• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無限滯后測度泛函微分方程的Φ-變差穩(wěn)定性

    2021-03-30 01:41:30馬學敏張懷德李寶麟
    工程數(shù)學學報 2021年1期
    關(guān)鍵詞:教學部西北師范大學信息科學

    馬學敏, 張懷德, 李寶麟

    (1- 甘肅中醫(yī)藥大學理科教學部,定西 743000; 2- 西北師范大學數(shù)學與信息科學學院,蘭州 730070)

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    1 Introduction

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    In this paper, we consider the stability of the bounded Φ-variation solution to measure functional differential equations of the form

    where Dx, Du denote the distributional derivative of function x and u. x is an unknown function with values in Rnand the symbol xtdenotes the function xt(τ) = x(t+τ)defined on (-∞,0], which is corresponding to the length of the delay. The function f,g : [t0,t0+σ]×P →Rn, u : [t0,t0+σ] →R is a nondecreasing and continuous function from the left, where

    P ={xt:x ∈O,t ∈[t0,t0+σ]}?H0, H0?X((-∞,0],Rn)

    Our candidate for the phase space of measure functional differential equations with infinity delay is a linear space H0?X((-∞,0],Rn) equipped with a norm denoted by‖·‖*. It is assumed that this normed linear space H0satisfies the following conditions:

    (H1): H0is complete;

    (H2): If x ∈H0and t <0, then xt∈H0;

    (H3): There exists a locally bounded function k1: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖x(t)‖≤k1(t)‖x‖*;

    (H4): There exists a function k2:(0,∞)→[1,∞) such that if σ >0 and x ∈H0is a function whose support is contained in[-σ,0], then‖x‖*≤k2(σ)supt∈[-σ,0]‖x(t)‖;

    (H5): There exists a locally bounded function k3: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖xt‖*≤k3(t)‖x‖*;

    (H6): If x ∈H0, then the function t →‖xt‖*is regulated on (-∞,0].

    This paper is organized as follows: in the next section, we show some basic definitions and lemmas. In the final section, we prove an important inequality which will be used for obtaining the main results of this paper firstly. After that, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinity delay.

    2 Main definitions and lemmas

    In this section, we will show some basic definitions and lemmas. First let’s start with the definition of Kurzweil integral and FΦ([t0,t0+σ]×P,h,ω).

    Definition 1[13]Let f : [a,b] →Rnbe a function. f is said to be Kurzweil integrable to A on [a,b] if for every ε >0, there exists a positive function δ(ξ) such that whenever a division D given by a=t0<t1<···<tk=b,and any{ξ1,ξ2,··· ,ξk},satisfies ξi-δ(ξi)<ti-1≤ξi≤ti<ξi+δ(ξi) for i=1,2,··· ,k. We have

    Let Φ(u)denote a continuous and increasing function defined for u ≥0 with Φ(0)=0, Φ(u)>0 for u >0, and satisfying the following conditions:

    (Δ2): There exist u0≥0 and a >0 such that Φ(2u)≤aΦ(u) for u0≥u >0;

    (c): Φ(u) is a convex function.

    We consider the function x:[a,b]→Rn, x(t) is of bounded Φ-variation over [a,b]if for any partition π :a=t0<t1<···<tm=b, we have

    VΦ(x;[a,b]) is called Φ-variation of x(t) over [a,b].

    Definition 2 A function g :[t0,t0+σ]×P →Rnbelongs to the class FΦ([t0,t0+σ]×P,h,ω) if:

    (i) There exists a positive function δ(τ) such that for every [m,n] satisfy τ ∈[m,n]?(τ -δ(τ),τ +δ(τ))?[t0,t0+σ] and xτ∈P, we have

    (ii) For every [m,n] satisfy τ ∈[m,n] ?(τ -δ(τ),τ +δ(τ)) ?[t0,t0+σ] and xτ,yτ∈P, we have

    where h : [t0,t0+ σ] →R is nondecreasing function and continuous from the left.ω : [0,+∞) →R is a continuous and increasing function with ω(0) = 0, ω(ar) ≤aω(r), ω(r)>0 for a >0, r >0.

