• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無限滯后測度泛函微分方程的Φ-變差穩(wěn)定性

    2021-03-30 01:41:30馬學敏張懷德李寶麟
    工程數(shù)學學報 2021年1期
    關(guān)鍵詞:教學部西北師范大學信息科學

    馬學敏, 張懷德, 李寶麟

    (1- 甘肅中醫(yī)藥大學理科教學部,定西 743000; 2- 西北師范大學數(shù)學與信息科學學院,蘭州 730070)

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    1 Introduction

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    In this paper, we consider the stability of the bounded Φ-variation solution to measure functional differential equations of the form

    where Dx, Du denote the distributional derivative of function x and u. x is an unknown function with values in Rnand the symbol xtdenotes the function xt(τ) = x(t+τ)defined on (-∞,0], which is corresponding to the length of the delay. The function f,g : [t0,t0+σ]×P →Rn, u : [t0,t0+σ] →R is a nondecreasing and continuous function from the left, where

    P ={xt:x ∈O,t ∈[t0,t0+σ]}?H0, H0?X((-∞,0],Rn)

    Our candidate for the phase space of measure functional differential equations with infinity delay is a linear space H0?X((-∞,0],Rn) equipped with a norm denoted by‖·‖*. It is assumed that this normed linear space H0satisfies the following conditions:

    (H1): H0is complete;

    (H2): If x ∈H0and t <0, then xt∈H0;

    (H3): There exists a locally bounded function k1: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖x(t)‖≤k1(t)‖x‖*;

    (H4): There exists a function k2:(0,∞)→[1,∞) such that if σ >0 and x ∈H0is a function whose support is contained in[-σ,0], then‖x‖*≤k2(σ)supt∈[-σ,0]‖x(t)‖;

    (H5): There exists a locally bounded function k3: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖xt‖*≤k3(t)‖x‖*;

    (H6): If x ∈H0, then the function t →‖xt‖*is regulated on (-∞,0].

    This paper is organized as follows: in the next section, we show some basic definitions and lemmas. In the final section, we prove an important inequality which will be used for obtaining the main results of this paper firstly. After that, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinity delay.

    2 Main definitions and lemmas

    In this section, we will show some basic definitions and lemmas. First let’s start with the definition of Kurzweil integral and FΦ([t0,t0+σ]×P,h,ω).

    Definition 1[13]Let f : [a,b] →Rnbe a function. f is said to be Kurzweil integrable to A on [a,b] if for every ε >0, there exists a positive function δ(ξ) such that whenever a division D given by a=t0<t1<···<tk=b,and any{ξ1,ξ2,··· ,ξk},satisfies ξi-δ(ξi)<ti-1≤ξi≤ti<ξi+δ(ξi) for i=1,2,··· ,k. We have

    Let Φ(u)denote a continuous and increasing function defined for u ≥0 with Φ(0)=0, Φ(u)>0 for u >0, and satisfying the following conditions:

    (Δ2): There exist u0≥0 and a >0 such that Φ(2u)≤aΦ(u) for u0≥u >0;

    (c): Φ(u) is a convex function.

    We consider the function x:[a,b]→Rn, x(t) is of bounded Φ-variation over [a,b]if for any partition π :a=t0<t1<···<tm=b, we have

    VΦ(x;[a,b]) is called Φ-variation of x(t) over [a,b].

    Definition 2 A function g :[t0,t0+σ]×P →Rnbelongs to the class FΦ([t0,t0+σ]×P,h,ω) if:

    (i) There exists a positive function δ(τ) such that for every [m,n] satisfy τ ∈[m,n]?(τ -δ(τ),τ +δ(τ))?[t0,t0+σ] and xτ∈P, we have

    (ii) For every [m,n] satisfy τ ∈[m,n] ?(τ -δ(τ),τ +δ(τ)) ?[t0,t0+σ] and xτ,yτ∈P, we have

    where h : [t0,t0+ σ] →R is nondecreasing function and continuous from the left.ω : [0,+∞) →R is a continuous and increasing function with ω(0) = 0, ω(ar) ≤aω(r), ω(r)>0 for a >0, r >0.

    For obtaining main results, let us introduce some concepts of the trivial solution x(s)=0, s ∈[0,+∞) of the equation (1).

