• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無限滯后測度泛函微分方程的Φ-變差穩(wěn)定性

    2021-03-30 01:41:30馬學敏張懷德李寶麟
    工程數(shù)學學報 2021年1期
    關(guān)鍵詞:教學部西北師范大學信息科學

    馬學敏, 張懷德, 李寶麟

    (1- 甘肅中醫(yī)藥大學理科教學部,定西 743000; 2- 西北師范大學數(shù)學與信息科學學院,蘭州 730070)

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    1 Introduction

    Measure differential equations have been considered by many authors[1-5]. Measure functional differential equations represent a special class of measure differential equations[6,7]. There are many sources described the class of equations in recent years,such as[8-12]. Especially,in[4,12],the author stated very nice stability results of measure differential equations. But they discussed the quasi equi-asymptotical stability,exponential stability and variational stability. Here we discuss Φ-variational stability for measure functional differential equations with infinity delay by using the bounded Φ-variation function. The Lyapunov type theorem for the Φ-variational stability and asymptotically Φ-variational stability of the bounded Φ-variational solutions are established. These results are essential generalization of the results in [12].

    In this paper, we consider the stability of the bounded Φ-variation solution to measure functional differential equations of the form

    where Dx, Du denote the distributional derivative of function x and u. x is an unknown function with values in Rnand the symbol xtdenotes the function xt(τ) = x(t+τ)defined on (-∞,0], which is corresponding to the length of the delay. The function f,g : [t0,t0+σ]×P →Rn, u : [t0,t0+σ] →R is a nondecreasing and continuous function from the left, where

    P ={xt:x ∈O,t ∈[t0,t0+σ]}?H0, H0?X((-∞,0],Rn)

    Our candidate for the phase space of measure functional differential equations with infinity delay is a linear space H0?X((-∞,0],Rn) equipped with a norm denoted by‖·‖*. It is assumed that this normed linear space H0satisfies the following conditions:

    (H1): H0is complete;

    (H2): If x ∈H0and t <0, then xt∈H0;

    (H3): There exists a locally bounded function k1: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖x(t)‖≤k1(t)‖x‖*;

    (H4): There exists a function k2:(0,∞)→[1,∞) such that if σ >0 and x ∈H0is a function whose support is contained in[-σ,0], then‖x‖*≤k2(σ)supt∈[-σ,0]‖x(t)‖;

    (H5): There exists a locally bounded function k3: (-∞,0] →R+such that if x ∈H0and t ≤0, then ‖xt‖*≤k3(t)‖x‖*;

    (H6): If x ∈H0, then the function t →‖xt‖*is regulated on (-∞,0].

    This paper is organized as follows: in the next section, we show some basic definitions and lemmas. In the final section, we prove an important inequality which will be used for obtaining the main results of this paper firstly. After that, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinity delay.

    2 Main definitions and lemmas

    In this section, we will show some basic definitions and lemmas. First let’s start with the definition of Kurzweil integral and FΦ([t0,t0+σ]×P,h,ω).

    Definition 1[13]Let f : [a,b] →Rnbe a function. f is said to be Kurzweil integrable to A on [a,b] if for every ε >0, there exists a positive function δ(ξ) such that whenever a division D given by a=t0<t1<···<tk=b,and any{ξ1,ξ2,··· ,ξk},satisfies ξi-δ(ξi)<ti-1≤ξi≤ti<ξi+δ(ξi) for i=1,2,··· ,k. We have

    Let Φ(u)denote a continuous and increasing function defined for u ≥0 with Φ(0)=0, Φ(u)>0 for u >0, and satisfying the following conditions:

    (Δ2): There exist u0≥0 and a >0 such that Φ(2u)≤aΦ(u) for u0≥u >0;

    (c): Φ(u) is a convex function.

    We consider the function x:[a,b]→Rn, x(t) is of bounded Φ-variation over [a,b]if for any partition π :a=t0<t1<···<tm=b, we have

    VΦ(x;[a,b]) is called Φ-variation of x(t) over [a,b].

