陳天佑,賈洪雷,李名偉,趙佳樂,鄧佳玉,3,付 君,袁洪方
保壓/保型抑制壓后切碎玉米秸稈塊回彈機理
陳天佑1,2,賈洪雷1,2,李名偉1,2,趙佳樂1,2,鄧佳玉1,2,3,付 君1,2,袁洪方1※
(1. 吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長春 130025;2.吉林大學(xué)工程仿生教育部重點實驗室,長春 130025; 3. 哈爾濱石油學(xué)院機械工程學(xué)院,哈爾濱 150028)
為揭示保壓和保型抑制壓后秸稈塊回彈機理,優(yōu)化壓縮工藝,提高壓后秸稈塊的尺寸穩(wěn)定性,該研究以切碎玉米秸稈為材料,進行了不同壓縮條件下保壓和保型特性試驗及不同壓縮工藝下秸稈塊尺寸穩(wěn)定性試驗。結(jié)果表明,保壓和保型150 s可使秸稈塊的尺寸穩(wěn)定系數(shù)分別增大1.52~4.26和4.36~6.78個百分點,兩者均能抑制壓后秸稈塊回彈,但機理不同,保壓抑制回彈機理為:從增大壓縮位移和減小回彈位移2個方面減小相對回彈位移,從而增大秸稈塊的尺寸穩(wěn)定系數(shù),其本質(zhì)為增大壓后秸稈塊中的黏性應(yīng)變;保型抑制回彈機理為:減小秸稈塊中的殘余應(yīng)力,保型150 s可使秸稈塊的殘余應(yīng)力減小約40%,從而減小壓后秸稈塊回彈,增大秸稈塊的尺寸穩(wěn)定系數(shù),其本質(zhì)為減小秸稈塊中殘余黏彈力。不同壓縮條件下保壓和保型穩(wěn)定效果對比分析的結(jié)果表明,在同一壓縮條件下,保型的穩(wěn)定效果總是優(yōu)于保壓。該研究結(jié)果可為切碎玉米秸稈壓捆和冷壓成型工藝及裝置研發(fā)提供依據(jù),也可為其他生物質(zhì)及小粒徑秸稈壓制成型提供參考。
試驗;機理;玉米秸稈;保壓;保型;尺寸穩(wěn)定系數(shù)
農(nóng)作物秸稈是重要的可再生生物質(zhì)資源,世界年產(chǎn)量超過20億t,中國年產(chǎn)量超過9億t[1],其中玉米秸稈占總量三分之一[2]。玉米秸稈的主要成分為纖維素、半纖維素、木質(zhì)素等,可作為燃料、飼料、肥料、基料及原料等[3-4],具有較高的使用價值。但由于秸稈松散,密度低和季節(jié)性強等特點,其資源化利用率較低[5]。為降低運輸和儲存成本,提高利用率,需經(jīng)切碎、壓縮致密及打捆等處理[6-7]。除秸稈還田外,秸稈離田工序為“撿拾-切碎-壓縮-打捆”[8],對收集后的秸稈,為實現(xiàn)綠色利用,還需要拆封除雜后壓縮致密,以便運輸、儲存及后續(xù)利用,該利用方式是當前重要的秸稈資源化利用形式之一。
壓縮是秸稈資源化利用的關(guān)鍵環(huán)節(jié),可降低秸稈運輸和儲存成本,提高秸稈的利用率。由于玉米秸稈為黏彈性材料[9-10],為減小壓后秸稈回彈,增大壓后秸稈的尺寸穩(wěn)定系數(shù),從而提高秸稈壓縮效果,需進行穩(wěn)定工藝,如保壓或者保型,其工藝流程為“加載壓縮-保壓/保型”。保壓是指壓應(yīng)力保持最大壓應(yīng)力不變,應(yīng)變隨著時間變化[11]。李偉等[11]研究了玉米秸稈的保壓蠕變特性,結(jié)果表明,隨著保壓時間增大,應(yīng)變增大,并最終趨于穩(wěn)定。文獻[12-13]研究了壓后生物質(zhì)離開壓縮腔體后,放置數(shù)天的尺寸穩(wěn)定系數(shù),結(jié)果表明,保壓時間對壓后秸稈尺寸穩(wěn)定系數(shù)有顯著的影響。Wongsiriamnuay等[12]研究結(jié)果表明,玉米秸稈在150~250 MPa范圍內(nèi),松弛5 d后的膨脹系數(shù)先增大后減小。陳天佑等[13]以秸稈炭為材料,研究了保壓對于推出腔體3 d后尺寸穩(wěn)定系數(shù)的影響,結(jié)果表明保壓時間增大,尺寸穩(wěn)定系數(shù)先增大后減小。保型是壓后秸稈在應(yīng)變不變的情況下,應(yīng)力隨時間衰減的過程,其本質(zhì)為應(yīng)力松弛[9]。Adapa等[14]以苜蓿草為原料,對比研究了壓縮保型10 s和保型30 s后秸稈塊的密度,結(jié)果表明,保型30 s后秸稈塊的密度明顯較大。白雪衛(wèi)[15]通過閉式壓縮粉末玉米秸稈,研究結(jié)果表明,保型時間對壓后秸稈塊的松弛密度有顯著的影響?,F(xiàn)有大多數(shù)秸稈打捆機未采用穩(wěn)定工藝抑制壓后秸稈回彈,壓后秸稈出現(xiàn)嚴重回彈,影響壓縮效果,增大了壓縮比能耗;在一些文獻中優(yōu)化了小粒徑秸稈壓縮工藝參數(shù),但對保壓和保型的介紹和實施不統(tǒng)一。
