李 偉,路德樂,馬凌凌,季磊磊,吳 普
混流泵啟動過程壓力脈動特性試驗
李 偉,路德樂,馬凌凌,季磊磊,吳 普
(江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013)
為研究混流泵啟動瞬態(tài)過程規(guī)律,建立了混流泵啟動過程瞬態(tài)外特性和壓力脈動測量系統(tǒng),探究不同啟動時間和不同流量下瞬態(tài)壓力脈動的時頻特性。通過變頻器設(shè)置啟動時間,分別采用LWGY-250型渦輪流量計和MPM480型壓力傳感器進(jìn)行瞬態(tài)流量和瞬態(tài)壓力測量,并基于小波變換對啟動過程的非平穩(wěn)壓力脈動信號進(jìn)行分析。研究結(jié)果表明,在啟動過程中,隨著泵轉(zhuǎn)速增加,流量和揚(yáng)程曲線均可近似分為緩慢上升、快速上升而后緩慢趨于穩(wěn)定3個階段,且每個階段完成時間均與啟動時間長短呈正相關(guān)。啟動結(jié)束時刻,由角加速度與低工況運(yùn)行共同引起的壓力沖擊現(xiàn)象與流量大小和啟動時間有關(guān)。流量一定時,啟動時間越短,壓力沖擊越顯著;啟動時間一定時,流量越大,進(jìn)口壓力沖擊越小甚至消失,而葉輪中部與出口的壓力沖擊愈加明顯;1 s啟動且穩(wěn)定工況為1.2倍設(shè)計流量時,葉輪中部與出口的最大沖擊壓力值分別可達(dá)37和28 kPa。對于快速啟動,流量對啟動過程瞬態(tài)壓力變化無影響,在啟動結(jié)束后流量對壓力變化影響開始顯現(xiàn),當(dāng)壓力趨于平穩(wěn)時,2種不同流量下葉輪中部的壓力差約為30 kPa;對于慢速啟動,流量對啟動特性的影響在啟動過程便有明顯體現(xiàn),在啟動結(jié)束時刻,葉輪中部和出口的壓力峰值均下降15 kPa。啟動過程中,葉輪主頻為葉頻及其倍頻,其變化趨勢與轉(zhuǎn)速變化一致??焖賳訔l件下,在啟動結(jié)束時刻主頻壓力幅值存在由壓力沖擊造成的極大值。研究成果可為揭示瞬態(tài)運(yùn)行特性及優(yōu)化、設(shè)計瞬態(tài)工作水泵提供參考。
試驗;壓力脈動;混流泵;啟動過程;時頻特性
混流泵廣泛應(yīng)用于農(nóng)業(yè)灌溉、市政給排水、南水北調(diào)工程、水下導(dǎo)彈和魚雷發(fā)射系統(tǒng)、艦船噴水推進(jìn)系統(tǒng)、海水脫鹽系統(tǒng)以及火力發(fā)電和核電站的循環(huán)水系統(tǒng),是推動國民經(jīng)濟(jì)發(fā)展的重要動力裝備[1-6]。隨著應(yīng)用領(lǐng)域的不斷拓展,研究者對泵組的瞬態(tài)性能越來越關(guān)注[7-10]。在水下快速發(fā)射武器系統(tǒng)、核反應(yīng)堆冷卻泵、調(diào)水工程等許多領(lǐng)域,泵啟動過程中流量、壓力等的瞬態(tài)變化過程預(yù)測和研究具有重大意義,尤其是混流泵啟動過程異常壓力脈動的預(yù)測和防范對于整個系統(tǒng)安全穩(wěn)定運(yùn)行至關(guān)重要。
目前,在泵啟動過程水力特性研究方面,國內(nèi)外學(xué)者開展了較深入研究。王樂勤等[11-12]對一混流泵進(jìn)行啟停、瞬態(tài)調(diào)閥與調(diào)速的試驗研究,結(jié)果顯示,啟動過程揚(yáng)程存在沖擊效應(yīng),停泵過程中揚(yáng)程先于流量達(dá)到零值,調(diào)閥過程則逐漸接近穩(wěn)態(tài)值,并得到了混流泵在啟動過程中瞬態(tài)水力特性的解析式。Fernandez等[13]采用動網(wǎng)格技術(shù)對混流泵葉輪和導(dǎo)葉進(jìn)行了耦合計算,發(fā)現(xiàn)非定常數(shù)值計算方法可以有效地模擬混流泵內(nèi)部的復(fù)雜流動現(xiàn)象。Nagahara等[14]采用PIV技術(shù)和高速攝影技術(shù)對混流泵進(jìn)口處的旋渦運(yùn)動和速度場分布進(jìn)行了試驗研究,得出了旋渦運(yùn)動和旋渦強(qiáng)度對水力性能的影響規(guī)律。