    Definition 2 A function g :[t0,t0+σ]×P →Rnbelongs to the class FΦ([t0,t0+σ]×P,h,ω) if:

    (i) There exists a positive function δ(τ) such that for every [m,n] satisfy τ ∈[m,n]?(τ -δ(τ),τ +δ(τ))?[t0,t0+σ] and xτ∈P, we have

    (ii) For every [m,n] satisfy τ ∈[m,n] ?(τ -δ(τ),τ +δ(τ)) ?[t0,t0+σ] and xτ,yτ∈P, we have

    where h : [t0,t0+ σ] →R is nondecreasing function and continuous from the left.ω : [0,+∞) →R is a continuous and increasing function with ω(0) = 0, ω(ar) ≤aω(r), ω(r)>0 for a >0, r >0.

    For obtaining main results, let us introduce some concepts of the trivial solution x(s)=0, s ∈[0,+∞) of the equation (1).

    Definition 3 The solution x ≡0 of(1)is called Φ-variationally stable if for every ε >0 there exists δ = δ(ε) >0, such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ, and

    then we have

    Φ(‖y(t)‖)<ε, t ∈[t0,t1].

    Definition 4 The solution x ≡0 of(1)is called Φ-variationally attracting if there exists δ0>0, and for every ε >0, there is a T =T(ε)>0 and γ =γ(ε)>0 such that if y : [t0,t1] →Rn, 0 ≤t0<t1<+∞is a function of bounded Φ-variation on [t0,t1],continuous from the left on (t0,t1] with Φ(‖y(t0)‖)<δ0, and

    then

    Φ(‖y(t)‖)<ε, ?t ∈[t0,t1]∩[t0+T(ε),+∞), t0≥0.

    Definition 5 The solution x ≡0 of (1) is called Φ-variationally-asymptotically stable, if it is Φ-variationally stable and Φ-variationally attracting.

    Lemma 1[14]If H0?X((-∞,0],Rn)is a space satisfying conditions(H1)-(H6),then the following statements are true for every a ∈R.

    1) Hais complete.

    2) If x ∈Haand t ≤a, then xt∈Ha.

    3) If t ≤a and x ∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖*.

    4) If σ >0 and x ∈Ha+σis a function whose support is contained in [a,a+σ],then ‖x‖*≤k2(σ)supt∈[a,a+σ]‖x(t)‖.

    5) If x ∈Ha+σand t ≤a+σ, then ‖xt‖*≤k3(t-a-σ)‖x‖*.

    6) If x ∈Ha+σ, then the function t →‖xt‖*is regulated on (-∞,a+σ].

    Lemma 2[15]Assume that -∞<a <b <+∞and that f,g : [a,b] →R are functions which are continuous from the left in [a,b].

    If for every σ ∈[a,b], there exists δ(σ) >0 such that for every η ∈(0,δ(σ)) the inequality

    f(σ+η)-f(σ)≤g(σ+η)-g(σ)

    holds, then

    f(s)-f(a)≤g(s)-g(a), ?s ∈[a,b].

    3 Φ-variational stability

    In this section, we prove an important inequality which will be used for obtaining the main results of this paper firstly.

    Theorem 1 Suppose that V :[0,+∞)×Rn→R, is such that for every x ∈Rn,the function V(·,x) : [0,+∞) →R is continuous from the left in (0,+∞). Assume that:

    (i)

    for x,y ∈Rn, t ∈[0,+∞) with a constant L >0;

    (ii) Further assume that there is a real function H : Rn→R such that for every solution x : (α,β) →Rnof the measure functional differential equation (1) on(α,β)?[0,+∞), we have

    If y :[t0,t1]→Rn, 0 ≤t0<t1<+∞is continuous from the left on (t0,t1] and of bounded Φ-variation on (t0,t1], then the inequality

    Proof Let y : [t0,t1] →Rnbe a function bounded Φ-variation and continuous from the left on(t0,t1]. It is clear that the function V(t,y(t)):[t0,t1]→R is continuous from the left on (t0,t1].

    Let σ ∈[t0,t1] be an arbitrary point, assume that x : [σ,σ +η1(σ)] →Rnis a solution of bounded Φ-variation on [σ,σ +η1(σ)], η1>0 with the initial condition x(σ)=y(σ) and xσ=yσ. The existence of such a solution is guaranteed in the paper[14]. Furthermore, the measure functional differential equations with delay have the form

    Dx=f(s,xs)+g(s,xs)du(s)

    is equivalent to the following form

    by [14]. Then

    exist, by (2), we have

    for every η ∈[0,η1(σ)].