為尋求最優(yōu)的秸稈塊的松弛密度(松弛密度是指壓后秸稈塊放置一段時間后的密度,放置時間可為48 h[16])、松弛比(松弛比是指壓后秸稈塊的密度與松弛密度的比值[17])、尺寸穩(wěn)定性、耐久度及能耗,實現(xiàn)秸稈高質(zhì)量、高效率、低能耗壓縮,國內(nèi)外學(xué)者從秸稈類型、含水率、壓縮力、喂入量、粒度、溫度、壓縮速率、模具結(jié)構(gòu)及尺寸、振動及秸稈預(yù)處理等影響因素出發(fā),做了大量的試驗研究[17-19]。結(jié)果表明,各因素對秸稈壓縮有不同程度的影響。Mani等[20]以粉碎后的玉米秸稈為原料,對比研究了低含水率(5%和10%)和高含水率下(15%)的壓制后的秸稈塊,結(jié)果表明低含水率下的秸稈塊更加緊密、穩(wěn)定和耐用,而高含水率和高壓力下壓制成的秸稈塊的質(zhì)量較差[21]。壓縮力增大,成型塊的密度增大,但壓縮能耗也隨之增大[22]。減小秸稈粒徑有助于提高壓制致密化的密度,但利用成本顯著增大[23-24]。閆翠珍[25]研究了不同喂入量的水稻、小麥和玉米秸稈壓制成相同密度的秸稈塊,喂入量較大的,殘余應(yīng)力最大,但較小喂入量下的秸稈的殘余應(yīng)力并不是最小,中間水平存在較優(yōu)值。
綜上,為減小壓后秸稈回彈,已有研究在秸稈壓縮時采用一定的時間進行保壓或保型,但沒有對比研究兩者的差異及揭示抑制回彈機理,甚至在已有研究中出現(xiàn)保壓和保型的介紹和實施不統(tǒng)一的情況。為此,本研究選用切碎玉米秸稈為材料,進行不同壓縮工藝下的秸稈塊尺寸穩(wěn)定性試驗,研究不同含水率、最大壓應(yīng)力和喂入量下保壓和保型的穩(wěn)定效果,在此基礎(chǔ)上,揭示保壓和保型抑制壓后秸稈回彈的機理,并對比研究2種工藝的穩(wěn)定效果,以期為切碎玉米秸稈壓捆和冷壓成型工藝及裝置研發(fā)提供依據(jù),也為其他生物質(zhì)及小粒徑秸稈壓制成型提供參考。
本試驗采用的原料為吉林大學(xué)實驗基地的玉米秸稈(玉米為吉農(nóng)玉898),在試驗田,利用方形打捆機的Y型粉碎刀對秸稈進行切碎,切碎秸稈為長條狀,長度為10~100 mm,堆積密度為40.75 kg/m3,含水率為16.5%。切碎秸稈不進行打捆致密,采用手工撿拾收集。
秸稈壓縮及測試系統(tǒng)如圖1a所示,該系統(tǒng)由ETM305D-300型微機控制電子型液壓萬能試驗機、壓頭、可移除壁面模具(360 mm×460 mm×600 mm)、微型激光位移傳感器,數(shù)據(jù)采集卡、位移測試片等組成。模具(圖1b、1c)采用2個電機驅(qū)動,通過齒輪齒條嚙合,可使壁面移除,防止壁面與秸稈之間的摩擦作用影響秸稈回彈測試;在箱體的中部開一條間隙為8 mm縫隙,可使位移測試片無接觸移動,將2個薄膜壓力傳感器粘貼在位移測試片上,可用于測試位移和壓應(yīng)力;縫隙也用于秸稈壓縮時氣體的排除。微機控制電子型液壓萬能試驗機提供壓縮動力,同時可對壓縮程序控制。在壓縮及回彈過程中,壓力通過薄膜壓力傳感器測試,壓縮及回彈位移通過微型激光位移傳感器測試,壓力和位移數(shù)據(jù)通過數(shù)據(jù)采集卡收集,并通過Labview 2018 軟件對測試數(shù)據(jù)顯示和儲存。
1.2.1 試驗設(shè)計
本研究選取含水率、最大壓應(yīng)力和喂入量為影響因素[17-19,25]。秸稈收集時含水率約為17%,因此選擇含水率的水平為12%、15%和18%;通過預(yù)試驗選擇最大壓應(yīng)力的水平為60.4、120.8和181.2 kPa,喂入量的水平為2.5、3.0和3.5 kg。采用秸稈樣品含水率的測定標準ASABE standard S358.2[26]進行含水率調(diào)節(jié),完成含水率調(diào)節(jié)后的秸稈樣品放入密封袋中,置于室溫為4℃,相對濕度為52%的環(huán)境下儲存48 h后試驗[27];最大壓應(yīng)力通過萬能試驗機提供和設(shè)置。穩(wěn)定時間是保壓和保型的因變量,在現(xiàn)有文獻中,保壓時間選擇10、20、60、120和300 s[9-11,28-29]等,保型時間常采用30、60、150、200和240 s[14, 30-33]等,而穩(wěn)定時間影響秸稈的壓縮能耗、效率等,基于實際要求,本試驗選擇穩(wěn)定時間為150 s。研究各因素對穩(wěn)定效果(保壓和保型)的影響時,采用單因素試驗,即選擇因素為變量,其他因素取中間水平值。通過前期試驗發(fā)現(xiàn),壓后秸稈主要的回彈方向為壓縮方向,側(cè)向回彈較小,且不同的壓縮條件下,側(cè)向回彈并無明顯變化;壓縮方向回彈300 s后基本趨于穩(wěn)定,故本研究主要測試壓后秸稈在壓縮方向300 s的回彈。本研究所實施的試驗均采用至少6次重復(fù),剔除由于操作等造成的誤差較大的結(jié)果,然后取均值。
1.2.2 試驗方法
圖2為秸稈壓縮及測試程序。秸稈喂入后,將秸稈表面鋪平搖勻后,啟動萬能試驗機和測試設(shè)備,有3條工藝路線:1)以80 mm/min恒速壓縮,當壓應(yīng)力達到設(shè)定的最大壓力值時,壓頭以300 mm/min的速度恒速返回至初始位置(CC);2)以80 mm/min恒速壓縮,當壓應(yīng)力達到設(shè)定的最大壓力值后保壓,然后壓頭以300 mm/min的速度恒速返回至初始位置(CCP);3)以80 mm/min恒速壓縮,當壓應(yīng)力達到設(shè)定的最大壓力值時進行保型,然后壓頭以300 mm/min的速度恒速返回至初始位置(CCS)。在回彈的同時,快速移除模具壁面,防止壁面摩擦對回彈的影響。在整個測試過程中,對壓縮、保壓、保型及回彈階段的應(yīng)力和位移進行數(shù)據(jù)采集。