    Definition 3 The solution x ≡0 of(1)is called Φ-variationally stable if for every ε >0 there exists δ = δ(ε) >0, such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ, and

    then we have

    Φ(‖y(t)‖)<ε, t ∈[t0,t1].

    Definition 4 The solution x ≡0 of(1)is called Φ-variationally attracting if there exists δ0>0, and for every ε >0, there is a T =T(ε)>0 and γ =γ(ε)>0 such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1],continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ0, and

    then

    Φ(‖y(t)‖)<ε, ?t ∈[t0,t1]∩[t0+T(ε),+∞), t0≥0.

    Definition 5 The solution x ≡0 of (1) is called Φ-variationally-asymptotically stable, if it is Φ-variationally stable and Φ-variationally attracting.

    Lemma 1[14]If H0?X((-∞,0],Rn)is a space satisfying conditions(H1)-(H6),then the following statements are true for every a ∈R.

    1) Hais complete.

    2) If x ∈Haand t ≤a, then xt∈Ha.

    3) If t ≤a and x ∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖*.

    4) If σ >0 and x ∈Ha+σis a function whose support is contained in [a,a+σ],then ‖x‖*≤k2(σ)supt∈[a,a+σ]‖x(t)‖.

    5) If x ∈Ha+σand t ≤a+σ, then ‖xt‖*≤k3(t-a-σ)‖x‖*.

    6) If x ∈Ha+σ, then the function t →‖xt‖*is regulated on (-∞,a+σ].

    Lemma 2[15]Assume that -∞<a <b <+∞and that f,g : [a,b] →R are functions which are continuous from the left in [a,b].

    If for every σ ∈[a,b], there exists δ(σ) >0 such that for every η ∈(0,δ(σ)) the inequality

    f(σ+η)-f(σ)≤g(σ+η)-g(σ)

    holds, then

    f(s)-f(a)≤g(s)-g(a), ?s ∈[a,b].

    3 Φ-variational stability

    In this section, we prove an important inequality which will be used for obtaining the main results of this paper firstly.

    Theorem 1 Suppose that V :[0,+∞)×Rn→R, is such that for every x ∈Rn,the function V(·,x) : [0,+∞) →R is continuous from the left in (0,+∞). Assume that:

    (i)

    for x,y ∈Rn, t ∈[0,+∞) with a constant L >0;

    (ii) Further assume that there is a real function H : Rn→R such that for every solution x : (α,β) →Rnof the measure functional differential equation (1) on(α,β)?[0,+∞), we have

    If y :[t0,t1]→Rn, 0 ≤t0<t1<+∞is continuous from the left on (t0,t1] and of bounded Φ-variation on (t0,t1], then the inequality

    Proof Let y : [t0,t1] →Rnbe a function bounded Φ-variation and continuous from the left on(t0,t1]. It is clear that the function V(t,y(t)):[t0,t1]→R is continuous from the left on (t0,t1].

    Let σ ∈[t0,t1] be an arbitrary point, assume that x : [σ,σ +η1(σ)] →Rnis a solution of bounded Φ-variation on [σ,σ +η1(σ)], η1>0 with the initial condition x(σ)=y(σ) and xσ=yσ. The existence of such a solution is guaranteed in the paper[14]. Furthermore, the measure functional differential equations with delay have the form

    Dx=f(s,xs)+g(s,xs)du(s)

    is equivalent to the following form

    by [14]. Then

    exist, by (2), we have

    for every η ∈[0,η1(σ)].

    By this inequality and by (3) we obtain

    where ε >0 is arbitrary and η ∈(0,η2(σ)) with η2(σ) ≤η1(σ), η2(σ) is sufficiently small.

    Define

    The function Ψ : [t0,t1] →Rnis continuous from the left on (t0,t1] of bounded Φvariation on [t0,t1], and by Theorem 1.02, Theorem 1.11 and Theorem 1.17 in the paper[16], the last inequality can be used to derive

    Let us consider the last term in (5). Since f,g ∈FΦ([t0,t0+ σ] × P,h,ω) for every ε >0, there exists a positive function δ : [σ,σ + η] →(0,+∞), such that whenever a δ-division D of [σ,σ+η] given by D = {(τj;[αj-1,αj]),j = 1,2,··· ,m},let M(t) = VΦ(h;[σ,t]), σ ≤t ≤σ+η, by the definition of Φ(u) and h, then M(t) is nonnegative, nondecreasing and continuous from the left, we have

    for ρ ∈[σ,σ+η2(σ)], we have

    so

    Consequently

    For every ε >0, we define

    for ρ ∈(σ,σ+η3(σ)) and also

    Let us denote

    Since Ψ is of bounded Φ-variation on [t0,t1], the set P(β) is definite and we denote by n(β) the number of elements of P(β). If σ ∈[t0,t1]P(β) and ρ ∈(σ,σ+η3(σ)), then by (9), we have

