• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interactive Multi-label Image Segmentation With Multi-layer Tumors Automata

    2017-03-12 03:40:15SixianChanXiaolongZhouZhuoZhangShengyongChen
    自動化學報 2017年10期
    關(guān)鍵詞:安樂死蘇丹雄性

    Sixian Chan Xiaolong Zhou Zhuo Zhang Shengyong Chen

    1 Introduction

    Image segmentation task is to divide an image into regions of interest that are suitable for machine or human operations[1],[2]like image retrieval and recognition.Recently,the accuracies of completely automatic segmentation techniques[3],[4]have been enhanced substantially.Nevertheless,the achievements of current state-of-the-art algorithms still cannot satisfy the accuracy requirement of professional image editors for choosing target boundaries.Many interactive algorithms have been proposed to improve the accuracy recently.These algorithms are based on the graph-based theory,including interactive grabcut[5],graph-cut[6]?[8],random walks[9],regioncut[10]and growcut[11].

    Graph-cut[6]is an assembled optimization strategy to address the issue of the object segmentation in an image.An image is treated as a graph and each pixel is a graph node.The globally optimal pixel labelling for two-label case(i.e.,object and background)can be efficiently computed by using max- fl ow/min-cut algorithms.Grabcut[5]is an improvement of graph-cut by merging an iterative segmentation mechanism.The fi rst proximity of the ultimate foreground/background labelling can be found when the user draws a rectangular box surrounding the target of interest.Random walker(RW)[9]acquires a few pixels as user-determined seed labels,but it gives an analytical decision of the probability which a random walker starts at each unlabelled pixel will attain one of the pre-labelled pixels fi rstly.Object segmentation is gained by distributing each pixel to the label for which the greatest probability is computed.Some special images with poor structure,color,and appearance features also can employ the RW for editing.But it is not easy to control and accomplish this kind of energy minimizing approach.Regioncut[10]associates the traits of the robustness of region information and the precision of gradient oriented segmentation approaches.Furthermore,the distributed seeds are initialized by region probabilities.This method can reach the state of convergence without user initialized seeds.Under the framework of the cellular automata(CA)[12],an interactive segmentation method,named growcut[11],is proposed.There are two major properties of this algorithm.One is the possibility to deal with the multi-label segmentations.The other is that this approach can be extended to handle the high-dimensional images.

    In computer vision,interactive object segmentation plays a signi fi cant role in photo analysis and image editing.Under interactions in terms of scribbles[1],[2]or bounding boxes[13]around the object of interest for seeds,users can directly utilize the segmentation algorithm towards a desired output.Recently,researchers have presented many powerful approaches for interactive image segmentation.In this paper,we focus on the literature of interactive segmentation performed with super-pixel.

    In regioncut[10],a Gaussian mixture model(GMM)and a precision of gradient oriented segmentation method are learned by combining the robustness of region information.The GMM is applied in pre-initializing the region probabilities.In this way,it is similar to distributed seeds.The fi nal segmentation output is still gained from building a pixel-based graph.Additionally,the ineffectiveness of only using fi nal segmentation mask is shown in the results.In[14],the method fuses the framework mentioned in[15]to obtain super-pixels on each frame independently.After that,the optical forward and backward information are utilized to build a spatio-temporal super-pixel graph.The graphs based on occlusion boundaries are focused on and the major contribution is to use the information ofan occlusion boundarydetectortomodifythem.Subsequently,the spatio-temporal super-pixel graph is partitioned into object and background by graph-cut.In[16],super-pixels serve as interactive buttons which can be tapped by the user quickly to add or remove an initial low quality segmentation mask,with the purpose of correcting the segmentation errors and generating promising results.Reference[17]develops an innovative segmentation framework based on bipartite graph partitioning,in which the multi-layer super-pixels can be fused in a principled manner.Computationally,it is tailored to unbalance bipartite graph structure and lead to a highly efficient,linear-time spectral algorithm.As far as our information goes,nevertheless,almost all the existing interactive approaches initialize the object and background via pixels.