Tsukamoto等[15]對轉(zhuǎn)速以正弦周期性波動的離心泵進(jìn)行試驗與理論研究,結(jié)果表明當(dāng)頻率從零開始增加時,壓力略微滯后于準(zhǔn)穩(wěn)態(tài)變化,但隨著頻率增大,壓力的滯后性越明顯,并且給出了準(zhǔn)穩(wěn)態(tài)的適用范圍。Lefebvre等[16]對3種不同啟動加速度下離心泵瞬態(tài)水力特性進(jìn)行了試驗研究,結(jié)果表明葉輪加速是造成泵的瞬態(tài)特性難以準(zhǔn)確預(yù)測的最主要原因。Dazin等[17]對4種不同啟動條件下泵的瞬態(tài)特性進(jìn)行了試驗測量,由電磁離合器驅(qū)動的異步電動機(jī)實現(xiàn)了快速啟動,轉(zhuǎn)速是通過測量2個磁傳感器與偏心安裝在軸上圓盤的距離得到的。Bolpaire等[18-19]依次對穩(wěn)態(tài)小流量工況和快速啟動過程條件下離心泵進(jìn)口管內(nèi)回流與預(yù)旋現(xiàn)象進(jìn)行了高速攝影與PIV可視化試驗,發(fā)現(xiàn)轉(zhuǎn)速與雷諾數(shù)對進(jìn)口管回流影響頗大,且同一工況下瞬態(tài)的軸向回流長度要遠(yuǎn)小于穩(wěn)態(tài)值。陳煒等[20]對不同轉(zhuǎn)速條件下運(yùn)行的混流泵進(jìn)行停機(jī)試驗,發(fā)現(xiàn)三次多項式擬合的性能曲線與試驗基本一致。隋榮娟[21]理論分析了葉片泵穩(wěn)態(tài)與瞬態(tài)下的運(yùn)動方程并研究了啟動過程的能量損失特性,研究了不同閥門管路特性對瞬態(tài)性能的影響,采用計算流體動力學(xué)(Computational Fluid Dynamics)初步解析了啟動過程內(nèi)部流場。但截至目前,關(guān)于混流泵啟動過程壓力脈動的研究基本處于空白。在混流泵穩(wěn)態(tài)工況周期性非定常壓力脈動特性方面,施衛(wèi)東等[22]和劉建瑞等[23]分別研究了高比轉(zhuǎn)速混流泵內(nèi)部非定常壓力脈動特性和徑向間隙對混流泵內(nèi)部非定常流場的影響。翟杰等[24]對低比轉(zhuǎn)數(shù)混流泵導(dǎo)葉內(nèi)部壓力脈動特性進(jìn)行了研究,發(fā)現(xiàn)導(dǎo)葉內(nèi)部各監(jiān)測點壓力脈動主要受葉輪轉(zhuǎn)動影響;靳栓寶等[25]通過對混流泵內(nèi)部流場壓力脈動特性研究,發(fā)現(xiàn)在不同轉(zhuǎn)速時最優(yōu)工況壓力脈動頻率成分相似,壓力脈動的幅值與轉(zhuǎn)速成正比。張德勝等[26]發(fā)現(xiàn),混流泵導(dǎo)葉處壓力脈動波形主要受葉輪葉片數(shù)影響,而導(dǎo)葉形狀和厚度對其影響較小。陳超等[27]對不同空化條件下混流泵裝置內(nèi)部壓力脈動特性進(jìn)行了試驗,得到葉輪進(jìn)口處近似正弦的壓力脈動曲線,并總結(jié)了葉輪出口壓力脈動主頻受揚(yáng)程和空化影響的變化規(guī)律。李偉等[28]對不同流量工況下混流泵進(jìn)行了壓力脈動試驗,發(fā)現(xiàn)壓力脈動主頻為葉輪葉片通過頻率;主頻隨著流量減小向高頻方向偏移,動靜干涉誘導(dǎo)的流體激振以及噪聲等高頻成分出現(xiàn)并逐漸增多。上述研究表明,混流泵穩(wěn)態(tài)轉(zhuǎn)速下的壓力脈動特性探究較為深入,而對于啟動過程瞬態(tài)壓力脈動特性的研究未見相關(guān)文獻(xiàn)。
在許多重要領(lǐng)域,泵快速啟動誘導(dǎo)的水力振蕩是導(dǎo)致系統(tǒng)損壞和失效的關(guān)鍵因素[10,12]。為了掌握混流泵啟動過程壓力脈動特性,建立混流泵瞬態(tài)特性測試專用試驗臺并進(jìn)行外特性和壓力脈動試驗,研究葉輪進(jìn)口、中部及出口的壓力脈動時頻特性,探究不同啟動時間以及不同流量下的瞬態(tài)壓力演化規(guī)律。
試驗混流泵具體參數(shù)如表1所示。試驗在江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心混流泵專用試驗臺上進(jìn)行。試驗系統(tǒng)如圖1所示。
表1 模型泵性能參數(shù)