    Because k3is a locally bounded function, there exists A >0, such that k3(t-σ-η)·k2(η)≤A. Further, we have

    So when η ∈(0,η3(σ)), by (6), we have

    If σ ∈[t0,t1]∩P(β),then there exists η4(σ)∈(0,η3(σ))such that for η ∈(0,η4(σ)),we have

    and (σ,σ+η4(σ))∩P(β)=?. Hence (6) and (9) yield

    Define now

    If σ ∈[t0,t1]P(β), then set δ(σ) = η3(σ) >0; and if σ ∈[t0,t1]∩P(β), then set δ(σ) = η4(σ) >0; for σ ∈[t0,t1], η ∈(0,δ(σ)), by (10),(11) and by the definition of Mα, we obtain the inequality

    Therefore by Theorem 1.03, Theorem 1.17 in [3], we have

    So when σ ∈[t0,t1], η ∈(0,δ(σ)), by (5), we have

    where

    G(t)=N(VΦ(Ψ;[t0,t]))+R(t-t0)+ε(t-t0)+NVΦ(Mα;[t0,t]),

    G is continuous from the left on [t0,t1]. By Lemma 2 and (13),(14), we obtain

    Since ε >0 can be arbitrarily small, we obtain from this inequality the result given in(4).

    In the following, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinite delay.

    (i) There exists a continuous increasing real function v :[0,+∞)→R such that v(ρ)=0 ?ρ=0;

    (ii)

    L >0 being a constant

    If the function V(t,x(t))is non increasing along every solution of the equation(1),then the trivial solution of (1) is Φ-variationally stable.

    Proof Since we assume that the function V(t,x(t)) is non increasing whenever x(t):[α,β]→Rnis a solution of (1), we have

    Let us check that under these assumptions the properties required in Definition 3 are satisfied.

    Let ε >0 be given and let y : [t0,t1] →Rn, 0 ≤t0<t1<+∞be of bounded Φ-variation on [t0,t1] and continuous from the left in (t0,t1]. Since the function V satisfies the assumptions of Theorem 1 with H ≡0 in the relation (3). We obtain by(4),(16),(17) the inequality

    which holds for every r ∈[t0,t1].

    Let us define α(ε)=infr≤εv(r), then α(ε)>0, infε→0+α(ε)=0. Further, choose δ(ε) >0 such that 2Nδ(ε) <α(ε). If in this situation the function y is such that Φ(‖y(t0)‖)<δ(ε), and

    then by (18), we obtain the inequality

    provided r ∈[t0,t1].

    which contradicts (19).

    Hence Φ(‖y(t)‖) <ε for all t ∈(t0,t1], and by Definition 3 the solution x ≡0 is Φ-variationally stable.

    holds for every t ∈[t0,t1], where H :Rn→R is continuous, H(0)=0, H(x)>0(x/=0), then the solution x ≡0 of (1) is Φ-variationally-asymptotically stable.

    Proof From (20) it is clear that the function V(t,x(t)) is non increasing along every solution x(t) of (1) and therefore by Theorem 2 the trivial solution x ≡0 of (1)is Φ-variationally stable.

    By Definition 5 it remains to show that the solution x ≡0 of (1) is Φ-variationally attracting in the sense of Definition 4.

    From the Φ-variational stability of the solution x ≡0 of(1)there is a δ0∈(0,Φ(a)),such that if y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Let ε >0 be arbitrary. From the Φ-variational stability of the trivial solution we obtain that there is a δ(ε) >0, such that for every y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1]and such that Φ(‖y(t0)‖)<δ(ε), and

    we have Φ(‖y(t)‖)<ε, for t ∈[t0,t1].

    Let

    where

    R=sup{-H(x):γ(ε)≤Φ(‖x‖)<ε}=-inf{H(x):γ(ε)≤Φ(‖x‖)<ε}<0.