    In this paper,a new interactive segmentation algorithm is developed.It is based on the super-pixel level and the simple linear iterative clustering(SLIC)[18]is employed as the super-pixels generators.Each generated super-pixel is simply labelled as object or background.The segmentation is then updated by the graph-cut.To obtain the best result,both level set[19]and multi-layer TA approaches are applied.The corresponding segmentation results of our algorithm are illustrated in Fig.1.The major contributions of our work are summarized as following.

    Fig.1. The fi nal results of our proposed interactive segmentation system.(a),(b)and(c)are single object segmentations and(d)is the multi-object segmentation.

    1)A novel mechanism called tumors automata(TA)is proposed to improve the traditional CA method by using super-pixel to replace pixel.

    2)For better incorporating the super-pixel to deal with TA mechanism,an improved growcut approach is developed.

    3)A level set method[19]is applied for smoothing the object boundary,which uses the output from the previous process for initialization.

    4)To make use of multiple fi nal outputs,a multi-layer tumors automata(MTA)is proposed.By integrating different segmentation results,the MTA brings a boost in performance and beats many leading methods in the state-ofthe-art.

    The process of the proposed algorithm and the corresponding outputs are illustrated in Fig.2.The original image(Fig.2(a)is fi rst over-segmented(Fig.2(b))and then initialized to select seeds(Fig.2(c)). Black,white and gray colors represent the background labelled bacteria,object labelled bacteria and the neutral territory,respectively.Fig.2(d),Fig.2(e)and Fig.2(f)demonstrate the results of object binary,object region and object boundary by our algorithm,respectively.

    We show each module of our algorithm in Fig.3.User labelling is needed fi rstly and neighbors information is computed by super-pixel-based calculation.Then,we apply the modi fi ed growcut approach with TA in segmenting the whole image.The proposed method also absorbs the level set method to smooth the boundary.

    2 Proposed Algorithm

    2.1 Initial Segmentation

    As demonstrated in Fig.2,we need to over-segment the image initially.The spatial proximity weight and the number of super-pixels must be provided.The image is then divided into super-pixelsS=s1···skat the beginning.Those super-pixels are the source of TA,which will be introduced in next section.

    2.2 Tumors Automata

    The CA has been widely used.For example,it has been absorbed in computer vision tasks including image processing[20]and saliency detection[21].Being spatially and temporally discrete,CA operates on a lattice of sitesp∈P?Zn(pixels or voxels in image processing).Commonly used neighborhood systemsNare the von Neumann[12]and Moore neighborhoods:

    1)Von Neumann Neighborhood:

    In order to better obtain intrinsic structural information and compute more efficiently,the TA is put forward.The TA performs in a similar way as CA.The only difference is that the TA is operated with super-pixel rather than pixel.Therefore,an over-segmentation approach for pre-processing an image and generating super-pixels is necessary.

    Numpsuper-pixels are obtained via SLIC[18].Each of them is described with mean color features and coordinates of pixels.Then,the proposed TA algorithm performs directly on the super-pixels.Each super-pixel in our algorithm is analogous to a tumor.A(bi-directional,deterministic)TA is a tripletA=(S,N,δ),whereSis a non-empty state set,Nis the super-pixel neighborhood system,andδ:SN→Sis the local transition function.Int+1 time step,this function makes the rule for calculating the tumor’s state when given the states of the neighborhood tumors at previous time stept.The theory of eight neighborhoods is still employed in our super-pixel neighborhood strategyN(as shown in Fig.4).We look for each tumor’s neighbors including tumors surrounding it as well as sharing conjunct boundaries with their adjacent tumors(as shown in Algorithm 1).

    Fig.2. The process of our interactive segmentation algorithm.

    Fig.3.The framework of proposed algorithm.

    Fig.4. The super-pixel neighborhood in our algorithm.