采用測量精度0.5級、額定壓力為1.6 MPa的LWGY-250型渦輪流量計測量流量。在泵進(jìn)出口測壓點,采用測量精度0.2級、量程為±100 kPa(進(jìn)口)和0~600 kPa(出口)的WT-1151型電容式壓力變送器測量進(jìn)出口壓力。采用精度0.2級、額定扭矩100 N·m的ZJ型轉(zhuǎn)矩轉(zhuǎn)速測量儀測量扭矩。采用TPAM-V(轉(zhuǎn)矩型)泵產(chǎn)品參數(shù)測量儀采集穩(wěn)態(tài)參數(shù)。采用MPM480傳感器測量瞬態(tài)壓力,結(jié)合自主研發(fā)的同步觸發(fā)器在HSJ2010綜合測試儀上進(jìn)行瞬態(tài)數(shù)據(jù)的采集。
1.2.1 外特性試驗方法
首先開展混流泵外特性的重復(fù)性穩(wěn)態(tài)試驗驗證。在啟動前進(jìn)出口閘閥開度均保持在100%,通過變頻調(diào)節(jié)將轉(zhuǎn)速保持在額定轉(zhuǎn)速1 450 r/min,保持進(jìn)口閘閥開度不變,逐漸減小出口閘閥開度進(jìn)行不同工況的參數(shù)測量;最小工況測量完畢后,變頻調(diào)節(jié)轉(zhuǎn)速使其緩慢減小至零,停機(jī)完成后待管路中流體靜止,而后將出口閘閥調(diào)節(jié)至最大開度。重復(fù)進(jìn)行3次試驗。
由能量守恒定律可得泵揚(yáng)程計算式[29]:
式中為水的密度,kg/m3;為重力加速度,m/s2;1、2分別為泵進(jìn)、出口壓力,Pa;1、2為泵進(jìn)、出口安裝高度,m;1、2為泵進(jìn)、出口的平均流速,m/s。
軸功率計算式如下[29]:
式中為泵組扭矩,N?m;0為空載轉(zhuǎn)矩,N?m;為轉(zhuǎn)速,r/min。
效率計算式如下[29]:
式中為流量,m3/s;為混流泵的揚(yáng)程,m;為混流泵的軸功率,kW。
然后開展瞬態(tài)啟動試驗,在穩(wěn)態(tài)測量的基礎(chǔ)上,調(diào)節(jié)出口閘閥開度以保持最終運(yùn)行工況不變。變頻調(diào)節(jié)轉(zhuǎn)速使其緩慢減小至零,完成停機(jī)。通過變頻器設(shè)置啟動時間,進(jìn)行數(shù)據(jù)采集,改變變頻器啟動時間,進(jìn)行不同啟動時間下的試驗測量,并完成不同流量條件下的瞬態(tài)啟動試驗測量。
1.2.2 壓力脈動試驗方法
壓力監(jiān)測點位置如圖2所示。通過設(shè)置變頻器穩(wěn)定頻率值以及自動調(diào)頻時間來控制轉(zhuǎn)速變化,并且同步采集壓力信號數(shù)據(jù)。測量葉輪進(jìn)口(監(jiān)測點A)、中部(監(jiān)測點B)和出口(監(jiān)測點C)的動態(tài)壓力,采樣頻率設(shè)置為1 024 Hz。
1.2.3 壓力時域方法
目前,對于穩(wěn)態(tài)工況下的頻域分析主要采用快速傅里葉變換(Fast Fourier Transform)方法,但該方法只能得到全局的頻率特征,無法得到時間-頻率特征,因此本文采用小波變換來對啟動過程的非平穩(wěn)壓力脈動信號進(jìn)行分析。試驗采用線性啟動方式,故葉輪在啟動過程的轉(zhuǎn)速與軸頻z表達(dá)式為
式中為泵運(yùn)行時間,s;0為啟動完成時間,s;max為泵啟動結(jié)束后穩(wěn)定運(yùn)行轉(zhuǎn)速,r/min。
2.1.1 穩(wěn)態(tài)外特性
額定轉(zhuǎn)速下獲得的泵性能試驗結(jié)果如圖3所示。由圖可知,3次試驗均在流量系數(shù)(工作流量與設(shè)計流量des的比值)為0.5~0.55范圍內(nèi)出現(xiàn)馬鞍區(qū)且3次試驗揚(yáng)程最大相對誤差約為4.3%,因此可以認(rèn)為試驗結(jié)果較為可靠。
2.1.2 瞬態(tài)外特性
