with English abstract)
[13]朱秀迪,丁文峰,張冠華,等. 新型水溶性聚氨酯對紫色土坡面產流產沙的影響[J]. 長江科學院院報,2018,35(1):47-51.
Zhu Xiudi, Ding Wenfeng, Zhang Guanhua, et al. Impact of new water-soluble polyurethane on runoff and sediment yield on purple soil slope[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(1): 47-51. (in Chinese with English abstract)
[14]單志杰,張興昌,趙偉霞,等. EN-1固化劑對土壤抗蝕性的影響[J]. 水土保持學報,2010,24(5):6-9.
Shan Zhijie, Zhang Xingchang, Zhao Weixia, et al. Effects of EN-1 soil stabilizer on soil erodibility[J]. Journal of Soil and Water Conservation, 2010, 24(5): 6-9. (in Chinese with English abstract)
[15]雷雯,項偉. EN-1離子土壤固化劑對滑坡滑帶土擾動樣的改性機理研究[J]. 長江科學院院報,2014,31(1):47-51.
Lei Wen, Xiang Wei. Mechanism of disturbed sliding zone soil improved by EN-1 ionic soil stabilizer[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(1): 47-51. (in Chinese with English abstract)
[16]郭玉珊,耿玉清,張艷,等. EN-1固化劑對土壤坑崩性的影響[J]. 水土保持通報,2015,35(3):214-218.
Guo Yushan, Geng Yuqing, Zhang Yan, et al. Effects of EN-1 stabilizer on soil anti-collapse ability[J]. Bulletin of soil and water conservation, 2015, 35(3): 214-218. (in Chinese with English abstract)
[17]劉瑾,施斌,姜洪濤,等. STW型高分子土壤穩(wěn)定劑改良粘性土團聚體水穩(wěn)性實驗研究[J]. 水文地質工程地質,2009,36(2):77-80,94.
Liu Jin, Shi Bin, Jiang Hongtao, et al. Experimental study on the water-stability property of clay aggregates stabilized by STW polymet soil stabilizer[J]. Hydrogeology engineering geology, 2009, 36(2): 77-80, 94. (in Chinese with English abstract)
[18]張利忠,趙英,林海軍,等. 基于LY-1離子型抗蝕劑的半干旱區(qū)邊坡土壤保水性能優(yōu)化研究[J]. 環(huán)境生態(tài)學,2019,3(1):74-78.
Zhang Lizhong, Zhao Ying, Lin Haijun, et al. The optimization of slope soil water retention in semi-arid area based on LY-1 ionic soil anti-erosion agent[J]. Environmental Ecology, 2019, 3(1): 74-78.(in Chinese with English abstract)
[19]Liu J E, Wang Z L, Li Y Y. Efficacy of natural polymer derivatives on soil physical properties and erosion on an experimental Loess Hillslope[J]. International Journal of Environmental Research and Public Health. 2018, 15(9): 1-14.
[20]Liu J E, Wang Z L, Ma X M, et al. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope[J]. Soil & Tillage Research. 2014, 139: 23-27.
[21]李昊,胡甲均,任紅玉. SA-01型高分子土壤抗蝕劑改良土壤團聚體水穩(wěn)性的實驗研究[J]. 水土保持通報,2018,38(4):168-173.
Li Hao, Hu Jiajun, Ren Hongyu. Water-stability property of soil aggregates stabilized by SA-01 polymer soil anti-erosion material[J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 168-173. (in Chinese with English abstract)
[22]林慶民. 海藻多糖抗蝕劑對坡面侵蝕產沙過程的影響機理[D]. 武漢:長江科學院,2019.
Lin Qingmin. Effects of Seaweed Polysaccharide Anti-erosion Material on Slope Erosion and Sediment Yield Process[D]. Changjiang River Scientific Research Institute, 2019. (in Chinese with English abstract)
[23]李昊,程冬兵,孫寶洋,等. 海藻多糖抗蝕劑對土壤抗剪與入滲特性影響分析[J]. 農業(yè)工程學報,2020,36(22):144-150.
Li Hao, Cheng Dongbing, Sun Baoyang, et al. Effects of seaweed polysaccharide-based materials on shear strength and permeability characteristics of soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 144-150. (in Chinese with English abstract)
[24]Dekker L W, Ritsema C J, Louis W, et al. How water moves in a water repellent sandy soil: I. Potential and actual water repellency[J]. Water Resources Research, 1994, 30(9): 2507-2517.
[25]Doerr S H, Dekker L W, Ritsema C J, et al. Water repellency of soils: The influence of ambient relative humidity[J]. Soil Science Society of America Journal, 2002, 66(2): 401-405.
[26]張怡,何丙輝,王仁新,等. 橫坡和順坡耕作對紫色土土壤團聚體穩(wěn)定性的影響[J]. 中國生態(tài)農業(yè)學報,2013,2(21):192-198.