以尺寸穩(wěn)定系數(shù)衡量秸稈壓縮的穩(wěn)定程度,為對比研究保壓和保型的穩(wěn)定效果,選擇回彈后實際壓縮位移與恒速階段的壓縮位移的百分比來衡量壓后秸稈塊的穩(wěn)定效果?;貜椢灰剖侵笁汉蠼斩挶韺樱ê銐夯蚝銐汉蟊海┡c回彈后秸稈塊表層的距離;相對回彈位移是指秸稈塊回彈后的表層與恒速壓縮后秸稈表層的距離;恒速階段壓縮位移是指壓前秸稈表層與恒速壓后秸稈表層的距離;保壓位移是指保壓階段的壓縮距離;對于CC和CCS工藝,壓縮位移為恒速壓縮位移,對于CCP工藝,壓縮位移是指恒速壓縮位移和保壓壓縮位移之和。尺寸穩(wěn)定系數(shù)表達式如式(1)[34-35],保型工藝下的相對回彈位移即為壓后秸稈塊的回彈位移;保壓穩(wěn)定工藝下的相對回彈位移是回彈位移與保壓壓縮位移的差值,如式(2),保壓工藝下的尺寸穩(wěn)定系數(shù)如式(3)。
將式(2)帶入式(1)得:
式中為尺寸穩(wěn)定系數(shù),%;L為相對回彈位移,mm;L為恒速壓縮位移,mm;L為回彈位移,mm;L為保壓位移,mm。
應(yīng)力松弛率是單位時間內(nèi)應(yīng)力松弛的程度,即松弛一段時間后,壓應(yīng)力的減小值占起始應(yīng)力值的百分比,是評價壓后秸稈應(yīng)力松弛程度的指標之一[21,36]。
不同壓縮條件下,CC和CCP工藝下秸稈的壓縮位移、回彈位移及尺寸穩(wěn)定系數(shù)如表1所示。由表可知,在不同的含水率條件下,保壓能使秸稈進一步壓縮,增大壓縮位移,并且減小壓后回彈位移,從而顯著提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。在秸稈含水率為12%、15%和18%時,保壓150 s使壓縮位移增大了7.4,6.0和5.2 mm,回彈位移減小了7.1,4.0和2.3 mm,尺寸穩(wěn)定系數(shù)分別增大了4.26、2.71和1.52個百分點。隨著秸稈含水率的增大,尺寸穩(wěn)定系數(shù)減小,保壓穩(wěn)定能力也減小,原因為在較大含水率下,恒速壓縮階段已將秸稈壓實,保壓壓縮位移減小,同時秸稈變軟,彈性增強,回彈位移減量較小。由此可說明,保壓增大尺寸穩(wěn)定系數(shù)的原因是保持壓力進一步壓縮,增加了壓縮應(yīng)變,同時在保壓應(yīng)力下,部分黏彈性形變屈服,變成不可逆的黏性形變。
在不同的最大壓應(yīng)力下,保壓能增加壓縮位移,并且減小壓后回彈位移,從而提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。最大壓應(yīng)力為60.4、120.8和181.2 kPa時,保壓150 s使壓縮位移增大了8.8、6.0和5.8 mm,回彈位移減小了3.0、4.0和6.2 mm,尺寸穩(wěn)定系數(shù)分別增大了3.83、2.71和3.31個百分點。隨著最大壓應(yīng)力的增大,壓縮位移增量減小,回彈位移減量增大。產(chǎn)生上述現(xiàn)象原因為經(jīng)過恒速壓后,在不同的最大壓應(yīng)力下,秸稈塊的可壓性不同,低壓后秸稈塊可壓性性強,故保壓壓縮位移較大;在高壓保壓條件下,秸稈進一步的壓實,壓縮變形屈服,故回彈位移減量增大。隨著最大壓應(yīng)力增大,恒速壓和恒速保壓后的秸稈塊尺寸穩(wěn)定系數(shù)均減小,原因為最大壓應(yīng)力增大,壓縮位移和回彈位移均增大,但由于秸稈已壓實,壓縮位移的增量較小,同時切碎秸稈黏彈性強,最大壓應(yīng)力增大,秸稈塊的彈性增強且殘余應(yīng)力增大,相比壓縮位移,回彈位移的增量比率較大,故秸稈塊的尺寸穩(wěn)定系數(shù)減小。
表 1 CC和CC工藝下各因素對壓縮位移、回彈位移及尺寸穩(wěn)定系數(shù)的影響
在不同秸稈喂入量下,保壓能增大壓縮位移,并且減小壓后回彈位移,從而顯著提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。喂入量為2.5、3.0和3.5 kg時,保壓150 s使壓縮位移增大了5.1、6.0和7.4 mm,回彈位移減小了3.7、4.0和6.4 mm,尺寸穩(wěn)定系數(shù)分別增大了2.98、2.71和3.54個百分點。隨著喂入量增大,壓縮位移增量、回彈位移減量及尺寸穩(wěn)定系數(shù)均增大,原因為在最大壓應(yīng)力相同時,秸稈喂入量較大時,秸稈的可壓性增大,保壓壓縮位移增大;喂入量增大時,CC和CCP工藝下的壓縮位移和回彈均增大,但由于秸稈之間的摩擦力和粘結(jié)力增強,可抑制回彈,減小單位質(zhì)量秸稈的回彈量,故CC和CCP工藝下的尺寸穩(wěn)定系數(shù)均增大。
綜上分析可知,在不同的壓縮條件下,保壓均能使恒速壓縮后的秸稈進一步壓縮,壓縮位移顯著增大(<0.05);在高壓下使部分粘彈性形變屈服,變成不可逆的粘性應(yīng)變,從而顯著減小相對回彈位移(<0.05),從增大壓縮位移和減小回彈位移2個方面抑制壓后秸稈塊的回彈,增大尺寸穩(wěn)定系數(shù),保壓抑制回彈原理如圖3所示。保壓150 s能使壓后秸稈塊的尺寸穩(wěn)定系數(shù)增大為1.52~4.26個百分點,抑制壓后秸稈塊回彈效果顯著。