    By this inequality and by (3) we obtain

    where ε >0 is arbitrary and η ∈(0,η2(σ)) with η2(σ) ≤η1(σ), η2(σ) is sufficiently small.

    Define

    The function Ψ : [t0,t1] →Rnis continuous from the left on (t0,t1] of bounded Φvariation on [t0,t1], and by Theorem 1.02, Theorem 1.11 and Theorem 1.17 in the paper[16], the last inequality can be used to derive

    Let us consider the last term in (5). Since f,g ∈FΦ([t0,t0+ σ] × P,h,ω) for every ε >0, there exists a positive function δ : [σ,σ + η] →(0,+∞), such that whenever a δ-division D of [σ,σ+η] given by D = {(τj;[αj-1,αj]),j = 1,2,··· ,m},let M(t) = VΦ(h;[σ,t]), σ ≤t ≤σ+η, by the definition of Φ(u) and h, then M(t) is nonnegative, nondecreasing and continuous from the left, we have

    for ρ ∈[σ,σ+η2(σ)], we have

    so

    Consequently

    For every ε >0, we define

    for ρ ∈(σ,σ+η3(σ)) and also

    Let us denote

    Since Ψ is of bounded Φ-variation on [t0,t1], the set P(β) is definite and we denote by n(β) the number of elements of P(β). If σ ∈[t0,t1]P(β) and ρ ∈(σ,σ+η3(σ)), then by (9), we have

    Because k3is a locally bounded function, there exists A >0, such that k3(t-σ-η)·k2(η)≤A. Further, we have

    So when η ∈(0,η3(σ)), by (6), we have

    If σ ∈[t0,t1]∩P(β),then there exists η4(σ)∈(0,η3(σ))such that for η ∈(0,η4(σ)),we have

    and (σ,σ+η4(σ))∩P(β)=?. Hence (6) and (9) yield

    Define now

    If σ ∈[t0,t1]P(β), then set δ(σ) = η3(σ) >0; and if σ ∈[t0,t1]∩P(β), then set δ(σ) = η4(σ) >0; for σ ∈[t0,t1], η ∈(0,δ(σ)), by (10),(11) and by the definition of Mα, we obtain the inequality

    Therefore by Theorem 1.03, Theorem 1.17 in [3], we have

    So when σ ∈[t0,t1], η ∈(0,δ(σ)), by (5), we have

    where

    G(t)=N(VΦ(Ψ;[t0,t]))+R(t-t0)+ε(t-t0)+NVΦ(Mα;[t0,t]),

    G is continuous from the left on [t0,t1]. By Lemma 2 and (13),(14), we obtain

    Since ε >0 can be arbitrarily small, we obtain from this inequality the result given in(4).

    In the following, we obtain the theorems of Φ-variational stability and asymptotically Φ-variational stability for measure functional differential equations with infinite delay.

    (i) There exists a continuous increasing real function v :[0,+∞)→R such that v(ρ)=0 ?ρ=0;

    (ii)

    L >0 being a constant

    If the function V(t,x(t))is non increasing along every solution of the equation(1),then the trivial solution of (1) is Φ-variationally stable.

    Proof Since we assume that the function V(t,x(t)) is non increasing whenever x(t):[α,β]→Rnis a solution of (1), we have

    Let us check that under these assumptions the properties required in Definition 3 are satisfied.

    Let ε >0 be given and let y : [t0,t1] →Rn, 0 ≤t0<t1<+∞be of bounded Φ-variation on [t0,t1] and continuous from the left in (t0,t1]. Since the function V satisfies the assumptions of Theorem 1 with H ≡0 in the relation (3). We obtain by(4),(16),(17) the inequality

    which holds for every r ∈[t0,t1].

    Let us define α(ε)=infr≤εv(r), then α(ε)>0, infε→0+α(ε)=0. Further, choose δ(ε) >0 such that 2Nδ(ε) <α(ε). If in this situation the function y is such that Φ(‖y(t0)‖)<δ(ε), and

    then by (18), we obtain the inequality

    provided r ∈[t0,t1].

    which contradicts (19).