不同啟動時間下的瞬態(tài)外特性曲線如圖4所示。在1 s啟動時,由于瞬時電流過大,啟動過程完成時間滯后了0.35 s,在圖4a中表現(xiàn)為轉(zhuǎn)速達(dá)到最大值的時間滯后0.35 s。而在2、3 s啟動時,轉(zhuǎn)速均提前達(dá)到最大值,這可能是泵軸起始位置與軸編碼器采集數(shù)據(jù)設(shè)定位置存在相位差造成的。而在慢速啟動時,啟動過程完成時間沒有滯后。如圖4a所示,在啟動過程中混流泵揚(yáng)程曲線首先表現(xiàn)為短暫的緩慢上升,緊接著出現(xiàn)快速上升階段,這與同時間段的流量變化具有相似的規(guī)律,并且在啟動結(jié)束時刻出現(xiàn)沖擊揚(yáng)程。相比圖4b、4c,啟動過程流量、揚(yáng)程變化趨勢基本一致,但啟動時間越短(即啟動加速度越大),到達(dá)沖擊揚(yáng)程的時間越短,相應(yīng)的沖擊揚(yáng)程也越大,此時流量還在緩慢上升,故該現(xiàn)象是在角加速度與小流量工況共同影響下產(chǎn)生。啟動結(jié)束后,角加速度消失,但由于流體慣性影響,流量繼續(xù)小幅上升,因此揚(yáng)程開始逐漸降低,并且隨著流動狀態(tài)趨于穩(wěn)定,揚(yáng)程也逐漸趨于最終穩(wěn)定值。流量和揚(yáng)程相對于轉(zhuǎn)速均表現(xiàn)出明顯的滯后性。
2.2.1壓力脈動時域分析
圖5所示為1.0工況時,不同啟動時間下葉輪進(jìn)口、中部和出口的壓力變化。由圖可知,葉輪進(jìn)口、中部與出口在不同啟動時間下均體現(xiàn)出了明顯的瞬態(tài)特征,在啟動結(jié)束時刻均出現(xiàn)壓力沖擊現(xiàn)象。對于閉合回路可認(rèn)為穩(wěn)壓水箱進(jìn)出口壓力恒定,在不考慮進(jìn)口回流因素的條件下,進(jìn)口壓力可表示為[30]
式中tank為穩(wěn)壓水箱的壓力,Pa,1是葉輪進(jìn)口與水箱之間的管路阻力常系數(shù),2為流動慣性系數(shù),其大小只與進(jìn)口與水箱之間管路幾何參數(shù)有關(guān),因此穩(wěn)態(tài)條件下進(jìn)口壓力變化趨勢可認(rèn)為是逐漸下降并最終穩(wěn)定。而瞬態(tài)進(jìn)口壓力則因為流動加速消耗壓力而出現(xiàn)沖擊壓力(指最大壓力值與啟動結(jié)束后穩(wěn)定壓力值的差值)。不同啟動時間下,葉輪進(jìn)口沖擊壓力與穩(wěn)定壓力比值大小為29.4%、25.03%和12.3%,葉輪中部為23.33%、13.35%和8.1%,葉輪出口為9.31%、9.11%和4.96%,隨著啟動時間的增加,沖擊壓力逐漸減弱。進(jìn)口處的沖擊壓力與穩(wěn)定壓力比值最大,說明葉輪進(jìn)口最易受壓力沖擊影響,因此圖5a中的進(jìn)口壓力變化也最為明顯。穩(wěn)定后,3個位置壓力脈動均呈現(xiàn)正弦或余弦規(guī)律波動,但幅值較小。
圖6所示為啟動結(jié)束后穩(wěn)定工況為1.0(大管阻)與1.2(小管阻)時,1 s與3 s啟動時間條件下葉輪進(jìn)口、中部和出口的壓力變化。從圖中可以發(fā)現(xiàn),從啟動到壓力基本穩(wěn)定,1.2啟動過程壓力的整體變化趨勢與1.0工況呈現(xiàn)明顯的區(qū)別,前者較后者均有明顯下降。
快速啟動條件下(1 s啟動),啟動完成前,1.0與1.22種流量下的壓力變化基本一致,說明流量對啟動過程壓力的變化影響甚微;啟動結(jié)束時,進(jìn)口壓力在小流量條件下存在明顯的壓力沖擊現(xiàn)象,而大流量條件下,進(jìn)口壓力不僅不存在沖擊壓力且啟動結(jié)束時的壓力并未達(dá)到最低,當(dāng)啟動時間為1 s且穩(wěn)定工況為1.2時,葉輪中部與出口最大沖擊壓力值分別可達(dá)37和28 kPa。這是因為在啟動結(jié)束時的流量′相對于啟動結(jié)束后的穩(wěn)定流量較小,啟動結(jié)束時的穩(wěn)態(tài)項壓力大于最終壓力且二者壓差1(2-′2)較大,由于流動加速所消耗壓力2(d/d)小于1(2-′2),故體現(xiàn)不出沖擊現(xiàn)象。慢速啟動條件下(3 s啟動),在1.5 s時刻之前,2種流量下的壓力基本一致,而在1.5 s之后二者壓力開始產(chǎn)生差異且逐漸擴(kuò)大。因此不同啟動時間下,流量對啟動瞬態(tài)特性的影響相差較大。
1.2大流量工況下,葉輪中部的沖擊壓力與穩(wěn)定壓力比值在1 s與3 s啟動條件下分別為132.2%和65.6%,出口則為49.9%與26.1%,而大流量下葉輪中部的壓力比值為23.33%和8.1%,出口為9.31%和4.96%。由此可見,隨著流量增大,沖擊壓力與穩(wěn)定壓力比值急劇上升,沖擊更明顯。
2.2.2 啟動瞬態(tài)壓力時域分析