Zhang Yi, He Binghui, Wang Renxin, et al. Effects of across- and along-slope ploughs on soil aggregate stability[J]. Chinese Journal of Eco-Agriculture, 2013, 2(21): 192-198. (in Chinese with English abstract)
[27]張迪,姜佰文,梁世鵬,等. 草甸黑土團聚體穩(wěn)定性對耕作與炭基肥施用的響應[J]. 農業(yè)工程學報,2019,35(14):125-132.
Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Meadow black soil aggregate stability of farming and carbon basal fertilizer response[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)
Effects of seaweed polysaccharide resists on the erosion process of red soil slope
Ding Wenfeng1,2, Lin Qingming3, Li Hao1,2, Kang Jingling1,2, Han Haoyu1,2, Zhang Pingcang1,2※
(1.430010,; 2.,430010,; 3.,430010,)
Soil erosion on sloping farmland has posed a great challenge on land productivity and crop yield, resulting coarse soil and less arable area due to the losing of fine soil particles. Moreover, N and P in soil that migrated with runoff and sediment can also affect the quality of downstream water. Therefore, it is highly demanding to control soil erosion on sloping farmland. Currently, various measures are being taken in the long run, covering from biological, tillage, and engineering. Soil amendments can be used to greatly reduce soil erosion and increase cohesion between surface soil particles, which can maintain surface soil structure to prevent soil crust, resulting the increase in soil infiltration rate, while the decrease in the surface runoff. Therefore, a new material related to soil amendments has drawn much attention. In recent years, the Changjiang River Sciences Research Institute has developed a new seaweed polysaccharide Anti-erosion Material SA-01. This study aims to explore the effect of SA-01 concentration on runoff and sediment yield of red soil, in order to verify the new polysaccharide corrosion inhibitor (SA-01) from the seaweed in controlling soil and water loss on a slope. Taking the typical red soil in southern China as an example, a series of artificial rainfall experiments were carried out, where the rainfall intensity of 90 mm/h, and the slope of 5°, 10°, and 15° under various concentrations of 0, 0.25%, 0.50%, 0.75%, and 1.00%. The mechanism of SA-01 on soil erosion was analyzed in a combination of soil water repellency and aggregate stability experiments. The results show that under the same slope, the runoff yield on the slope with SA-01 was higher than that on the control slope. The runoff yield on the slope decreased first and then increased, while the cumulative runoff on the slope decreased first and then increased with the increase of applied concentration. The increment ratio of surface flow increased as the SA-01 concentration increased, indicating that SA-01 can significantly reduce sediment yield on a slope. In the initial runoff yield stage, SA-01 can significantly reduce the slope sediment yield. In the stage of surface erosion, the slope without SA-01 reached the maximum, then fell rapidly, and eventually became stable. Compared with the control slope, the sediment yield of SA-01 slope fluctuated slightly in the early stage of runoff yield, and the time to reach stable sediment yield was earlier than that of the control slope. With the increase of applied concentration, the sediment yield decreased significantly. SA-01 can significantly increase the runoff while reduce the sediment yield of different slopes, due mainly to the change of soil hydrophilic to water repellency, and the decrease of infiltration rate. Soil water repellency was improved after SA-01 was applied. When the concentration was 0.25%, the sample retained the same hydrophilicity as the original soil. When the concentration was more than 0.25%, the soil began to change from hydrophilicity to repulsion. Due to the soil Ca2+cation chelation with SA-01, the soil particles generated on the surface of a layer with a certain intensity. The presence of preservation layer increased soil water repellency, while reduced the soil aggregate dispersion, and thereby to improve the stability of soil aggregates at different levels. SA-01 can provide a new idea for soil and water conservation of red soil on a slope.
soils; erosion; resist; seaweed polysaccharide; red soil slope
丁文峰,林慶明,李昊,等. 海藻多糖抗蝕劑對紅壤坡面侵蝕過程的影響[J]. 農業(yè)工程學報,2021,37(1):108-115.doi:10.11975/j.issn.1002-6819.2021.01.014 http://www.tcsae.org
Ding Wenfeng, Lin Qingming, Li Hao, et al. Effects of seaweed polysaccharide resists on the erosion process of red soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 108-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.014 http://www.tcsae.org
2020-09-03
2020-12-17
水利技術示范項目(SF-201905)、長江科學院中央級公益科研院所基本科研業(yè)務費(CKSF2019185/TB)資助
丁文峰,博士,教授級高級工程師,主要從事土壤侵蝕與水土保持方面的研究。Email:dingwf@mail.crsri.cn
張平倉,博士,教授級高級工程師,主要從事山洪災害與水土保持方面的研究。Email:zhangpc@mail.crsri.cn
10.11975/j.issn.1002-6819.2021.01.014
S157.1
A
1002-6819(2021)-01-0108-08