    Algorithm 1. Search super-pixel neighborhoods algorithm

    The tumor’s stateSpin our case is actually a triplet(lp,θp,Cp).Thelpmeans the current tumor’s label.The strength of the current tumor isθp,andCpstands for the tumor feature vector,de fi ned by the image.Without loss generality we will assignθp∈[0,1].Any input image(k×m)is segmented intoNumpsuper-pixels.Then,a seg-mented image can be treated as a special con fi guration condition of a TA,where tumor spacePis represented byNumpsuper-pixels,and initial states for?p∈Pare set as:

    whereRGBpis the three dimensional vector of mean color of super-pixel in RGB space.The fi nal goal of the segmentation is to assign each super-pixel one of theKpossible labels.

    2.3 Improved Growcut Algorithm

    Growcut is one of the major methods that is used to determine some seed pixels which iteratively attempt to attack their neighbors.Different from growcut,super-pixels are selected for initial seeds in our algorithm.Therefore,each super-pixel has a pre-de fi ned strength.The strength values of the initially selected seed super-pixels are set to one.Instead,all other super-pixels’strength values are set to zero.This initializes the state of the TA.Henceforth,the seed super-pixels expand over the image until the edges of two different labels contact each other.Otherwise,superpixels continue to attack their neighbors(as shown in the Algorithm 2).

    Algorithm 2.Tumors automata evolution rule

    For each iteration,to weaken the power of occupying super-pixels,the strength value of an occupying super-pixel is multiplied with a linear weighting functiong(x)→[0,1].The difference in the colour of super-pixels between the attacked super-pixelsqand the attacking super-pixelspare used to de fi ne theg(x).The goal is to effectively weaken the power of an attacking super-pixel.Theg(x)is given as following:

    where(Ip,Iq)is the color vector of super-pixelspandq,andCmaxis the maximum color difference.

    Letpbe the attacking andqthe attacked super-pixel.θpdenotes the strength andxis the color gradient betweenpandq.Thenpoccupiesqif the decreased strengthθp?g(Ip,Iq)is higher thanθq.In this case,the labellqwill be set tolpand the strengthθqwill be set toθp?g(Ip,Iq).Iteratively each super-pixel inItries to occupy its neighbors until a stable state is reached for automation.Fig.2 reveals the processing of image segmentation.Fig.1 shows some examples of image segmentation results.Our proposed algorithm can be sure to reach the state of convergence by expanding the strength of each tumor until bounded.Fig.9 illustrates the processing of the iteration.Since the given competition rule is multi-label capable,the improved growcut naturally supports multi-label segmentations.

    2.4 Boundary Smoothness Mechanism

    The improved growcut method is able to achieve quality segmentation(as shown in Fig.1).However,the resulting segments boundary can be ragged(as shown in Fig.5:the right,middle and left images denote the fi nal binary segmentation results after using level set,the binary segmentation results without level set method and the original images,respectively)in some images.Sometimes the task is to extract the smallest details of the boundaries.However,this can be an unwanted artifact when editing generic high-resolution images.

    Fig.5. Object’s boundary optimized by the level set.

    Once the output is obtained from the improved growcut algorithm with TA,we treat it as the initial boundary of the object.A distance regularized level set evolution(DRLSE)[19]is then applied for optimizing the boundary.Level set approach is the basic principle of plane closed curve and it can be implicitly represented as a two-dimensional surface level set function.The solution of curve movement can be implicited through the processing of the level set function surfaces.The basic equation of the level set function is:

    where Φ is the level set function andtis time.Before performing the optimization,difference image has to be calculated.In calculus of variations,searching the stable state of the gradient fl ow equationF(Φ)is the standard approach to minimize an energy function.

    Fig.6. The results given by the multi-layer TA.

    where(x,y)is pixel of the boundary andtis time step.Fig.6 shows the optimized results by TA.

    The results illustrate that the multi-layer TA algorithm can optimize the boundary of an object.Even though some results are not satisfying,it is clear that all of those are greatly improved and reach a high accuracy level after evolution.

    2.5 Multi-layer Tumors Automata Mechanism

    Numerous novel approaches have been raised to solve the issue of the interactive object segmentation.Each of them has its own superiorities and disadvantages.To make use of the advantage of each approach,an effective mechanism to amalgamateMsegmentation outputs generated byMstate-of-the-art algorithms has been designed by Yao[21].Inspired by it,we treat each of those re-labelled images as a layer of the TA.We employ two state-of-the-art algorithms proposed by Arndt[10]and Li[17]as two individual layers of the TA.