獲得穩(wěn)定工況為1.0時,不同啟動時間下的時頻分布特征如圖7所示。由于混流泵葉片數(shù)為4,因此葉頻為4z。由式(5)可知,在設(shè)計工況下,軸頻約為24.17 Hz,葉頻約為96.67 Hz。由圖7可知,葉輪進(jìn)口、中部和出口的主頻變化趨勢和轉(zhuǎn)速變化趨勢相同,線性上升至穩(wěn)定值。啟動過程以及穩(wěn)定之后,主頻均為葉頻,說明葉輪旋轉(zhuǎn)影響較為明顯。葉輪中部的葉頻特征及其倍頻比較突出,而進(jìn)口與出口位置的高頻分量較弱。
通過對比分析不同啟動時間下的時頻特征可知,1 s啟動條件下,在啟動結(jié)束時刻附近,進(jìn)口出現(xiàn)極大幅值的葉頻特征,壓力幅值達(dá)到30 kPa以上,并逐漸減小至穩(wěn)定值,這是由于啟動結(jié)束時刻的沖擊壓力導(dǎo)致。葉輪出口的葉頻同樣體現(xiàn)出相同特性,且倍頻在啟動過程的壓力幅值比穩(wěn)定值大。而葉輪中部的壓力脈動特性受壓力沖擊的影響并不明顯,可能是由于葉輪中部本身受葉輪旋轉(zhuǎn)影響較大,壓力沖擊導(dǎo)致的葉頻壓力幅值變化相對于穩(wěn)定壓力葉頻幅值較小,因此無明顯變化。2 s啟動條件下,啟動結(jié)束時,進(jìn)口處葉頻壓力幅值同樣存在明顯極大值,壓力幅值也達(dá)到30 kPa以上,出口處雖不明顯但高頻成分壓力幅值相較于穩(wěn)定值依然較大。由壓力時域分析可知,3 s啟動條件下的沖擊現(xiàn)象較弱,穩(wěn)定工況為1.0時,葉輪中部和出口的最大沖擊壓力僅為5 kPa左右。因此主頻并無任何明顯的極大壓力幅值頻率出現(xiàn)。通過上述分析可知,不同啟動時間下不同葉輪部位的葉頻特征存在明顯差異??焖賳訒r,由于沖擊壓力導(dǎo)致葉輪進(jìn)出口葉頻出現(xiàn)極大壓力幅值,壓力脈動幅值、頻率在一定程度上影響著機(jī)組的穩(wěn)定性,可指導(dǎo)瞬態(tài)工況的工程應(yīng)用。
1)3次穩(wěn)態(tài)外特性試驗均在0.5~0.55出現(xiàn)馬鞍區(qū),且3次試驗揚(yáng)程最大相對誤差小于5%,說明了試驗的可靠性。啟動過程外特性曲線表明,在啟動過程中,混流泵的流量經(jīng)歷緩慢上升、快速上升而后又緩慢上升并趨于穩(wěn)定3個階段;揚(yáng)程曲線則在經(jīng)歷快速上升直達(dá)沖擊揚(yáng)程后緩慢下降并趨于穩(wěn)定。此外,啟動時間的減小對轉(zhuǎn)速、流量和揚(yáng)程的外特性表現(xiàn)均具有正激勵作用。
2)由壓力時域分析可知,啟動結(jié)束時刻的壓力沖擊現(xiàn)象與流量大小和啟動時間有關(guān)。流量一定時,壓力沖擊隨著啟動時間的增加逐漸減弱;啟動時間一定時,進(jìn)口壓力沖擊隨流量增大逐漸減弱甚至消失,而葉輪中部與出口的壓力沖擊逐漸增強(qiáng)。當(dāng)啟動時間為1 s且穩(wěn)定工況為1.2時,葉輪中部與出口的最大沖擊壓力值分別可達(dá)37和28 kPa。慢速啟動時,流量在啟動前期對瞬態(tài)壓力變化影響甚微,啟動后期則影響顯著,在啟動結(jié)束時刻,葉輪中部與出口的壓力峰值下降達(dá)15 kPa。
3)啟動過程中,葉輪主頻為葉頻及其倍頻,其變化趨勢呈現(xiàn)近似線性上升趨勢,與轉(zhuǎn)速變化一致。不同啟動時間對葉輪進(jìn)口與出口的頻率壓力幅值影響較為明顯,快速啟動條件下,在啟動結(jié)束時刻主頻出現(xiàn)由壓力沖擊造成的極大壓力幅值可達(dá)30 kPa以上,而啟動時間對葉輪中部的頻率壓力幅值則基本無影響。
[1]Li Wei, Li Enda, Ji Leilei, et al. Mechanism and propagation characteristics of rotating stall in a mixed-flow pump[J]. Renewable Energy, 2020, 153: 74-92.
[2]Li Wei, Zhou Ling, Shi Weidong, et al. PIV experiment of the unsteady flow field in mixed-flow pump under part loading condition[J]. Experimental Thermal and Fluid Science, 2017, 83: 191-199.