    Hence Φ(‖y(t)‖) <ε for all t ∈(t0,t1], and by Definition 3 the solution x ≡0 is Φ-variationally stable.

    holds for every t ∈[t0,t1], where H :Rn→R is continuous, H(0)=0, H(x)>0(x/=0), then the solution x ≡0 of (1) is Φ-variationally-asymptotically stable.

    Proof From (20) it is clear that the function V(t,x(t)) is non increasing along every solution x(t) of (1) and therefore by Theorem 2 the trivial solution x ≡0 of (1)is Φ-variationally stable.

    By Definition 5 it remains to show that the solution x ≡0 of (1) is Φ-variationally attracting in the sense of Definition 4.

    From the Φ-variational stability of the solution x ≡0 of(1)there is a δ0∈(0,Φ(a)),such that if y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Let ε >0 be arbitrary. From the Φ-variational stability of the trivial solution we obtain that there is a δ(ε) >0, such that for every y : [t0,t1] →Rnis of bounded Φ-variation on [t0,t1], where 0 ≤t0<t1<+∞, y is continuous from the left on (t0,t1]and such that Φ(‖y(t0)‖)<δ(ε), and

    we have Φ(‖y(t)‖)<ε, for t ∈[t0,t1].

    Let

    where

    R=sup{-H(x):γ(ε)≤Φ(‖x‖)<ε}=-inf{H(x):γ(ε)≤Φ(‖x‖)<ε}<0.

    Assume that y :[t0,t1]→Rnis of bounded Φ-variation on [t0,t1], continuous from the left on (t0,t1] and such that Φ(‖y(t0)‖)<δ0, and

    Assume that T(ε) <t1-t0, i.e. t0+T(ε) <t1. We show that there exists a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖)<γ(ε). Assume the contrary, i.e. Φ(‖y(s)‖)≥γ(ε),for every s ∈[t0,t0+T(ε)]. Theorem 1 yields

    Hence

    V(t0+T(ε),y(t0+T(ε)))≤V(t0,y(t0))-Nδ0≤LΦ(‖y(t0)‖)-Nδ0≤NΦ(‖y(t0)‖)-Nδ0<(N -N)δ0=0,

    and this contradicts the inequality

    V(t0+T(ε),y(t0+T(ε)))≥v(Φ(‖y(t0+T(ε))‖))≥v(γ(ε))>0.

    Hence necessarily there is a t*∈[t0,t0+T(ε)] such that Φ(‖y(t*)‖) <γ(ε). And by(21), we have Φ(‖y(t)‖) <ε, for t ∈[t*,t1]. Consequently, also Φ(‖y(t)‖) <ε, for t >t0+T(ε), and therefore the trivial solution x ≡0 is a variationally attracting solution of (1).

    Remark 1 If the function Φ(u) defined in section 2 satisfies

    then by Theorem 1.15 of [16], BVΦ[a,b]=BV[a,b], where BV[a,b] represents the class of all functions of bounded variation in usual sense on[a,b]. Therefore,in this case,the results of Theorem 1, Theorem 2 and Theorem 3 are equivalent to the results in [12].Notice that if

    by Theorem 1.15 of [16], we have

    BV[a,b]?BVΦ[a,b].

    For example Φ(u)=up(1 <p <∞), we have

    Therefore, Theorem 2 and Theorem 3 are essential generalization of the results in [12].