    For obtaining main results, let us introduce some concepts of the trivial solution x(s)=0, s ∈[0,+∞) of the equation (1).

    Definition 3 The solution x ≡0 of(1)is called Φ-variationally stable if for every ε >0 there exists δ = δ(ε) >0, such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ, and

    then we have

    Φ(‖y(t)‖)<ε, t ∈[t0,t1].

    Definition 4 The solution x ≡0 of(1)is called Φ-variationally attracting if there exists δ0>0, and for every ε >0, there is a T =T(ε)>0 and γ =γ(ε)>0 such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1],continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ0, and

    then

    Φ(‖y(t)‖)<ε, ?t ∈[t0,t1]∩[t0+T(ε),+∞), t0≥0.

    Definition 5 The solution x ≡0 of (1) is called Φ-variationally-asymptotically stable, if it is Φ-variationally stable and Φ-variationally attracting.

    Lemma 1[14]If H0?X((-∞,0],Rn)is a space satisfying conditions(H1)-(H6),then the following statements are true for every a ∈R.

    1) Hais complete.

    2) If x ∈Haand t ≤a, then xt∈Ha.

    3) If t ≤a and x ∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖*.

    4) If σ >0 and x ∈Ha+σis a function whose support is contained in [a,a+σ],then ‖x‖*≤k2(σ)supt∈[a,a+σ]‖x(t)‖.

    5) If x ∈Ha+σand t ≤a+σ, then ‖xt‖*≤k3(t-a-σ)‖x‖*.

    6) If x ∈Ha+σ, then the function t →‖xt‖*is regulated on (-∞,a+σ].

    Lemma 2[15]Assume that -∞<a <b <+∞and that f,g : [a,b] →R are functions which are continuous from the left in [a,b].

    If for every σ ∈[a,b], there exists δ(σ) >0 such that for every η ∈(0,δ(σ)) the inequality

    f(σ+η)-f(σ)≤g(σ+η)-g(σ)

    holds, then

    f(s)-f(a)≤g(s)-g(a), ?s ∈[a,b].

    3 Φ-variational stability

    In this section, we prove an important inequality which will be used for obtaining the main results of this paper firstly.

    Theorem 1 Suppose that V :[0,+∞)×Rn→R, is such that for every x ∈Rn,the function V(·,x) : [0,+∞) →R is continuous from the left in (0,+∞). Assume that:

    (i)

    for x,y ∈Rn, t ∈[0,+∞) with a constant L >0;

    (ii) Further assume that there is a real function H : Rn→R such that for every solution x : (α,β) →Rnof the measure functional differential equation (1) on(α,β)?[0,+∞), we have

    If y :[t0,t1]→Rn, 0 ≤t0<t1<+∞is continuous from the left on (t0,t1] and of bounded Φ-variation on (t0,t1], then the inequality

    Proof Let y : [t0,t1] →Rnbe a function bounded Φ-variation and continuous from the left on(t0,t1]. It is clear that the function V(t,y(t)):[t0,t1]→R is continuous from the left on (t0,t1].

    Let σ ∈[t0,t1] be an arbitrary point, assume that x : [σ,σ +η1(σ)] →Rnis a solution of bounded Φ-variation on [σ,σ +η1(σ)], η1>0 with the initial condition x(σ)=y(σ) and xσ=yσ. The existence of such a solution is guaranteed in the paper[14]. Furthermore, the measure functional differential equations with delay have the form

    Dx=f(s,xs)+g(s,xs)du(s)

    is equivalent to the following form

    by [14]. Then

    exist, by (2), we have

    for every η ∈[0,η1(σ)].

    By this inequality and by (3) we obtain

    where ε >0 is arbitrary and η ∈(0,η2(σ)) with η2(σ) ≤η1(σ), η2(σ) is sufficiently small.