2.2.1 應(yīng)力松弛率及影響因素分析
各因素對應(yīng)力松弛率的影響如表2所示。由表2可知,在最大壓應(yīng)力為120.8 kPa,喂入量為3.0 kg條件下,隨著含水率的增大,松弛相同時間后的應(yīng)力松弛率均呈現(xiàn)顯著增大的趨勢(<0.05);在含水率為12%、15%和18%的壓后秸稈塊松弛30 s后的應(yīng)力松弛率為31.5%、33.5%和35.8%,松弛150 s后的應(yīng)力松弛率為38.4%、41.0%和44.0%;前30 s的應(yīng)力松弛率占150 s應(yīng)力松弛率的82.0%、81.7%和81.4%;相比含水率為12%,含水率18%的壓后秸稈塊松弛30 s后的應(yīng)力松弛率增大了4.3個百分點,松弛150 s后的應(yīng)力松弛率增大了5.6個百分點,該結(jié)論與Turner[33]和郭磊[37]的研究結(jié)論一致。產(chǎn)生上述現(xiàn)象的原因為含水率增大,使物料軟化,水分在壓縮過程中起到粘結(jié)作用,有助于應(yīng)力松弛[37]。
在秸稈含水率為15%,喂入量為3.0 kg的條件下,隨著最大壓應(yīng)力的增大,松弛相同時間后的應(yīng)力松弛率均呈現(xiàn)顯著增大的趨勢(<0.05);在最大壓應(yīng)力為60.4、120.8和181.2 kPa的壓后秸稈塊松弛30 s后的應(yīng)力松弛率為31.2%、33.5%和35.1%,松弛150 s的應(yīng)力松弛率為38.6%、41.0%和43.3%;前30 s的應(yīng)力松弛率分別占150 s應(yīng)力松弛率的80.8%、81.7%和81.1%;相比最大壓應(yīng)力為60.4 kPa,最大壓應(yīng)力為181.2 kPa的壓后秸稈塊松弛30 s后的應(yīng)力松弛率增大了3.9個百分點,松弛150 s后的應(yīng)力松弛率增大了4.7個百分點。
在秸稈含水率為15%,最大壓應(yīng)力為120.8 kPa條件下,隨著喂入量的增大,松弛相同時間后的應(yīng)力松弛率均呈現(xiàn)顯著減小的趨勢(<0.05);在喂入量為2.5、3.0和3.5 kg的壓后秸稈塊應(yīng)力松弛30 s后的應(yīng)力松弛率為35.5%、33.5%和32.6%,150 s后的應(yīng)力松弛率為43.1%、41.0%和39.8%;前30 s的應(yīng)力松弛率分別占150 s應(yīng)力松弛率的82.4%、81.7%和81.9%;相比喂入量為2.5,3.5 kg的壓后秸稈塊松弛30 s應(yīng)力松弛率減小了2.9個百分點,150 s后的應(yīng)力松弛率減小了3.3個百分點。閆翠珍[25]和楊明韶[38]研究了不同喂入量的秸稈壓縮至相同密度后,松弛800 s后的應(yīng)力松弛率,結(jié)果表明,隨著喂入量的應(yīng)力松弛率先減小后增大,總是存在最小的應(yīng)力松弛率,在文獻中將秸稈壓制相同的密度,最大壓縮力和喂入量都不同,與本研究研究方法存在差異。
表 2 不同松馳時長下各因素對應(yīng)力松弛率的影響
綜上分析可知,含水率、最大壓應(yīng)力和喂入量對應(yīng)力松弛率均有顯著的影響(<0.05),松弛30 s后的應(yīng)力松弛率大于為30%,松弛150 s的應(yīng)力松弛率約為40%左右,前30 s的應(yīng)力松弛率約占150 s應(yīng)力松弛率的80%。郭磊[37]研究表明,在松弛60 s后的應(yīng)力松弛率約45%。宮澤奇[36]研究表明應(yīng)力松弛前20 s時間內(nèi),物料內(nèi)殘余應(yīng)力瞬速衰減,約80%的殘余應(yīng)力在此期間發(fā)生衰減。Turner[33]和Talebi[39]研究表明,干草的應(yīng)力松弛率為27.4%~53.7%,低含水量下完整芒草的平均松弛率為33.1%,破碎芒草的平均應(yīng)力松弛率為33.3%,完整和破碎的柳枝稷分別為40.0%和38.1%。本研究結(jié)果與文獻得出類似的結(jié)論,即保型能有效減小壓后秸稈塊中的殘余應(yīng)力。
2.2.2 保型穩(wěn)定機理研究及影響因素分析
表3為不同壓縮條件下CCS工藝后壓縮位移、回彈位移及尺寸穩(wěn)定系數(shù),結(jié)合表1和表3可知,在不同的含水率條件下,保型能夠顯著減小壓后回彈位移,提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。秸稈含水率為12%、15%和18%時,相比未采用穩(wěn)定工藝(CC),保型150 s后回彈位移減小了22.9、20.8和16.7 mm,尺寸穩(wěn)定系數(shù)分別增大了6.78、5.84和4.36個百分點。隨著秸稈含水率的增大,尺寸穩(wěn)定系數(shù)減小,保型穩(wěn)定能力也減小,原因為在較大含水率下,秸稈變軟,彈性增強,回彈位移減量減小。
表 3 CCS工藝下各因素對壓縮位移、回彈位移及尺寸穩(wěn)定系數(shù)的影響