    猜你喜歡
    教學部西北師范大學信息科學
    西北師范大學作品
    大眾文藝(2023年9期)2023-05-17 23:55:52
    西北師范大學美術(shù)學院作品選登
    山西大同大學量子信息科學研究所簡介
    西北師范大學美術(shù)學院作品選登
    西北師范大學美術(shù)學院作品選登
    三元重要不等式的推廣及應用
    公共教學部
    Factors Affecting Memory Efficiency in EFL
    On the Importance of English Vocabulary
    On Memory Theory in English Vocabulary Learning
    另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| 超碰97精品在线观看| 久久精品熟女亚洲av麻豆精品| av有码第一页| 国产欧美日韩综合在线一区二区| 久久综合国产亚洲精品| 黄色视频在线播放观看不卡| 考比视频在线观看| 男女边摸边吃奶| 成年女人毛片免费观看观看9 | 国产精品免费大片| 欧美日韩av久久| 97在线人人人人妻| 国产精品av久久久久免费| 美女主播在线视频| 色婷婷av一区二区三区视频| 王馨瑶露胸无遮挡在线观看| 丁香六月天网| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 韩国精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产 一区精品| av天堂久久9| 日韩 亚洲 欧美在线| 日本欧美视频一区| 亚洲一码二码三码区别大吗| 多毛熟女@视频| 久久久久网色| 人妻 亚洲 视频| 你懂的网址亚洲精品在线观看| 少妇人妻 视频| 亚洲色图综合在线观看| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 亚洲一卡2卡3卡4卡5卡精品中文| xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 欧美激情高清一区二区三区 | 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 欧美另类一区| 亚洲精品中文字幕在线视频| 久久鲁丝午夜福利片| 欧美精品一区二区免费开放| 日日爽夜夜爽网站| 国产日韩欧美亚洲二区| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 男男h啪啪无遮挡| 少妇 在线观看| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠久久av| 永久免费av网站大全| 麻豆av在线久日| 欧美日韩一级在线毛片| 2018国产大陆天天弄谢| 国产一区亚洲一区在线观看| 欧美另类一区| 久久精品国产综合久久久| 欧美日韩精品网址| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 男女床上黄色一级片免费看| 人体艺术视频欧美日本| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品电影小说| 亚洲精品中文字幕在线视频| 欧美黑人精品巨大| 国产黄频视频在线观看| 国产免费视频播放在线视频| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 免费不卡黄色视频| 超碰成人久久| 人妻 亚洲 视频| 18在线观看网站| 欧美久久黑人一区二区| 亚洲av综合色区一区| 国产一级毛片在线| 亚洲精品乱久久久久久| 成人国产av品久久久| 国产人伦9x9x在线观看| 丰满少妇做爰视频| 国产乱来视频区| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| 国产成人精品久久久久久| 午夜老司机福利片| 青春草亚洲视频在线观看| 超碰成人久久| 韩国精品一区二区三区| a级片在线免费高清观看视频| 国产av码专区亚洲av| 亚洲国产欧美一区二区综合| 伦理电影大哥的女人| 国产成人午夜福利电影在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品一二三区在线看| 我要看黄色一级片免费的| xxxhd国产人妻xxx| 国产视频首页在线观看| 国产精品三级大全| 丁香六月欧美| 无限看片的www在线观看| 成年人午夜在线观看视频| 婷婷色av中文字幕| 青春草视频在线免费观看| 国产精品.