    Define

    The function Ψ : [t0,t1] →Rnis continuous from the left on (t0,t1] of bounded Φvariation on [t0,t1], and by Theorem 1.02, Theorem 1.11 and Theorem 1.17 in the paper[16], the last inequality can be used to derive

    Let us consider the last term in (5). Since f,g ∈FΦ([t0,t0+ σ] × P,h,ω) for every ε >0, there exists a positive function δ : [σ,σ + η] →(0,+∞), such that whenever a δ-division D of [σ,σ+η] given by D = {(τj;[αj-1,αj]),j = 1,2,··· ,m},let M(t) = VΦ(h;[σ,t]), σ ≤t ≤σ+η, by the definition of Φ(u) and h, then M(t) is nonnegative, nondecreasing and continuous from the left, we have

    for ρ ∈[σ,σ+η2(σ)], we have

    so

    Consequently

    For every ε >0, we define

    for ρ ∈(σ,σ+η3(σ)) and also

    Let us denote

    Since Ψ is of bounded Φ-variation on [t0,t1], the set P(β) is definite and we denote by n(β) the number of elements of P(β). If σ ∈[t0,t1]P(β) and ρ ∈(σ,σ+η3(σ)), then by (9), we have

    Because k3is a locally bounded function, there exists A >0, such that k3(t-σ-η)·k2(η)≤A. Further, we have

    So when η ∈(0,η3(σ)), by (6), we have

    If σ ∈[t0,t1]∩P(β),then there exists η4(σ)∈(0,η3(σ))such that for η ∈(0,η4(σ)),we have

    and (σ,σ+η4(σ))∩P(β)=?. Hence (6) and (9) yield

    Define now

    If σ ∈[t0,t1]P(β), then set δ(σ) = η3(σ) >0; and if σ ∈[t0,t1]∩P(β), then set δ(σ) = η4(σ) >0; for σ ∈[t0,t1], η ∈(0,δ(σ)), by (10),(11) and by the definition of Mα, we obtain the inequality

    Therefore by Theorem 1.03, Theorem 1.17 in [3], we have

    So when σ ∈[t0,t1], η ∈(0,δ(σ)), by (5), we have

    where

    G(t)=N(VΦ(Ψ;[t0,t]))+R(t-t0)+ε(t-t0)+NVΦ(Mα;[t0,t]),

    G is continuous from the left on [t0,t1]. By Lemma 2 and (13),(14), we obtain

    Since ε >0 can be arbitrarily small, we obtain from this inequality the result given in(4).

    In the following, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinite delay.

    (i) There exists a continuous increasing real function v :[0,+∞)→R such that v(ρ)=0 ?ρ=0;

    (ii)

    L >0 being a constant

    If the function V(t,x(t))is non increasing along every solution of the equation(1),then the trivial solution of (1) is Φ-variationally stable.

    Proof Since we assume that the function V(t,x(t)) is non increasing whenever x(t):[α,β]→Rnis a solution of (1), we have

    Let us check that under these assumptions the properties required in Definition 3 are satisfied.

    Let ε >0 be given and let y : [t0,t1] →Rn, 0 ≤t0<t1<+∞be of bounded Φ-variation on [t0,t1] and continuous from the left in (t0,t1]. Since the function V satisfies the assumptions of Theorem 1 with H ≡0 in the relation (3). We obtain by(4),(16),(17) the inequality

    which holds for every r ∈[t0,t1].

    Let us define α(ε)=infr≤εv(r), then α(ε)>0, infε→0+α(ε)=0. Further, choose δ(ε) >0 such that 2Nδ(ε) <α(ε). If in this situation the function y is such that Φ(‖y(t0)‖)<δ(ε), and

    then by (18), we obtain the inequality

    provided r ∈[t0,t1].

    which contradicts (19).

    Hence Φ(‖y(t)‖) <ε for all t ∈(t0,t1], and by Definition 3 the solution x ≡0 is Φ-variationally stable.

    holds for every t ∈[t0,t1], where H :Rn→R is continuous, H(0)=0, H(x)>0(x/=0), then the solution x ≡0 of (1) is Φ-variationally-asymptotically stable.