結(jié)合表1和表3可知,在不同的最大壓應(yīng)力下,保型能夠顯著減小壓后回彈位移,從而提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。最大壓應(yīng)力為60.4、120.8和181.2 kPa時,相比未采用穩(wěn)定工藝(CC),保型150 s使壓后回彈位移減小了16.9、20.8和21.7 mm,尺寸穩(wěn)定系數(shù)增大了5.49、5.84和5.98個百分點。隨著最大壓應(yīng)力的增大,回彈位移減量增大,尺寸穩(wěn)定系數(shù)增量也呈現(xiàn)增大趨勢。原因為最大壓應(yīng)力增大,壓后秸稈塊中的殘余應(yīng)力增大,應(yīng)力松弛量增大,故造成回彈位移減量增大;在較小的壓應(yīng)力下,恒速壓縮后尺寸穩(wěn)定系數(shù)較大,比較基數(shù)較大,故隨著最大壓應(yīng)力的增大,壓后秸稈塊的尺寸穩(wěn)定系數(shù)增量也呈現(xiàn)增大趨勢。隨著最大壓應(yīng)力增大,保型后秸稈塊的尺寸穩(wěn)定系數(shù)減小,原因為最大壓應(yīng)力增大,壓縮位移增大,但增大量較小,同時保型后秸稈塊的殘余應(yīng)力增大,且由于壓縮位移加大,秸稈塊的彈性增強,因此相比壓縮位移,回彈位移的增量比率更大,故保型后秸稈塊的尺寸穩(wěn)定系數(shù)減小。
結(jié)合表1和表3可知,在不同的喂入量下,保型能夠顯著減小壓后回彈位移,從而提高壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05)。喂入量為2.5、3.0和3.5 kg時,相比未采用穩(wěn)定工藝(CC),保型150 s使回彈位移減小了19.2、20.8和23.5 mm,尺寸穩(wěn)定系數(shù)分別增大了6.51、5.84和6.02個百分點。隨著喂入量增大,壓后回彈位移減量及保型后尺寸穩(wěn)定系數(shù)均增大,原因為在最大壓應(yīng)力相同時,秸稈喂入量增大時,壓縮量增大,經(jīng)過保型,回彈位移減量增大,從而導(dǎo)致保型后尺寸穩(wěn)定系數(shù)增大。
綜上分析可知,在不同的壓縮條件下,保型均能使壓后秸稈塊的殘余應(yīng)力(回彈力)減小,從而減小壓后秸稈塊的回彈,顯著增大壓后秸稈塊的尺寸穩(wěn)定系數(shù)(<0.05),本質(zhì)為減小粘黏彈性殘余應(yīng)力。采用保型150 s可使壓后秸稈塊的尺寸穩(wěn)定系數(shù)增大4.36~6.78個百分點。
綜上分析可知,保壓和保型均能抑制壓后秸稈塊回彈,增大尺寸穩(wěn)定性,但抑制回彈機理不同。由表1和表3對比可知,在不同的壓縮條件下,壓后切碎玉米秸稈保壓150 s能使秸稈的尺寸穩(wěn)定系數(shù)增大1.52~4.26個百分點,保型150 s可使壓后秸稈塊的尺寸穩(wěn)定系數(shù)增大4.36~6.78個百分點,通過對比相同壓縮條件下的保型和保壓的穩(wěn)定效果,結(jié)果表明,總是存在保型后秸稈塊的尺寸穩(wěn)定系數(shù)更大,抑制回彈效果更優(yōu)。產(chǎn)生上述現(xiàn)象的主要原因:1)切碎玉米秸稈黏彈性強,壓后秸稈塊中殘余應(yīng)力造成回彈較大,保型能顯著的減小壓后秸稈塊中的殘余應(yīng)力,從而使回彈減小,尺寸穩(wěn)定性顯著提高;2)恒速壓后秸稈已經(jīng)被壓實,在保壓過程中,保壓位移較小,不可逆應(yīng)變的增量較小,同時回彈前未采用保型,壓后秸稈塊中的殘余應(yīng)力大,回彈仍較大,故壓后秸稈塊的尺寸穩(wěn)定系數(shù)較小。
1)研究了保壓位移和回彈位移,揭示了保壓抑制壓后秸稈塊回彈的機理,結(jié)果表明,保壓穩(wěn)定是從增大壓縮移和減小回彈位移2個方面抑制壓后秸稈塊的回彈,從而增大尺寸穩(wěn)定系數(shù),其本質(zhì)為增大壓后秸稈塊中的黏性應(yīng)變(不可逆應(yīng)變),保壓150 s可使秸稈塊的尺寸穩(wěn)定系數(shù)系數(shù)增大1.52~4.26個百分點。
2)研究了保型過程中的殘余應(yīng)力和回彈位移,揭示了保型抑制壓后秸稈塊回彈的機理,結(jié)果表明,隨著保型時間增大,壓后秸稈塊中的殘余應(yīng)力顯著減小,保型150 s可使秸稈塊的殘余應(yīng)力減小約40%,即減小壓后秸稈塊中的黏彈性回彈力,從而減小壓后秸稈塊回彈,增大尺寸穩(wěn)定系數(shù),其本質(zhì)為減小壓后秸稈塊中殘余粘彈性應(yīng)力,保型150 s可使壓后秸稈塊的尺寸穩(wěn)定系數(shù)增大4.36~6.78個百分點。
3)對比分析了不同的壓縮條件下保壓和保型穩(wěn)定效果,結(jié)果表明,對于切碎玉米秸稈,在同一壓縮條件下,保型穩(wěn)定效果總是優(yōu)于保壓,因此建議切碎玉米秸稈壓縮打捆及冷壓成型中應(yīng)采用保型工藝。
[1]王紅彥,王飛,孫仁華,等. 國外農(nóng)作物秸稈利用政策法規(guī)綜述及其經(jīng)驗啟示[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(16):216-222.