久久久| 久久99精品国语久久久| 啦啦啦在线观看免费高清www| 黄色毛片三级朝国网站| 韩国av在线不卡| av在线老鸭窝| 欧美日本中文国产一区发布| 久久久久久久久久久久大奶| 日韩制服骚丝袜av| 精品一区二区三区av网在线观看 | 成人亚洲精品一区在线观看| 日韩av免费高清视频| 一二三四在线观看免费中文在| 人妻一区二区av| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 日韩大码丰满熟妇| 午夜91福利影院| 天天影视国产精品| 美女大奶头黄色视频| 久久久久人妻精品一区果冻| 中文字幕制服av| 青青草视频在线视频观看| 亚洲精品中文字幕在线视频| 免费观看人在逋| 国产精品欧美亚洲77777| 韩国高清视频一区二区三区| 叶爱在线成人免费视频播放| 国产高清国产精品国产三级| 99久久人妻综合| 国产免费福利视频在线观看| 欧美日韩视频高清一区二区三区二| 日韩制服丝袜自拍偷拍| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 两性夫妻黄色片| 一区二区三区四区激情视频| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 久久久久久久久免费视频了| 日本91视频免费播放| 精品福利永久在线观看| 日日摸夜夜添夜夜爱| 无遮挡黄片免费观看| 麻豆av在线久日| 亚洲精品av麻豆狂野| 亚洲成人免费av在线播放| 麻豆av在线久日| 亚洲精品av麻豆狂野| 国产精品久久久av美女十八| 丝袜人妻中文字幕| 欧美日韩国产mv在线观看视频| 免费少妇av软件| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 女人高潮潮喷娇喘18禁视频| 色精品久久人妻99蜜桃| av国产久精品久网站免费入址| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 我的亚洲天堂| 啦啦啦啦在线视频资源| 亚洲精品久久成人aⅴ小说| 性高湖久久久久久久久免费观看| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 一边摸一边抽搐一进一出视频| 欧美av亚洲av综合av国产av | 亚洲欧洲精品一区二区精品久久久 | 自拍欧美九色日韩亚洲蝌蚪91| 丰满少妇做爰视频| 亚洲伊人色综图| 久久女婷五月综合色啪小说| 国产国语露脸激情在线看| 日日爽夜夜爽网站| 18禁动态无遮挡网站| 国产精品.久久久| 精品久久久久久电影网| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 免费在线观看完整版高清| 国产伦人伦偷精品视频| 精品国产乱码久久久久久小说| 久久久久人妻精品一区果冻| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 亚洲七黄色美女视频| 国产男人的电影天堂91| 国产精品久久久久成人av| 国产亚洲精品第一综合不卡| 欧美最新免费一区二区三区| 精品国产一区二区久久| 久久韩国三级中文字幕| 午夜精品国产一区二区电影| 91精品三级在线观看| 国产一区二区三区av在线| 青青草视频在线视频观看| 男女午夜视频在线观看| 中文欧美无线码| 免费在线观看视频国产中文字幕亚洲 | 老司机影院成人| 在线精品无人区一区二区三| 国产亚洲午夜精品一区二区久久| 涩涩av久久男人的天堂| 国产 一区精品| 五月天丁香电影| 不卡视频在线观看欧美| 欧美另类一区| 精品一区二区三卡| 一区二区av电影网| 如何舔出高潮| 国产精品 国内视频| 亚洲成人手机| 国产成人一区二区在线| 各种免费的搞黄视频| 激情视频va一区二区三区| 欧美激情高清一区二区三区 | 欧美最新免费一区二区三区| 色视频在线一区二区三区| 天天影视国产精品| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 丝袜美腿诱惑在线| 久久ye,这里只有精品| 亚洲av成人不卡在线观看播放网 | 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| 青春草视频在线免费观看| 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 欧美日韩亚洲综合一区二区三区_| 青春草亚洲视频在线观看| 丝袜喷水一区| 99精品久久久久人妻精品| a 毛片基地| 日本黄色日本黄色录像| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 国产精品秋霞免费鲁丝片| 女性被躁到高潮视频| 五月开心婷婷网| 男女国产视频网站| 青春草视频在线免费观看| 精品一区二区三区四区五区乱码 | 国产精品久久久久久久久免| 久久天躁狠狠躁夜夜2o2o | 晚上一个人看的免费电影| 精品福利永久在线观看| 国产精品嫩草影院av在线观看| 欧美激情极品国产一区二区三区| 国产视频首页在线观看| 午夜免费观看性视频| 国产麻豆69| 老司机在亚洲福利影院| 日本黄色日本黄色录像| 中国三级夫妇交换| 一级黄片播放器| 精品人妻熟女毛片av久久网站| 男女下面插进去视频免费观看| 一级毛片电影观看| 国产精品香港三级国产av潘金莲 | 中文字幕高清在线视频| 欧美激情 高清一区二区三区| 大片电影免费在线观看免费| 日韩制服丝袜自拍偷拍| 亚洲国产欧美一区二区综合| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| av福利片在线| 悠悠久久av| 一级,二级,三级黄色视频| 亚洲婷婷狠狠爱综合网| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| 