    In MTA,each tumor represents a super-pixel.Numpdenotes the total number of the super-pixels in an image.Different from the de fi nition of neighborhood in Section 4.1,super-pixels with the same center coordinate in different outputs are neighbors for MTA.For any tumor,in fact,it hasM?1 neighbors which get from other outputs.Meanwhile,each neighbor is considered to have the same force to control the tumor’s next state.

    After segmentation,the super-pixeliwill be determined and denoted as following:

    wherelsp=1 means that this super-pixel belongs to an object.In contrast,lsp=0 indicates that this super-pixel belongs to the background.Since the segmentation may not always be correct,a super-pixel binarized or determined as object does not mean that it actually belongs to the foreground.Thus,the MTA is proposed to improve the segmentation accuracy.Different from Yao’s method[21]that makes use of multiple fi nal outputs in the Bayesian framework,the tumors are fed back to the improved growcut framework in our method.In Fig.5,(a),(d),(g),(j),(m),(p)are the original images,(b),(e),(h),(k),(n),(q)are the binary segmentations,and(c),(f),(i),(l),(o),(r)are the object segmented contours.(a)?(c),(g)?(i),(m)?(o)are the segmentations without MTA,while(d)?(f),(j)?(l),(p)?(r)are the segmentations with MTA.

    3 Experiments

    We conduct several experiments to test and verify the effectiveness and robustness of the proposed approach.It is tested in the PASCAL VOC segmentation challenge[22]to evaluate the quality of our interactive segmentation method and compare it with existing algorithms based on the new and harder dataset[23]which augments the existing grabcut dataset[8]with images and ground truth taken from the PASCAL VOC segmentation challenge[22].Details are described below.

    3.1 Robustness Analysis of Our Algorithm

    Interactive system quality is evaluated as the average number of super-pixel seeds required to achieve segmentation quality within a certain band.Fig.7 illustrates the result and measure interaction effort.The graph of overlap score versus number of super-pixel seeds captures how the accuracy of the segmentation varies with successive user interactions,and the average number of seeds summarizes that in a single score.Here overlap score,the measure used to evaluate segmentation quality in the VOC segmentation challenge[22],is given by

    whereydenotes output segmentation andygtdenotes ground truth.The average is computed over a certain range of scores,and we takeSlow=83,Shigh=95.

    Fig.7. Plotting overlap score vs.no.of seeds.

    3.2 Quantitative Analysis of Segmentation and Segmentation Efficiency

    where theNumolpis the number of overlap label pixels andNumtpdenotes the total pixels.For the issue of multi-label segmentation,we use the IcgBench dataset mentioned by Santneret al.[24],and the mean Dice evaluation score is given as following:

    where|·|denotes the region of a segmentationEi.GTimeans the ground truth labeling andNis the number of segments.

    Table I shows the evaluation of the proposed algorithm on the test images compared with the super-pixel-based approaches,for instance,regioncut[10]and the BGPA[17]as well as the pixel-based approaches,such as RW[9],growcut[11]and graph-cut[6].It is clearly shown that both improvements,the TA mechanism and the Multi-layer mechanism,increase the accuracy of the proposed scheme.In summary,our algorithm clearly outperforms not only the original growcut method but also the graph-cut framework in terms of mean error rate.

    TABLE I ACCURACY RATES ON THE HARDER DATASET[23]BASED ON DIFFERENT METHODS

    The proposed interactive object segmentation algorithm is evaluated via a lasso initialization.The initializations given by the introduced dataset are utilized.There is no need for regional analysis by using the lasso initialization.Our pre-initialization measure is conducted to initialize as much as possible of the image except the edges.Compared to the original growcut algorithm,our proposed algorithm performs better and outperforms the regioncut with discriminatively learning parameters.In addition,the proposed method can handle the issue of the Multi-label segmentation(as shown in Fig.8).