Wang Hongyan, Wang Fei, Sun Renhua, et al. Policies and regulations of crop straw utilization of foreign countries and its experience and inspiration for China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 216-222. (in Chinese with English abstract)
[2]Yuan X F, Li P P, Wang H, et al. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment[J]. Journal of Microbiology & Biotechnology, 2011, 21(7): 746-752.
[3]Aguayo M M, Sarin S C, Cundiff J S, et al. A corn-stover harvest scheduling problem arising in cellulosic ethanol production[J]. Biomass and Bioenergy, 2017, 107: 102-112.
[4]Zhang L X, Yang Z P, Zhang Q, et al. Tensile properties of maize stalk rind[J]. BioResources, 2016, 11(3): 6151-6161.
[5]Chen L J, Liao N, Li X, et al. Description of wheat straw relaxation behavior based on a fractional-order constitutive model[J]. Agronomy journal, 2013, 105(1): 134-142.
[6]Miao Z, Phillips J W, Grift T E, et al. Measurement of mechanical compressive properties and densification energy requirement of miscanthus×giganteus and switchgrass[J]. BioEnergy Research, 2015, 8(1): 152-164.
[7]Adapa P, Tabil L, Schoenau G. Grinding performance and physical properties of non-treated and steam-exploded barley, canola, oat, and wheat straw[J]. Biomass Bioenergy, 2011, 35(1): 549-561.
[8]侯杰. 玉米秸稈力學(xué)特性與理化指標及其關(guān)聯(lián)性[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2013.
Hou Jie. Related Study on Mechanical Characteristic and Physicochemical Properties of Corn Straw[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese with English abstract)
[9]馬彥華,宣傳忠,武佩,等. 玉米秸稈振動壓縮過程的應(yīng)力松弛試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(19):88-94.
Ma Yanhua, Xuan Chuanzhong, Wu Pei, et al. Experiment on stress relaxation of corn stover during compression with assisted vibration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(19): 88-94. (in Chinese with English abstract)
[10]司耀輝. 秸稈類生物質(zhì)成型燃料品質(zhì)提升及粘結(jié)機理研究[D]. 武漢:華中科技大學(xué),2018.
Si Yaohui. Study on the Quality Promotion and Bonding Mechanism of Agricultural Residues Pellets[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese with English abstract)
[11]李偉. 揉碎玉米秸稈開式壓縮蠕變試驗研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2011.