久久精品熟女亚洲av麻豆精品| av片东京热男人的天堂| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 大片免费播放器 马上看| 中文字幕人妻丝袜一区二区 | 啦啦啦 在线观看视频| 男女高潮啪啪啪动态图| 考比视频在线观看| 欧美另类一区| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 日韩制服丝袜自拍偷拍| 99热国产这里只有精品6| 在线观看www视频免费| av网站免费在线观看视频| 又黄又粗又硬又大视频| 国产精品av久久久久免费| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品999| 多毛熟女@视频| 国产xxxxx性猛交| 国产麻豆69| 欧美日韩亚洲高清精品| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 无限看片的www在线观看| 国产精品一区二区在线观看99| 久久青草综合色| 尾随美女入室| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 免费久久久久久久精品成人欧美视频| 免费黄频网站在线观看国产| 色吧在线观看| 国产精品久久久av美女十八| av又黄又爽大尺度在线免费看| 亚洲av成人不卡在线观看播放网 | 91国产中文字幕| 国产精品99久久99久久久不卡 | 亚洲精品国产区一区二| 国产精品一国产av| 18禁动态无遮挡网站| 日本av免费视频播放| 亚洲三区欧美一区| 91aial.com中文字幕在线观看| 99热全是精品| 日韩一本色道免费dvd| 午夜福利视频精品| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 亚洲第一区二区三区不卡| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 午夜福利,免费看| 精品久久蜜臀av无| 熟妇人妻不卡中文字幕| 午夜日本视频在线| 午夜91福利影院| 中文字幕人妻丝袜一区二区 | 性色av一级| 人成视频在线观看免费观看| 卡戴珊不雅视频在线播放| 一区二区日韩欧美中文字幕| 日本wwww免费看| 妹子高潮喷水视频| 日韩av在线免费看完整版不卡| 日韩欧美精品免费久久| 久久精品国产亚洲av涩爱| 国产精品三级大全| 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| 亚洲,欧美,日韩| 午夜激情久久久久久久| 国产欧美日韩一区二区三区在线| 成人毛片60女人毛片免费| 国产99久久九九免费精品| 赤兔流量卡办理| 狂野欧美激情性xxxx| 中文字幕亚洲精品专区| 美女大奶头黄色视频| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 美女主播在线视频| 国产老妇伦熟女老妇高清| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 欧美 日韩 精品 国产| 亚洲精品aⅴ在线观看| 毛片一级片免费看久久久久| 亚洲精品一二三| 桃花免费在线播放| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 亚洲,一卡二卡三卡| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品一二三区在线看| 黄频高清免费视频| 亚洲,一卡二卡三卡| 蜜桃在线观看..| 最新在线观看一区二区三区 | 在线观看一区二区三区激情| 国产成人啪精品午夜网站| 亚洲精品久久成人aⅴ小说| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 亚洲国产日韩一区二区| 热re99久久国产66热| 国产av精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 国产乱人偷精品视频| 国产一区二区在线观看av| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 国产又爽黄色视频| 男女国产视频网站| 亚洲男人天堂网一区| 精品一区二区三区av网在线观看 | 久久99精品国语久久久| 少妇人妻精品综合一区二区| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 母亲3免费完整高清在线观看| 秋霞在线观看毛片| 男人操女人黄网站| 日日啪夜夜爽| 国产男人的电影天堂91| 国产不卡av网站在线观看| 欧美久久黑人一区二区| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 国产免费福利视频在线观看| 少妇 在线观看| 国产一区二区三区av在线| 欧美少妇被猛烈插入视频| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 国产一区二区激情短视频 | 亚洲精品av麻豆狂野| 在线观看免费视频网站a站| 免费av中文字幕在线| 国产毛片在线视频| av卡一久久| 叶爱在线成人免费视频播放| 国产 精品1| 青草久久国产| 久久久久久人妻| 最近最新中文字幕免费大全7| 男女无遮挡免费网站观看| 搡老乐熟女国产| 99国产精品免费福利视频| 男男h啪啪无遮挡| 在线天堂最新版资源| 欧美日韩精品网址| 国产一区二区三区av在线| www.