    Assume that y :[t0,t1]→Rnis of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Assume that T(ε) <t1-t0, i.e. t0+T(ε) <t1. We show that there exists a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖)<γ(ε). Assume the contrary, i.e. Φ(‖y(s)‖)≥γ(ε),for every s ∈[t0,t0+T(ε)]. Theorem 1 yields

    Hence

    V(t0+T(ε),y(t0+T(ε)))≤V(t0,y(t0))-Nδ0≤LΦ(‖y(t0)‖)-Nδ0≤NΦ(‖y(t0)‖)-Nδ0<(N -N)δ0=0,

    and this contradicts the inequality

    V(t0+T(ε),y(t0+T(ε)))≥v(Φ(‖y(t0+T(ε))‖))≥v(γ(ε))>0.

    Hence necessarily there is a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖) <γ(ε). And by(21), we have Φ(‖y(t)‖) <ε, for t ∈[t*,t1]. Consequently, also Φ(‖y(t)‖) <ε, for t >t0+T(ε), and therefore the trivial solution x ≡0 is a variationally attracting solution of (1).

    Remark 1 If the function Φ(u) defined in section 2 satisfies

    then by Theorem 1.15 of [16], BVΦ[a,b]=BV[a,b], where BV[a,b] represents the class of all functions of bounded variation in usual sense on[a,b]. Therefore,in this case,the results of Theorem 1, Theorem 2 and Theorem 3 are equivalent to the results in [12].Notice that if

    by Theorem 1.15 of [16], we have

    BV[a,b]?BVΦ[a,b].

    For example Φ(u)=up(1 <p <∞), we have

    Therefore, Theorem 2 and Theorem 3 are essential generalization of the results in [12].