[3]Ji Leilei, Li Wei, Shi Weidong, et al. Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis[J]. Energy, 2020, 199, 117447.
[4]Ji Leilei, Li Wei, Shi Weidong et al. Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model[J]. International Communications in Heat & Mass Transfer, 2020, 117: 104784.
[5]Liu Houlin, Chen Xinxiang, Wang Kai, et al. Multi-condition optimization and experimental study of impeller blades in a mixed-flow pump[J]. Advances in Mechanical Engineering, 2016, 8(6): 1-9.
[6]Li Wei, Ji Leilei, Li Enda, et al. Numerical investigation of energy loss mechanism of mixed-flow pump under stall condition[J]. Renewable Energy, 2021, 167:740-760.
[7]Li Wei, Zhang Yang, Shi Weidong, Ji Leilei, et al. Numerical simulation of transient flow field in a mixed-flow pump during starting period[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(4): 607771.
[8]Dazin A, Caignaert G, Dauphin-Tanguy G. Model based analysis of the time scales associated to pump start-ups[J]. nuclear engineering & design, 2015: 218-227.
[9]Li Wei, Ji Leilei, Shi Weidong, et al. Particle image velocimetry experiment of the inlet flow field in a mixed-flow pump during the startup period[J]. Proceedings of the Institution of Mechanical Engineers-Part A: Journal of Power and Energy, 2020, 234(3): 300-314.
[10]Chalghoum I, Elaoud S, Akrout M, et al. Transient behavior of a centrifugal pump during starting period[J]. Applied Acoustics, 2016, 109: 82-89.
[11]王樂勤,吳大轉(zhuǎn),鄭水英,等. 混流泵開機(jī)瞬態(tài)水力特性的試驗與數(shù)值計算[J]. 浙江大學(xué)學(xué)報:工學(xué)版,2004,38(6):751-755.
Wang Leqin, Wu Dazhuan, Zheng Shuiying. Study on transient hydrodynamic performance of mixed-flow pump during starting period[J]. Journal of Zhejiang University: Engineering Science, 2004, 38(6): 751-755. (in Chinese with English abstract)
[12]王樂勤,吳大轉(zhuǎn),鄭水英. 混流泵瞬態(tài)水力性能試驗研究[J]. 流體機(jī)械,2003,31(1):1-6.