    Proof From (20) it is clear that the function V(t,x(t)) is non increasing along every solution x(t) of (1) and therefore by Theorem 2 the trivial solution x ≡0 of (1)is Φ-variationally stable.

    By Definition 5 it remains to show that the solution x ≡0 of (1) is Φ-variationally attracting in the sense of Definition 4.

    From the Φ-variational stability of the solution x ≡0 of(1)there is a δ0∈(0,Φ(a)),such that if y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Let ε >0 be arbitrary. From the Φ-variational stability of the trivial solution we obtain that there is a δ(ε) >0, such that for every y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1]and such that Φ(‖y(t0)‖)<δ(ε), and

    we have Φ(‖y(t)‖)<ε, for t ∈[t0,t1].

    Let

    where

    R=sup{-H(x):γ(ε)≤Φ(‖x‖)<ε}=-inf{H(x):γ(ε)≤Φ(‖x‖)<ε}<0.

    Assume that y :[t0,t1]→Rnis of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Assume that T(ε) <t1-t0, i.e. t0+T(ε) <t1. We show that there exists a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖)<γ(ε). Assume the contrary, i.e. Φ(‖y(s)‖)≥γ(ε),for every s ∈[t0,t0+T(ε)]. Theorem 1 yields

    Hence

    V(t0+T(ε),y(t0+T(ε)))≤V(t0,y(t0))-Nδ0≤LΦ(‖y(t0)‖)-Nδ0≤NΦ(‖y(t0)‖)-Nδ0<(N -N)δ0=0,

    and this contradicts the inequality

    V(t0+T(ε),y(t0+T(ε)))≥v(Φ(‖y(t0+T(ε))‖))≥v(γ(ε))>0.

    Hence necessarily there is a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖) <γ(ε). And by(21), we have Φ(‖y(t)‖) <ε, for t ∈[t*,t1]. Consequently, also Φ(‖y(t)‖) <ε, for t >t0+T(ε), and therefore the trivial solution x ≡0 is a variationally attracting solution of (1).

    Remark 1 If the function Φ(u) defined in section 2 satisfies

    then by Theorem 1.15 of [16], BVΦ[a,b]=BV[a,b], where BV[a,b] represents the class of all functions of bounded variation in usual sense on[a,b]. Therefore,in this case,the results of Theorem 1, Theorem 2 and Theorem 3 are equivalent to the results in [12].Notice that if

    by Theorem 1.15 of [16], we have

    BV[a,b]?BVΦ[a,b].

    For example Φ(u)=up(1 <p <∞), we have

    Therefore, Theorem 2 and Theorem 3 are essential generalization of the results in [12].