自偷自拍.com| 国产精品亚洲av一区麻豆 | 啦啦啦中文免费视频观看日本| 午夜福利在线免费观看网站| 免费日韩欧美在线观看| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 最近最新中文字幕免费大全7| h视频一区二区三区| 国产精品 欧美亚洲| 在线精品无人区一区二区三| 欧美乱码精品一区二区三区| 老鸭窝网址在线观看| 亚洲成人一二三区av| 久久久精品国产亚洲av高清涩受| 午夜影院在线不卡| 久久ye,这里只有精品| 看免费成人av毛片| 2021少妇久久久久久久久久久| 伊人亚洲综合成人网| 一区二区三区激情视频| 午夜老司机福利片| 久久婷婷青草| av在线播放精品| 免费观看av网站的网址| 一级黄片播放器| 免费在线观看黄色视频的| 免费黄频网站在线观看国产| 成人影院久久| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说| 两性夫妻黄色片| 国产乱人偷精品视频| 国产激情久久老熟女| 99国产精品免费福利视频| 欧美乱码精品一区二区三区| 日韩av在线免费看完整版不卡| 国产精品蜜桃在线观看| 亚洲成国产人片在线观看| 免费看不卡的av| 啦啦啦视频在线资源免费观看| 男女之事视频高清在线观看 | 韩国精品一区二区三区| 午夜久久久在线观看| 国产在线视频一区二区| 不卡av一区二区三区| 又大又爽又粗| av线在线观看网站| 丰满乱子伦码专区| 国产免费现黄频在线看| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲| 亚洲av电影在线观看一区二区三区| 国产在线免费精品| 久久久久精品性色| 精品国产乱码久久久久久小说| 搡老岳熟女国产| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 97人妻天天添夜夜摸| 最黄视频免费看| 日韩 欧美 亚洲 中文字幕| 国产成人av激情在线播放| 一级毛片黄色毛片免费观看视频| 一级黄片播放器| 精品一区二区三区四区五区乱码 | 五月开心婷婷网| av女优亚洲男人天堂| 观看av在线不卡| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 亚洲第一区二区三区不卡| 性色av一级| 一本色道久久久久久精品综合| 尾随美女入室| 国产精品久久久久成人av| 中文欧美无线码| 波多野结衣av一区二区av| 国产一区二区 视频在线| 国产精品av久久久久免费| 国产精品国产三级国产专区5o| 午夜老司机福利片| 国产精品国产av在线观看| 国产免费一区二区三区四区乱码| 又大又爽又粗| videos熟女内射| 成人18禁高潮啪啪吃奶动态图| 人体艺术视频欧美日本| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 国产成人一区二区在线| av不卡在线播放| 一区在线观看完整版| 美女午夜性视频免费| 亚洲 欧美一区二区三区| 亚洲七黄色美女视频| 飞空精品影院首页| av网站在线播放免费| 黄色一级大片看看| a 毛片基地| 精品国产一区二区久久| 亚洲精华国产精华液的使用体验| netflix在线观看网站| 又大又爽又粗| 无遮挡黄片免费观看| 人人妻人人添人人爽欧美一区卜| 满18在线观看网站| 女的被弄到高潮叫床怎么办| 亚洲成国产人片在线观看| 99国产精品免费福利视频| 亚洲精品日本国产第一区| 日本一区二区免费在线视频| 日韩一区二区视频免费看| 91精品国产国语对白视频| 1024视频免费在线观看| 国产亚洲av片在线观看秒播厂| 成人18禁高潮啪啪吃奶动态图| 免费观看av网站的网址| 久久久久久久大尺度免费视频| 国产亚洲午夜精品一区二区久久| 国产高清不卡午夜福利| 久久精品久久久久久久性| 国产男人的电影天堂91| 伦理电影大哥的女人| 亚洲精品成人av观看孕妇| 亚洲av男天堂| 高清视频免费观看一区二区| a级毛片黄视频| 精品国产一区二区久久| 黄片小视频在线播放| 不卡av一区二区三区| 操出白浆在线播放| 免费看不卡的av| 亚洲四区av| 视频区图区小说| 亚洲第一青青草原| 五月天丁香电影| 久久这里只有精品19| 欧美黄色片欧美黄色片| a级毛片黄视频| 精品一区二区三区四区五区乱码 | 丝袜美腿诱惑在线| 飞空精品影院首页| 丰满乱子伦码专区| 免费女性裸体啪啪无遮挡网站| 在线亚洲精品国产二区图片欧美| 久久久久精品国产欧美久久久 | 免费少妇av软件| 男男h啪啪无遮挡| 青草久久国产| 在线观看免费视频网站a站| 午夜91福利影院| 免费观看a级毛片全部| 欧美变态另类bdsm刘玥| 又黄又粗又硬又大视频| 日本一区二区免费在线视频| 欧美老熟妇乱子伦牲交| 国产精品嫩草影院av在线观看| 一区二区av电影网| 欧美人与善性xxx| 九色亚洲精品在线播放| 亚洲av男天堂| 19禁男女啪啪无遮挡网站| 国产乱来视频区| 一边亲一边摸免费视频|