Li Wei. Study on Creep Properties Maize Straw Rubbed During Open Compression[D]. Huhhot: Inner Mongolia Agricultural University, 2011. (in Chinese with English abstract)
[12]Wongsiriamnuay T, Tippayawong N. Effect of densification parameters on the properties of maize residue pellets[J]. Biosystems Engineering, 2015, 139: 111-120.
[13]陳天佑,孟軍,辛明金,等. 玉米秸稈生物炭壓制成型特性研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報,2016,47(6):728-733.
Chen Tianyou, Meng Jun, Xin Mingjin, et al. Compaction behavior of biochar from corn stalk[J]. Journal of Shenyang Aricultural University, 2016, 47(6): 728-733. (in Chinese with English abstract)
[14]Adapa P, Schoenau G, Tabil L, et al. Compression of fractionated sun-cured and dehydrated alfalfa chops into cubes-Specific energy models[J]. Bioresource Technology, 2007, 98(1): 38-45.
[15]白雪衛(wèi). 玉米秸稈粉料致密成型工藝參數(shù)優(yōu)化與模擬分析[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2015.
Bai Xuewei. Process Parameters Optimization and Mechanical Simulation in Densification of Corn Stalk Powder[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese with English abstract)
[16]宮元娟,鄧楠,劉德軍,等. 秸稈坯塊成型工藝參數(shù)及保水性試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(12):248-255.
Gong Yuanjuan, Deng Nan, Liu Dejun, et al. Optimization of forming process parameters and water retention performance of straw blocks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 248-255. (in Chinese with English abstract)
[17]王瑞麗,魏楷峰,劉洋,等. 飼料用秸稈絲化多頻快速壓縮成型工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):277-281.
Wang Ruili, Wei Kaifeng, Liu Yang, et al. Optimization of process parameters for multi-frequency rapid compression molding of corn stalk silk used for forage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 277-281. (in Chinese with English abstract)
[18]Kashaninejad M, Tabil L G. Effect of microwave- chemicalpre-treatment on compression characteristics of biomass grinds[J]. Biosystem Engineering, 2011, 108: 36-45.
[19]Mostafa M E, Song H, Yi W, et al. The signifcance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets[J]. Renewable & Sustainable Eenrgy Reviews, 2019, 105: 332-348.
[20]Mani S, Tabil L G, Sokhansanj S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses[J]. Biomass and Bioenergy, 2006, 30(7): 648-654.
[21]Guo L, Wang D F, Tabil L G, et al. Compression and relaxation properties of biomass for briquetting[J]. Biosystem Engineering. 2016, 148: 101-110.
[22]Kashaninejad M, Tabil L G, Knox R. Effect of compressive load and particle size on compression characteristics of selected varieties of wheat straw grinds[J]. Biomass and Bioenergy, 2014, 60: 1-7.
[23]Kaliyan N, Morey R V. Densification characteristics of corn stover and switchgrass[J]. Transactions of the ASABE, 2009, 52(3): 907-920.
[24]Kaliyan N, Morey R V. Constitutive model for densification of corn stover and switchgrass [J]. Biosystems Engineering, 2009, 104(1): 47-63.
[25]閆翠珍. 秸稈塊壓縮性能及流變特性研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2015.
Yan Cuizhen. Study on the Comoression Performance and Rheological Properties of Straw Bales[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[26]ASABE Standards S358.2, Moisture measurement-forages[S]. American Society of Agricultural and Biological Engineers, St.Joseph, MI, USA. 2008.
[27]Tumuluru J S, Tabil L G, Song Y Q, et al. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes[J]. Bioenergy Research, 2015, 8: 388-401.
[28]廖娜,陳龍健,黃光群,等. 玉米秸稈木質(zhì)纖維含量與應(yīng)力松弛特性關(guān)聯(lián)度研究[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(12):127-132.
Liao Na, Chen Longjian, Huang Guangqun, et al. Grey relation analysis of lignocellulose content and compression stress relaxation of corn stalk[J]. Transactions of The Chinese Society for Agricultural Machinery, 2011, 42(12): 127-132. (in Chinese with English abstract)
[29]侯瓊. 麥草基復(fù)合材料的制備與性能研究[D]. 天津:天津科技大學(xué),2015.
Hou Qiong. Preparation Performance Research of Wheat Straw Based Composite Packaging Materials[D]. Tianjin: Tianjin University of Science and Technology, 2015. (in Chinese with English abstract)
[30]Nona K D, Lenaerts B, Kayacan E, et al. Bulk compression characteristics of straw and hay[J]. Biosystems Engineering, 2014, 118(1): 194-202.
[31]Herak D, Kabutey A, Choteborsky R, Petru M, et al. Mathematical models describing the relaxation behaviour ofL. bulk seeds under axial compression[J]. Biosystems Engineering, 2015, 131: 77-83.
[32]Hu J J, Lei T Z, Xu G Y, et al. Experimental study of stress relaxation in the process of cold molding with straw[J]. BioResources, 2009, 4(3): 1158-1167.
[33]Turner A P, Sama M P, Bryson L S, et al. Effect of stem crushing on the uniaxial bulk compression behaviour of switchgrass and miscanthus[J]. Biosystems Engineering, 2018, 175: 52-62.
[34]Chen Tianyou, Jia Honglei, Zhang Shengwei, et al. Optimization of cold pressing process parameters of chopped corn straws for fuel[J]. Energies, 2020,13(3): 652.