    猜你喜歡
    教學部西北師范大學信息科學
    西北師范大學作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    西北師范大學美術(shù)學院作品選登
    山西大同大學量子信息科學研究所簡介
    西北師范大學美術(shù)學院作品選登
    西北師范大學美術(shù)學院作品選登
    三元重要不等式的推廣及應用
    公共教學部
    Factors Affecting Memory Efficiency in EFL
    On the Importance of English Vocabulary
    On Memory Theory in English Vocabulary Learning
    免费人成视频x8x8入口观看| 欧美日韩乱码在线| 99精国产麻豆久久婷婷| 国产精品av久久久久免费| 久久久水蜜桃国产精品网| 欧美激情 高清一区二区三区| 搡老岳熟女国产| 婷婷精品国产亚洲av在线| 少妇裸体淫交视频免费看高清 | 国产视频一区二区在线看| 亚洲成人免费电影在线观看| 在线观看免费视频网站a站| 女性生殖器流出的白浆| 国产精品美女特级片免费视频播放器 | a在线观看视频网站| 国产成人欧美在线观看| 在线观看舔阴道视频| 老司机靠b影院| 国产成人系列免费观看| 久久久精品欧美日韩精品| 国产精品成人在线| 亚洲情色 制服丝袜| 欧美日韩av久久| 91成人精品电影| 欧美激情极品国产一区二区三区| 国产av又大| 伦理电影免费视频| 女同久久另类99精品国产91| 日韩欧美一区视频在线观看| 色精品久久人妻99蜜桃| 国产激情久久老熟女| 亚洲av片天天在线观看| 亚洲精品在线观看二区| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 99久久人妻综合| 亚洲熟妇熟女久久| 中文字幕人妻熟女乱码| 中文字幕高清在线视频| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 51午夜福利影视在线观看| 极品人妻少妇av视频| 亚洲色图综合在线观看| 亚洲全国av大片| 亚洲熟妇中文字幕五十中出 | 精品电影一区二区在线| www.999成人在线观看| 日韩高清综合在线| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 五月开心婷婷网| 欧美日韩视频精品一区| 久久青草综合色| 亚洲 欧美 日韩 在线 免费| 黄片小视频在线播放| 夜夜爽天天搞| √禁漫天堂资源中文www| 在线十欧美十亚洲十日本专区| 韩国精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 久久人妻福利社区极品人妻图片| 久久性视频一级片| av福利片在线| 欧洲精品卡2卡3卡4卡5卡区| 9色porny在线观看| 欧美性长视频在线观看| 欧美人与性动交α欧美软件| 亚洲欧洲精品一区二区精品久久久| 亚洲av片天天在线观看| 欧美日韩av久久| 在线观看66精品国产| 12—13女人毛片做爰片一| 侵犯人妻中文字幕一二三四区| 国产精品一区二区免费欧美| 久99久视频精品免费| 午夜福利免费观看在线| 999久久久国产精品视频| 制服人妻中文乱码| 日韩高清综合在线| 亚洲精品美女久久久久99蜜臀| 久久婷婷成人综合色麻豆| xxxhd国产人妻xxx| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区91| 精品福利永久在线观看| 很黄的视频免费| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 搡老岳熟女国产| 人成视频在线观看免费观看| 精品第一国产精品| 韩国精品一区二区三区| 欧美在线一区亚洲| 精品久久久久久久久久免费视频 | 成在线人永久免费视频| 国产单亲对白刺激| 久久国产精品影院| 色综合站精品国产| 美女 人体艺术 gogo| 成人18禁高潮啪啪吃奶动态图| 精品久久蜜臀av无| 男女下面插进去视频免费观看| 日韩高清综合在线| 国产单亲对白刺激| 欧美日韩国产mv在线观看视频| 身体一侧抽搐| 日韩欧美一区二区三区在线观看| 黄色女人牲交| 丝袜美腿诱惑在线| 波多野结衣一区麻豆| 性少妇av在线| 亚洲七黄色美女视频| 美女高潮喷水抽搐中文字幕| 午夜福利在线免费观看网站| 欧美成人性av电影在线观看| 一级片免费观看大全| 国产精品成人在线| 日本撒尿小便嘘嘘汇集6| 免费不卡黄色视频| 亚洲成a人片在线一区二区| 在线av久久热| 午夜免费鲁丝| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 亚洲国产中文字幕在线视频| 悠悠久久av| 亚洲av日韩精品久久久久久密| 久99久视频精品免费| 久久久久久久久免费视频了| 亚洲五月天丁香| 国产成人av教育| 午夜免费鲁丝| 一进一出抽搐gif免费好疼 | bbb黄色大片| 日韩大尺度精品在线看网址 | 一区福利在线观看| 日韩高清综合在线| 欧美一级毛片孕妇| 欧美人与性动交α欧美软件| 