    猜你喜歡
    教學部西北師范大學信息科學
    西北師范大學作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    西北師范大學美術(shù)學院作品選登
    山西大同大學量子信息科學研究所簡介
    西北師范大學美術(shù)學院作品選登
    西北師范大學美術(shù)學院作品選登
    三元重要不等式的推廣及應用
    公共教學部
    Factors Affecting Memory Efficiency in EFL
    On the Importance of English Vocabulary
    On Memory Theory in English Vocabulary Learning
    欧美日韩精品网址| 久久精品人妻少妇| 两个人免费观看高清视频| 亚洲精品美女久久久久99蜜臀| 日韩欧美免费精品| 操出白浆在线播放| 免费观看精品视频网站| 黑人巨大精品欧美一区二区mp4| 国产高清视频在线播放一区| 老汉色av国产亚洲站长工具| 国产精品 国内视频| 免费在线观看黄色视频的| 亚洲第一电影网av| 超碰成人久久| 国内少妇人妻偷人精品xxx网站 | 女同久久另类99精品国产91| 午夜福利18| 在线天堂中文资源库| 国产精品久久视频播放| 热99re8久久精品国产| www.熟女人妻精品国产| 一级a爱视频在线免费观看| 2021天堂中文幕一二区在线观 | 黄色丝袜av网址大全| 一区二区三区国产精品乱码| 国产高清视频在线播放一区| 十八禁网站免费在线| 午夜福利在线观看吧| 可以免费在线观看a视频的电影网站| 日本三级黄在线观看| 欧美色欧美亚洲另类二区| 高清毛片免费观看视频网站| 99国产综合亚洲精品| 两性夫妻黄色片| 校园春色视频在线观看| 757午夜福利合集在线观看| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 国产黄色小视频在线观看| 女警被强在线播放| 看片在线看免费视频| 熟女电影av网| 免费在线观看完整版高清| 亚洲黑人精品在线| 成人三级做爰电影| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 亚洲av电影不卡..在线观看| 9191精品国产免费久久| 91成人精品电影| 亚洲无线在线观看| 一进一出抽搐动态| 韩国av一区二区三区四区| 精品电影一区二区在线| 国产一区二区激情短视频| 最近在线观看免费完整版| 精品一区二区三区av网在线观看| 精品国产超薄肉色丝袜足j| 一本一本综合久久| 欧美大码av| 国产精品99久久99久久久不卡| 成人三级黄色视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美激情综合另类| 欧美绝顶高潮抽搐喷水| 美女大奶头视频| 91av网站免费观看| 中出人妻视频一区二区| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 免费看十八禁软件| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 天堂动漫精品| x7x7x7水蜜桃| 欧美乱色亚洲激情| 男女午夜视频在线观看| 午夜视频精品福利| 最近最新中文字幕大全免费视频| 在线观看午夜福利视频| www国产在线视频色| 久久国产精品人妻蜜桃| 看黄色毛片网站| 韩国av一区二区三区四区| 欧美乱色亚洲激情| 这个男人来自地球电影免费观看| 亚洲精华国产精华精| 国产亚洲精品久久久久5区| 久久中文字幕一级| 岛国视频午夜一区免费看| 岛国视频午夜一区免费看| 亚洲精品久久成人aⅴ小说| 免费高清视频大片| 亚洲无线在线观看| 国产精品,欧美在线| av在线播放免费不卡| 日韩精品青青久久久久久| 中文亚洲av片在线观看爽| 免费一级毛片在线播放高清视频| 91大片在线观看| 国产高清videossex| 欧美国产日韩亚洲一区| 两人在一起打扑克的视频| aaaaa片日本免费| 国产又黄又爽又无遮挡在线| 色老头精品视频在线观看| 久久久久久人人人人人| 国内揄拍国产精品人妻在线 | 视频区欧美日本亚洲| 十八禁人妻一区二区| 夜夜夜夜夜久久久久| 久久热在线av| 精品不卡国产一区二区三区| 一a级毛片在线观看| 90打野战视频偷拍视频| 久久香蕉激情| 91老司机精品| 黑人巨大精品欧美一区二区mp4| 亚洲熟妇中文字幕五十中出| 精品久久久久久久毛片微露脸| 久久精品91无色码中文字幕| √禁漫天堂资源中文www| 亚洲一区二区三区不卡视频| 国产野战对白在线观看| 亚洲无线在线观看| 国产极品粉嫩免费观看在线| 黄色a级毛片大全视频| 亚洲精品一卡2卡三卡4卡5卡| 色在线成人网| 99国产综合亚洲精品| 亚洲av电影不卡..在线观看| 女性被躁到高潮视频| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| 免费搜索国产男女视频| 欧美丝袜亚洲另类 | 免费在线观看亚洲国产| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| 久久婷婷人人爽人人干人人爱| 国产伦人伦偷精品视频| e午夜精品久久久久久久| 国产精品野战在线观看| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 两个人视频免费观看高清| x7x7x7水蜜桃| 久久久久免费精品人妻一区二区 | 国产精品自产拍在线观看55亚洲| 日韩有码中文字幕| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 精品国产美女av久久久久小说| 国产精品av久久久久免费| 国产欧美日韩一区二区精品| 在线十欧美十亚洲十日本专区| 女人高潮潮喷娇喘18禁视频| 哪里可以看免费的av片| 久久精品成人免费网站| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 国产高清视频在线播放一区| 亚洲久久久国产精品| 69av精品久久久久久| 亚洲人成伊人成综合网2020| 波多野结衣巨乳人妻| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 国产av又大| www.