Wang Leqin, Wu Dazhuan, Zheng Shuiying. Experimental study on transient performance of a mixed-flow-pump[J]. Fluid Machinery, 2003, 31(1): 1-6. (in Chinese with English abstract)
[13]Fernandez J, Blanco E, Santolaria C, et al. A numerical analysis of a mixed flow pump[C]//Proceedings of the ASME 2002 Joint US-European Fluids Engineering Division Conference, 2002: 791-798.
[14]Nagahara T, Sato T, Kawabata S, et al. Effect of the submerged vortex cavitation in pump suction intake on mixed flow pump impeller[J]. Turbo Machine, 2002, 30(2):70-75.
[15]Tsukamoto H, Yoneda H, Sagara K. The response of a centrifugal pump to fluctuating rotational speed[J]. Journal of Fluids Engineering, 1995, 117(3): 479-484.
[16]Lefebvre P J, Barker W P. Centrifugal pump performance during transient operation[J]. Journal of Fluids Engineering, 1995, 117(1): 123-128.
[17]Dazin A, Caignaert G, Bois G. Transient behavior of turbomachineries: Applications to radial flow pump startups[J]. Journal of Fluids Engineering, 2007, 129(11): 1436.
[18]Bolpaire S, Barrand J P . Experimental study of the flow in the suction pipe of a centrifugal pump at partial flow rates in unsteady conditions[J]. Journal of Pressure Vessel Technology, 1999, 121(3): 291-295.
[19]Bolpaire S, Barrand J, Caignaert G, et al. Experimental study of the flow in the suction pipe of a centrifugal impeller: Steady conditions compared with fast start-up[J]. International Journal of Rotating Machinery, 2002, 28(3): 215-222.
[20]陳煒,柯仙文,吳大轉(zhuǎn),等. 混流泵停機(jī)過程的瞬態(tài)水力特性分析研究[J]. 流體機(jī)械,2006,34(12):1-4.
Chen Wei, Ke Xianwen, Wu Dazhuan, et al. Analysis on transient performance of mixed flow pump during stopping period[J]. Fluid Machinery, 2006, 34(12): 1-4. (in Chinese with English abstract)
[21]隋榮娟. 離心泵在啟動階段的水力特性及內(nèi)流機(jī)理研究[D]. 濟(jì)南:山東大學(xué),2006.
Sui Rongjuan. Research on Transient Characteristics & Interior Flow of Centrifugal Pump During Starting Period[D]. Jinan: Shandong University, 2006. (in Chinese with English abstract)
[22]施衛(wèi)東,鄒萍萍,張德勝, 等. 高比轉(zhuǎn)速斜流泵內(nèi)部非定常壓力脈動特性[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(4):147-152.
Shi Weidong, Zou Pingping, Zhang Desheng, et al. Unsteady flow pressure fluctuation of high-specific-speed mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 147-152. (in Chinese with English abstract)
[23]劉建瑞,鄭俊峰,付登鵬,等. 混流泵徑向間隙對內(nèi)部非定常流場影響的分析[J]. 流體機(jī)械,2014(3):19-23.
Liu Jianrui, Zheng Junfeng, Fu Dengpeng, et al. Effect of volute tongue-impeller gaps on the unsteady flow in mixed-flow pump[J]. Fluid Machinery, 2014(3): 19-23. (in Chinese with English abstract)
[24]翟杰,祝寶山,李凱,等. 低比轉(zhuǎn)數(shù)混流泵導(dǎo)葉內(nèi)部壓力脈動特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(6):42-46.
Zhai Jie, Zhu Baoshan, Li Kai, et al. Internal pressure fluctuation characteristic of low specific speed mixed flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 42-46. (in Chinese with English abstract)
[25]靳栓寶,王永生,常書平,等. 混流泵內(nèi)流場壓力脈動特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(3):64-68.
Jin Shuanbao, Wang Yongsheng, Chang Shuping, et al. Pressure fluctuation of interior flow in mixed-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 64-68. (in Chinese with English abstract)
[26]張德勝,施衛(wèi)東,王川,等. 斜流泵葉輪和導(dǎo)葉葉片數(shù)對壓力脈動的影響[J]. 排灌機(jī)械工程學(xué)報,2012,30(2):167-170.
Zhang Desheng, Shi Weidong, Wang Chuan, et al. Influence of impeller and guide vane blade number on pressure fluctuation in mixed-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 167-170. (in Chinese with English abstract)
[27]陳超,李彥軍,裴吉,等. 多工況空化條件下混流泵裝置壓力脈動試驗研究[J]. 中國農(nóng)業(yè)水利水電,2019(1):158-163.