天天影视国产精品| 天堂中文最新版在线下载| 中文字幕色久视频| 美国免费a级毛片| 国产男靠女视频免费网站| 女性生殖器流出的白浆| bbb黄色大片| 香蕉久久夜色| 嫩草影视91久久| 国产精品自产拍在线观看55亚洲| 免费在线观看黄色视频的| 免费一级毛片在线播放高清视频 | av中文乱码字幕在线| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 美女午夜性视频免费| 欧美日本中文国产一区发布| 国产伦人伦偷精品视频| 免费观看人在逋| 一级片免费观看大全| 一级作爱视频免费观看| 国产精品 欧美亚洲| 国产1区2区3区精品| 少妇 在线观看| 人人妻,人人澡人人爽秒播| 99热只有精品国产| 性色av乱码一区二区三区2| a在线观看视频网站| 国产区一区二久久| 中文字幕av电影在线播放| 亚洲成人精品中文字幕电影 | 亚洲专区字幕在线| 国产一卡二卡三卡精品| 97超级碰碰碰精品色视频在线观看| 日韩精品中文字幕看吧| 天堂√8在线中文| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕| 三级毛片av免费| 亚洲精品av麻豆狂野| 丰满饥渴人妻一区二区三| av在线播放免费不卡| 香蕉丝袜av| bbb黄色大片| av国产精品久久久久影院| 午夜视频精品福利| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 国产精品99久久99久久久不卡| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 国产精品永久免费网站| 女人高潮潮喷娇喘18禁视频| 国产精品久久视频播放| 国产亚洲精品一区二区www| 久久精品国产亚洲av香蕉五月| 久久香蕉激情| 欧美日韩av久久| 久久香蕉国产精品| 99久久综合精品五月天人人| 亚洲精品在线美女| 黄频高清免费视频| 国产激情欧美一区二区| 少妇被粗大的猛进出69影院| 很黄的视频免费| 亚洲精品成人av观看孕妇| 国产一区二区激情短视频| www.精华液| 老汉色∧v一级毛片| 91av网站免费观看| 人妻丰满熟妇av一区二区三区| 色在线成人网| 三级毛片av免费| 一级黄色大片毛片| 亚洲七黄色美女视频| xxxhd国产人妻xxx| avwww免费| 一级作爱视频免费观看| 亚洲熟女毛片儿| 久久久久久久午夜电影 | 国产av一区二区精品久久| 亚洲人成电影免费在线| 91九色精品人成在线观看| 亚洲视频免费观看视频| 欧美中文日本在线观看视频| 神马国产精品三级电影在线观看 | 久久国产精品影院| 黄频高清免费视频| 中文字幕高清在线视频| 天堂√8在线中文| 精品久久久久久成人av| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| 曰老女人黄片| 香蕉丝袜av| 国产成人av激情在线播放| 久久国产精品男人的天堂亚洲| 欧美成狂野欧美在线观看| 午夜福利影视在线免费观看| 国产成人精品在线电影| 亚洲在线自拍视频| 亚洲片人在线观看| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 女性生殖器流出的白浆| 正在播放国产对白刺激| 欧美黑人精品巨大| 国产单亲对白刺激| 男女午夜视频在线观看| 欧美日韩一级在线毛片| 国产精品亚洲一级av第二区| 免费女性裸体啪啪无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| 亚洲免费av在线视频| 精品国产超薄肉色丝袜足j| 免费女性裸体啪啪无遮挡网站| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 亚洲成国产人片在线观看| 久久久久久人人人人人| 亚洲五月婷婷丁香| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 岛国在线观看网站| 精品国产乱码久久久久久男人| 91老司机精品| 久久精品国产亚洲av香蕉五月| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 满18在线观看网站| av电影中文网址| 国产精品九九99| 正在播放国产对白刺激| 国产蜜桃级精品一区二区三区| 性少妇av在线| 悠悠久久av| 国产成人影院久久av| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 色综合婷婷激情| 亚洲精品美女久久久久99蜜臀| 成人18禁在线播放| 男女做爰动态图高潮gif福利片 | 夜夜躁狠狠躁天天躁| 国产又色又爽无遮挡免费看| 首页视频小说图片口味搜索| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 动漫黄色视频在线观看| www.www免费av| 欧美国产精品va在线观看不卡| 国产精品九九99| 91老司机精品| 亚洲成av片中文字幕在线观看| 黑人猛操日本美女一级片| 成人三级黄色视频| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 