熟女人妻精品国产| а√天堂www在线а√下载| 免费在线观看亚洲国产| 搡老熟女国产l中国老女人| 免费在线观看影片大全网站| 黄色视频不卡| 99久久国产精品久久久| 欧美绝顶高潮抽搐喷水| 欧美av亚洲av综合av国产av| 欧美黄色片欧美黄色片| 18禁裸乳无遮挡免费网站照片 | 亚洲专区字幕在线| 嫩草影视91久久| 天堂√8在线中文| 91国产中文字幕| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 满18在线观看网站| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 18禁美女被吸乳视频| 非洲黑人性xxxx精品又粗又长| 国语自产精品视频在线第100页| 国产不卡一卡二| 成人午夜高清在线视频 | 精品不卡国产一区二区三区| 一级a爱片免费观看的视频| 一区二区三区精品91| 国产在线精品亚洲第一网站| 亚洲国产欧美日韩在线播放| 国产精品日韩av在线免费观看| 日韩有码中文字幕| 人人妻人人看人人澡| 一区福利在线观看| 久久久久九九精品影院| 国产激情欧美一区二区| 日韩欧美一区二区三区在线观看| 香蕉国产在线看| 男女那种视频在线观看| 国产黄片美女视频| 精品国产一区二区三区四区第35| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 88av欧美| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 国产爱豆传媒在线观看 | 亚洲精品久久国产高清桃花| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 可以在线观看的亚洲视频| 热re99久久国产66热| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 亚洲一区高清亚洲精品| 亚洲国产精品合色在线| 一二三四社区在线视频社区8| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 婷婷六月久久综合丁香| 日韩高清综合在线| 国内精品久久久久精免费| 午夜两性在线视频| 91成年电影在线观看| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 午夜福利视频1000在线观看| 欧美久久黑人一区二区| 亚洲国产精品sss在线观看| 18禁美女被吸乳视频| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 国产精品,欧美在线| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 日本 av在线| 国产亚洲av嫩草精品影院| 757午夜福利合集在线观看| 久久99热这里只有精品18| 久久精品成人免费网站| 国产精品野战在线观看| 日韩 欧美 亚洲 中文字幕| 欧美黑人巨大hd| xxxwww97欧美| 国内少妇人妻偷人精品xxx网站 | 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 久久久久久久午夜电影| 久久草成人影院| 亚洲专区字幕在线| 日本 av在线| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 亚洲精华国产精华精| 欧美大码av| 999精品在线视频| АⅤ资源中文在线天堂| aaaaa片日本免费| 国产成人欧美| 91成年电影在线观看| 亚洲成国产人片在线观看| 亚洲色图av天堂| 男女床上黄色一级片免费看| 日韩一卡2卡3卡4卡2021年| 动漫黄色视频在线观看| 久久久水蜜桃国产精品网| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 亚洲成人久久性| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 在线免费观看的www视频| 国产亚洲欧美精品永久| 欧美日韩黄片免| 国产精品爽爽va在线观看网站 | 亚洲 欧美一区二区三区| 精品电影一区二区在线| 免费人成视频x8x8入口观看| 欧美最黄视频在线播放免费| 亚洲av美国av| 99久久国产精品久久久| 欧美不卡视频在线免费观看 | 国产一区二区在线av高清观看| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| 搡老岳熟女国产| e午夜精品久久久久久久| 午夜激情av网站| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 国产激情欧美一区二区| 他把我摸到了高潮在线观看| 免费在线观看成人毛片| 精品少妇一区二区三区视频日本电影| 90打野战视频偷拍视频| 精品国产国语对白av| 午夜福利欧美成人| tocl精华| av电影中文网址| 久久99热这里只有精品18| 欧美日韩亚洲国产一区二区在线观看| 欧美成人午夜精品| 免费看美女性在线毛片视频| 高清在线国产一区| 国产私拍福利视频在线观看| 三级毛片av免费| 美女国产高潮福利片在线看| 黄色视频不卡| 国产成人啪精品午夜网站| 国产亚洲av高清不卡| www.999成人在线观看| 国产精品永久免费网站| 97碰自拍视频| 国产成人影院久久av| 欧美日韩精品网址| 变态另类丝袜制服| 女人被狂操c到高潮| 麻豆成人av在线观看| 90打野战视频偷拍视频| 久久人妻av系列| 精品国产美女av久久久久小说| x7x7x7水蜜桃| 亚洲熟女毛片儿| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久男人| xxx96com| 国产精品一区二区三区四区久久 | 中文字幕高清在线视频| 国产精品日韩av在线免费观看| 成人亚洲精品av一区二区| 午夜福利高清视频| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲熟妇熟女久久| 国产久久久一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 中亚洲国语对白在线视频| 欧美最黄视频在线播放免费| 国产三级黄色录像| 精品久久久久久成人av| 国产爱豆传媒在线观看 | 两个人视频免费观看高清| 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 香蕉丝袜av| 亚洲一区二区三区不卡视频| 国产一卡二卡三卡精品| 国产成人欧美在线观看| www.自偷自拍.com| 男人的好看免费观看在线视频 | 脱女人内裤的视频| www日本黄色视频网| 一本久久中文字幕| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放 | 岛国在线观看网站| 深夜精品福利| 91麻豆av在线| 神马国产精品三级电影在线观看 | tocl精华| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 亚洲激情在线av| 久久精品人妻少妇| 国产精品日韩av在线免费观看| 十分钟在线观看高清视频www| 无限看片的www在线观看| 久久99热这里只有精品18| 高清毛片免费观看视频网站| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| www.999成人在线观看| 欧美色视频一区免费| 我的亚洲天堂| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 欧美精品亚洲一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 日本免费a在线| 桃色一区二区三区在线观看| 