Chen Chao, Li Yanjun, Pei Ji, et al. An experimental investigation of pressure fluctuation of mixed flow pump under multi-condition cavitation conditions[J]. China Rural Water and Hydropower, 2019(1): 158-163. (in Chinese with English abstract)
[28]李偉,季磊磊,施衛(wèi)東,等. 不同流量工況下混流泵壓力脈動試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(12):70-76.
Li Wei, Ji Leilei, Shi Weidong, et al. Experiment on pressure fluctuation in mixed-flow pump under different flow rate conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 70-76. (in Chinese with English abstract)
[29]關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計[M]. 北京:中國宇航出版社,2011.
[30]Duplaa S, Coutier-Delgosha O, Dazin A, et al. Experimental study of a cavitating centrifugal pump during fast startups[J]. Journal of Fluids Engineering, 2010, 132(2): 365-368.
Experimental study on pressure vibration characteristics of mixed-flow pump during start-up
Li Wei, Lu Dele, Ma Lingling, Ji Leilei, Wu Pu
(,,212013,)
Quick start has become an inevitable requirement for pumps in many application fields. However, abnormal transient pressure and pulsation characteristics can cause start-up failures, and even safety accidents. In this study, a measurement system was established for the transient external characteristics and pressure pulsation during the start-up of mixed flow pump, in order to clarify the transient starting law of mixed flow pump. An investigation was made to explore the time-frequency characteristics of transient pressure pulsation under various start-up acceleration and flow rate, thereby analyzing the time-frequency evolution of starting process. A frequency converter was used to set the start-up time. The LWGY-250 turbine flowmeter and MPM480 pressure sensor were used to measure the transient flow and transient pressure, respectively. The wavelet transform was selected to analyze the non-stationary pressure pulsation signal during the start-up process. The results showed that the flow and head curves were approximately divided into 3 stages: a slow rise, a rapid rise, and slow flat, as the rotating speed increased during the start-up process, where the duration of 3 stages was negatively correlated with the start-up acceleration. The head curve dropped slowly and stabilized after a rapid rise until the impact head. In addition, the increase of starting acceleration had a positive stimulating effect on the external characteristics of speed, flow, and head. The pressure shock was normally caused by the angular acceleration and low-condition operation, which were related to the flow rate and start-up acceleration at the moment of the end of start-up. There was more significant pressure shock as the starting time decreased when the flow rate was constant. The inlet pressure shock weakened gradually or even disappeared, but there was a more obvious pressure shock between the middle of impeller and the outlet, as the flow rate increased, when the starting time was fixed. When the start-up time was 1 s and the stable working condition was 1.2, the maximum impact pressure at the middle of the impeller and the outlet can reach 37 and 28 kPa, respectively. In high start-up acceleration, the flow rate had no effect on the transient pressure change during start-up process, whereas, there was an obvious effect of flow rate on the pressure change after the end of start-up. The pressure difference between 2 types of flow rate increased in the middle of impeller reached 30 kPa when the pressure tended to be stable. In low start-up acceleration, the effect of flow rate on the starting characteristics was significantly reflected in the start-up process. The pressure difference between the middle and the outlet of impeller reached 15 kPa at the end of the start. The main frequency of impeller was the blade frequency and its multiplier during the start-up process. Moreover, the evolution trend of main frequency was consistent with the changing trend of rotating speed. There was a maximum amplitude of main frequency caused by the pressure shock at the end of the start under the fast start condition. The findings can provide sound references to reveal the transient operating characteristics for the optimization design of transient working pumps.
experiment; pressure vibration; mixed-flow pump; start-up process; time-frequency characteristics
李偉,路德樂,馬凌凌,等. 混流泵啟動過程壓力脈動特性試驗[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):44-50.doi:10.11975/j.issn.1002-6819.2021.01.006 http://www.tcsae.org
Li Wei, Lu Dele, Ma Lingling, et al. Experimental study on pressure vibration characteristics of mixed-flow pump during start-up[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 44-50. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.006 http://www.tcsae.org
2020-10-29
2020-12-15
國家自然科學(xué)基金項目(51679111);國家重點研發(fā)計劃(2017YFC0403703);江蘇省重點研發(fā)計劃項目(BE2017126);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(PAPD);江蘇省現(xiàn)代農(nóng)業(yè)裝備與技術(shù)協(xié)同創(chuàng)新中心(4091600014);江蘇大學(xué)高級專業(yè)人才科研啟動基金項目(13JDG105)
李偉,研究員,博士生導(dǎo)師,主要從事流體機(jī)械的研究。Email:lwjiangda@ujs.edu.cn
10.11975/j.issn.1002-6819.2021.01.006
S277.9; TH313
A
1002-6819(2021)-01-0044-07