亚洲欧美激情综合另类| 精品人妻1区二区| 国产欧美日韩一区二区精品| 老司机靠b影院| 桃红色精品国产亚洲av| 黄色成人免费大全| 亚洲一区二区三区欧美精品| 麻豆成人av在线观看| 久久久久久久精品吃奶| 国产精品久久久久成人av| 亚洲狠狠婷婷综合久久图片| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站 | 99香蕉大伊视频| 黑人巨大精品欧美一区二区mp4| 51午夜福利影视在线观看| 国产熟女xx| 国产午夜精品久久久久久| 91老司机精品| 久久精品影院6| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区| 国产成人啪精品午夜网站| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 一进一出抽搐gif免费好疼 | av在线播放免费不卡| 在线av久久热| 国产三级在线视频| 很黄的视频免费| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 大香蕉久久成人网| 亚洲一区二区三区色噜噜 | 岛国在线观看网站| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 俄罗斯特黄特色一大片| 无限看片的www在线观看| av在线天堂中文字幕 | 亚洲熟妇熟女久久| 91精品国产国语对白视频| 啦啦啦 在线观看视频| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 看免费av毛片| 啦啦啦 在线观看视频| 免费观看精品视频网站| 欧美日本中文国产一区发布| 一级毛片精品| 欧美激情极品国产一区二区三区| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 亚洲中文日韩欧美视频| 午夜福利在线免费观看网站| 国产伦一二天堂av在线观看| 免费观看人在逋| 高清欧美精品videossex| 大陆偷拍与自拍| 丝袜美足系列| 黄色视频,在线免费观看| 亚洲中文日韩欧美视频| 国产有黄有色有爽视频| 老司机深夜福利视频在线观看| 免费观看人在逋| 老司机深夜福利视频在线观看| 黄频高清免费视频| 9热在线视频观看99| 久久久久久久久久久久大奶| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 欧美人与性动交α欧美精品济南到| 一区二区三区激情视频| 一级作爱视频免费观看| 亚洲伊人色综图| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 日本 av在线| 亚洲精品国产一区二区精华液| 精品一区二区三卡| 黄色丝袜av网址大全| av视频免费观看在线观看| 国产成人啪精品午夜网站| 午夜福利一区二区在线看| 国产人伦9x9x在线观看| 天堂动漫精品| 看黄色毛片网站| 久久久久久大精品| 美国免费a级毛片| 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡| 18美女黄网站色大片免费观看| 女同久久另类99精品国产91| 波多野结衣一区麻豆| 丝袜在线中文字幕| 亚洲欧美激情综合另类| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| 久久久久久久久免费视频了| 琪琪午夜伦伦电影理论片6080| 久久国产亚洲av麻豆专区| 亚洲狠狠婷婷综合久久图片| 欧美精品啪啪一区二区三区| 18美女黄网站色大片免费观看| 亚洲人成网站在线播放欧美日韩| 一级作爱视频免费观看| 新久久久久国产一级毛片| av片东京热男人的天堂| 日本欧美视频一区| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 国产精品 国内视频| 亚洲熟女毛片儿| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 日韩一卡2卡3卡4卡2021年| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| 国产精品久久久人人做人人爽| 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 欧美在线黄色| 久久久久精品国产欧美久久久| 99精品欧美一区二区三区四区| 丁香六月欧美| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 国产精华一区二区三区| 99久久人妻综合| 中出人妻视频一区二区| 宅男免费午夜| 热re99久久国产66热| 免费女性裸体啪啪无遮挡网站| 亚洲色图av天堂| 国产成人影院久久av| 成人av一区二区三区在线看| 在线av久久热| 国产欧美日韩一区二区三| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 中文字幕精品免费在线观看视频| av超薄肉色丝袜交足视频| 国产精品永久免费网站| 