欧美乱色亚洲激情| 亚洲激情在线av| e午夜精品久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品国产区一区二| 免费人成视频x8x8入口观看| 国产亚洲精品一区二区www| 免费在线观看完整版高清| 99热这里只有精品一区 | 色综合站精品国产| 中文在线观看免费www的网站 | 波多野结衣av一区二区av| 香蕉国产在线看| 精品福利观看| 成人午夜高清在线视频 | 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 国产精品影院久久| 男女视频在线观看网站免费 | 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 国产v大片淫在线免费观看| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 99国产精品99久久久久| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 男男h啪啪无遮挡| 一区二区三区激情视频| 啦啦啦 在线观看视频| 级片在线观看| 妹子高潮喷水视频| 国产成人精品无人区| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| x7x7x7水蜜桃| 老司机靠b影院| 中亚洲国语对白在线视频| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区| 啦啦啦观看免费观看视频高清| 精品久久久久久久毛片微露脸| 可以在线观看毛片的网站| 国产成年人精品一区二区| 正在播放国产对白刺激| 日韩欧美三级三区| 欧美国产日韩亚洲一区| 国产不卡一卡二| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 精品高清国产在线一区| 亚洲欧美一区二区三区黑人| 亚洲专区字幕在线| 久久久久久大精品| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| 一进一出抽搐动态| 国产又爽黄色视频| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| 国产熟女午夜一区二区三区| 2021天堂中文幕一二区在线观 | 一区二区三区激情视频| 中国美女看黄片| 日韩精品中文字幕看吧| 国产精华一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 国产伦一二天堂av在线观看| 香蕉丝袜av| 欧美国产精品va在线观看不卡| 色综合亚洲欧美另类图片| 一级毛片女人18水好多| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 天堂√8在线中文| 最新美女视频免费是黄的| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 人人妻人人澡欧美一区二区| 久久久久久亚洲精品国产蜜桃av| 国产私拍福利视频在线观看| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 亚洲男人的天堂狠狠| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 18禁国产床啪视频网站| 精品久久久久久久久久久久久 | 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 岛国视频午夜一区免费看| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 人人妻人人看人人澡| 成人免费观看视频高清| 窝窝影院91人妻| 2021天堂中文幕一二区在线观 | 免费无遮挡裸体视频| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 久久中文字幕一级| 夜夜看夜夜爽夜夜摸| 国产精品久久视频播放| 久久精品亚洲精品国产色婷小说| 听说在线观看完整版免费高清| 亚洲av片天天在线观看| 亚洲成av片中文字幕在线观看| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 中文字幕久久专区| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美一区二区三区| 亚洲第一av免费看| 精品久久久久久成人av| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 色综合站精品国产| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| 香蕉丝袜av| 欧美乱色亚洲激情| а√天堂www在线а√下载| 高潮久久久久久久久久久不卡| 99国产综合亚洲精品| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 色播在线永久视频| 国产精品九九99| 国产精品98久久久久久宅男小说| 麻豆av在线久日| 一本综合久久免费| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| av天堂在线播放| 亚洲一区高清亚洲精品| 一a级毛片在线观看| 老司机福利观看| 国产精品日韩av在线免费观看| 亚洲精品av麻豆狂野| 在线天堂中文资源库| 中文字幕最新亚洲高清| av欧美777| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清 | 欧美黄色片欧美黄色片| 日韩大尺度精品在线看网址| 亚洲精品美女久久av网站| 精品久久久久久久人妻蜜臀av| 成人免费观看视频高清| 黑人操中国人逼视频| 亚洲国产欧洲综合997久久, | 亚洲精品一区av在线观看| 在线av久久热| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 亚洲成人久久性| 男女视频在线观看网站免费 | 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| 免费在线观看影片大全网站| 欧美国产日韩亚洲一区| 天堂动漫精品| 色播在线永久视频| 亚洲五月天丁香| 久久精品91蜜桃| 久久香蕉激情| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 美女大奶头视频| 黄色毛片三级朝国网站| 色精品久久人妻99蜜桃| 免费看a级黄色片| 国产成人av激情在线播放| 免费观看人在逋| 中文亚洲av片在线观看爽| 欧美成人免费av一区二区三区| 成人亚洲精品一区在线观看| 精品国产亚洲在线| 欧美中文综合在线视频| 亚洲第一青青草原| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站在线播放欧美日韩| 99久久综合精品五月天人人| a级毛片a级免费在线| 亚洲一区二区三区色噜噜|