[35]Jia Honglei, Chen Tianyou, Zhang Shengwei, et al. Effects of pressure maintenance and strain maintenance during compression on subsequent dimensional stability and density after relaxation of blocks of chopped corn straw[J]. BioResources, 2020, 15(2): 3717-3736.
[36]宮澤奇. 青貯玉米秸稈螺旋致密成型工藝及壓縮過程流變學(xué)試驗研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2017.
Gong Zeqi. The Experimental Study on Rheology of Silage-corn Stalk in the Mechanized Spiral Dense Forming Process[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[37]郭磊. 秸稈壓塊成型因素與壓模腔體的優(yōu)化研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2016.
Guo Lei. Effects of Straw Characteristics and Research of Compression Die on Briquetting[D]. Beijing: China Agricult properties of timothy hay[J]. International Journal of Agricultural and Biological Engineering, 2011, 4(3): 69-78.
[38]楊明韶. 農(nóng)業(yè)物料流變學(xué)[M]. 北京: 中國農(nóng)業(yè)出版社. 2010.
[39]Talebi S, Tabil L, Opoku A, et al. Compression and relaxation properties of timothy hay[J]. International Journal of Agricultural and Biological Engineering, 2011, 4(3): 69-78.
Mechanism of restraining maize stalk block springback under pressure maintenance/strain maintenance
Chen Tianyou1,2, Jia Honglei1,2, Li Mingwei1,2, Zhao Jiale1,2, Deng Jiayu1,2,3, Fu Jun1,2, Yuan Hongfang1※
(1.,,130025,; 2.,,,130025,; 3150028,)
Chopped corn straw with a low density needs to be compressed and compacted, thereby improving the utilization rate of straw for transportation, storage, and subsequent utilization. However, the chopped corn straw is viscoelastic materials that can rebound to a large extent after compression, which can affect the compression effect. Previous studies reported that the pressure and strain maintenance can effectively reduce the rebound of straw after compression, but a specific mechanism in detail is lacking to clarify the confusion in practice. This study aims to reveal the mechanism of pressure and strain maintenance how to inhibit the rebound of straw after compression, optimize the straw compression process, and further improve the dimensional stability of straw block after compression. Taking the chopped corn straw as the test material, a compression test was carried out to investigate the effects of pressure and strain maintenance characteristics on the dimensional stability of straw blocks under various compression conditions, such as the moisture content, the maximum compression stress, and feeding mass. The results showed that both pressure and strain maintenance significantly increased the dimensional stability coefficient of straw after compression, but there were different mechanisms for restraining the rebound of straw. A mechanism of pressure maintenance resistance to the rebound of straw: The relative rebound displacement was reduced whether to increase the compression shift or to reduce the rebound displacement, thereby increasing the dimensional stability coefficient of compressed straw. The essence was to maintain a certain pressure to further compress the straw, where the viscoelastic strain in the compressed straw was under high pressure. In this situation, the irreversible strain increased in the compressed straw. The strain maintenance reduced the residual stress in straw after compression, where the relaxation rate after 30 s of strain maintenance was more than 30%, and the relaxation rate after 150 s of strain maintenance was about 40%, indicating that the relaxation rate in the first 30 s accounted for 80% of the 150 s relaxation rate in total. A mechanism of strain maintenance was obtained to inhibit the rebound of straw after compression. It was essential to reduce the viscoelastic stress in the straw block after compression. Specifically, a feasible way is to relax the viscoelastic resilience for the reduction of strain in straw, thereby increasing the dimensional stability coefficient of straw after compression. A comparison was made on the effects of pressure and strain maintenance on the stability under various compression conditions. In the chopped corn straw, the pressure maintenance for 150 s increased the dimensional stability coefficient of the compressed straw by 1.52 percent point-4.26 percent point, whereas, the strain maintenance for 150 s increased by 4.36 percent point -6.78 percent point. Both stabilization processes significantly inhibit the rebound of compressed straw, but under the same compression condition, there was always a better effect of strain maintenance than pressure maintenance. The finding can provide an sound reference for the pressing molding for other biomass and straw with small particle size. The results of this study can also offer an essential basis on the development of technology and equipment for the compression baling and cold pressing molding of chopped corn stalk.
test; mechanism; maize stalk; pressure maintenance; strain maintenance; dimensional stability coefficient
陳天佑,賈洪雷,李名偉,等. 保壓/保型抑制壓后切碎玉米秸稈塊回彈機理[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(1):51-58.doi:10.11975/j.issn.1002-6819.2021.01.007 http://www.tcsae.org
Chen Tianyou, Jia Honglei, Li Mingwei, et al. Mechanism of restraining maize stalk block springback under pressure maintenance/strain maintenance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 51-58. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.007 http://www.tcsae.org
2020-10-30
2020-12-18
國家自然科學(xué)基金項目(51705191);黑龍江省自然科學(xué)基金項目(LH2020E097);吉林省教育廳“十三五”科學(xué)技術(shù)項目(JJKH20201009KJ)
陳天佑,博士生,主要研究方向為秸稈資源化利用。 Email:chentianyou93@163.com。
袁洪方,副教授,主要研究方向為保護性耕作技術(shù)與農(nóng)業(yè)機械優(yōu)化設(shè)計。Email:yhf1984828@163.com
10.11975/j.issn.1002-6819.2021.01.007
S216.2
A
1002-6819(2021)-01-0051-08