欧美老熟妇乱子伦牲交| 怎么达到女性高潮| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 制服诱惑二区| 午夜影院日韩av| 日本三级黄在线观看| 岛国视频午夜一区免费看| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 97人妻天天添夜夜摸| 午夜精品在线福利| 国产精品影院久久| 国产精品 欧美亚洲| 长腿黑丝高跟| 精品久久久精品久久久| 1024视频免费在线观看| 好男人电影高清在线观看| 中出人妻视频一区二区| 午夜福利,免费看| 亚洲av片天天在线观看| av超薄肉色丝袜交足视频| 久久婷婷成人综合色麻豆| 桃色一区二区三区在线观看| 国产高清激情床上av| 人人澡人人妻人| 国产精品自产拍在线观看55亚洲| 国产精品1区2区在线观看.| 欧美成狂野欧美在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品久久电影中文字幕| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费 | 天堂影院成人在线观看| 国产免费现黄频在线看| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 男人舔女人下体高潮全视频| 我的亚洲天堂| 日本a在线网址| 精品国产超薄肉色丝袜足j| aaaaa片日本免费| 精品一区二区三卡| 免费在线观看日本一区| 国产精品av久久久久免费| 午夜激情av网站| 欧美日韩福利视频一区二区| 天天影视国产精品| 高潮久久久久久久久久久不卡| 成在线人永久免费视频| 麻豆成人av在线观看| 热99re8久久精品国产| 久久亚洲精品不卡| 99国产精品99久久久久| 国产精品 国内视频| 亚洲专区中文字幕在线| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| 女性被躁到高潮视频| 后天国语完整版免费观看| 国产三级在线视频| 丰满迷人的少妇在线观看| 国产av精品麻豆| 国产精品免费视频内射| 久久这里只有精品19| 午夜福利一区二区在线看| 一区二区三区国产精品乱码| 人成视频在线观看免费观看| 999久久久国产精品视频| 精品午夜福利视频在线观看一区| 日本黄色日本黄色录像| 99国产精品一区二区三区| 亚洲五月婷婷丁香| 亚洲成人精品中文字幕电影 | 日本 av在线| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 日韩精品青青久久久久久| 男女高潮啪啪啪动态图| 久久精品人人爽人人爽视色| 少妇 在线观看| 日韩一卡2卡3卡4卡2021年| 久久天堂一区二区三区四区| 好看av亚洲va欧美ⅴa在| 大香蕉久久成人网| 国产精品久久久av美女十八| 精品国内亚洲2022精品成人| 精品福利永久在线观看| 欧美+亚洲+日韩+国产| 男女高潮啪啪啪动态图| 大陆偷拍与自拍| 夜夜看夜夜爽夜夜摸 | 日韩欧美国产一区二区入口| 国产高清videossex| 一个人免费在线观看的高清视频| 一二三四在线观看免费中文在| 女警被强在线播放| 国产高清激情床上av| 精品卡一卡二卡四卡免费| 1024视频免费在线观看| 欧美日本亚洲视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区91| 亚洲专区中文字幕在线| 久久久久精品国产欧美久久久| 成在线人永久免费视频| 亚洲精品在线美女| 成人亚洲精品av一区二区 | 欧美不卡视频在线免费观看 | 国产蜜桃级精品一区二区三区| 99久久99久久久精品蜜桃| 大香蕉久久成人网| 欧美在线黄色| 成人精品一区二区免费| 亚洲人成电影观看| 亚洲第一av免费看| 在线观看免费高清a一片| 久久久久国内视频| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 亚洲av熟女| 999久久久国产精品视频| 级片在线观看| 精品国产乱码久久久久久男人| 老汉色∧v一级毛片| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频,在线免费观看| 国产一区二区三区视频了| 亚洲精品国产一区二区精华液| 一个人免费在线观看的高清视频| 日本黄色视频三级网站网址| 人妻久久中文字幕网| 国产成人精品在线电影| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品国产精品久久久不卡| 亚洲专区字幕在线| 中国美女看黄片| 999久久久国产精品视频| 国产精品二区激情视频| 黄片播放在线免费| 国产av精品麻豆| 亚洲精品成人av观看孕妇| 久久这里只有精品19| 精品一品国产午夜福利视频| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 搡老熟女国产l中国老女人| 亚洲精华国产精华精| 国产欧美日韩一区二区三区在线| 精品久久蜜臀av无| 一二三四社区在线视频社区8| av电影中文网址| 亚洲黑人精品在线| 欧美亚洲日本最大视频资源| 国产亚洲欧美98|