    4 Discussion

    4.1 Neighborhood Measure

    To strengthen smoothness,only neighboring pixels weights could be attained by the von Neumann and Moore neighborhoods.However,this situation will end up with the super-pixels applied in our algorithm.To compensate for the smoothness on the neighboring across super-pixels,different methods have been proposed.Reference[17]connects the neighboring super-pixels which are similar in feature space.It is different from the well known CA,the in fl uences of all neighbors are fi xed[11],[12]or depending on the similarity between any pair of cells in color feature space[18],[25].If the object’s color is similar with the background,this will bring noise and cause confusion with background.It is very hard to handle those solutions(as shown in Fig.10:(a),(g)and(b),(h)are the original images and the ground truth.(c),(i)and(d),(j)are the results obtained by using the feature space neighborhood measure.(e),(k)and(f),(l)are our results by using the proposed neighborhood measure).For the proposed superpixel neighborhood systems,we still use the idea of eight neighborhoods(see Fig.4).More details are shown in the Algorithm 1.

    Fig.8. Multi-labels segmentation results.

    In Algorithm 1,we set threshold value as 20.If the overlap boundary line is more than 20 pixels,we think that the boundary is the common border.The super-pixel pair are the neighborhood.Otherwise,this boundary will be out of our consideration.

    4.2 Efficiency Analysis

    Similarly as the regioncut[10]that ignores pre-learning and pre-classi fi cation,we analyze the efficiency of the proposed algorithm by ignoring the pre-process of oversegmentation.Fig.9 shows a segmentation example of the lotus image compared to graph-cut[25]and regioncut[10].In Fig.9,the bottom,middle and top images represent the results of regioncut,graph-cut and ours,respectively.It is easy to fi nd that the convergence speed of the proposed method is faster than others.

    這是一個悲傷的故事,世界上最后一頭雄性北白犀Sudan(“蘇丹”)在 3 月 19 日被實施安樂死,北白犀這個在地球生存了上千萬年的物種走向滅絕。

    Fig.9 shows that our method is with the least user strokes compared with regioncut and graph-cut.Clearly,the results are the best not only in the speed of convergence but also the accuracy.The results are summarized in Table II.The evaluation of the proposed algorithm on the segmentation benchmark is demonstrated,which is compared with the original growcut algorithm and graph-cut based on a coarse initialization.The results illustrate that our method is better than the graph-cut and regioncut.Compared to graph-cut,the super-pixel contains the boundary feature as well as the space information,which promotes the accuracy of segmentation.Meanwhile,compared to regioncut,the processing of pre-classi fi cation brings imprecise weights for superpxiels.It is not conducive to the fi nal segmentation.Even though the total time(4.75s)of our method is more than the time(3.28s)of the graph-cut,our accuracy is higher than graph-cut’s.The Figs.12?14 are the example results compared with different segmentation methods.The fi rst,second,third and fourth rows are the results of the BGPA[17],graph-cut[6],regioncut[10]and our method,respectively.It is clear that the proposed algorithm achieves better result than other methods.

    4.3 Shortcoming

    The results demonstrate how cogent our algorithm can be if the initialization with distributed and reasonable seeds is given.However,the experimental results also illustrate the de fi ciencies of the proposed method.Our approach has the ability to compete with state-of-the-art segmentation methods,by contrast,without needing the time consumption by user initializations.Since only the RGB color feature is extracted,it is a fl aw that our approach is a little sensitive to color distribution.It is empirically found that if the seeds can cover the main features of the object and background,good segmentation boundary can be extracted.Some promising works[17],[26]have addressed effective methods for arc weight estimation during the seeds marking process.Their works take into account image attributes and object information to enhance the discontinuities between object and background,whereas a visual feedback can be provided to the user for next action.We will investigate how to incorporate these methods into our work in the future.Fig.11 demonstrates the failure examples.(a),(f)are the original images,(b),(g)are the marked seeds,(c),(h)are the binary segmentation results,(d),(i)are the ground truth and(e),(j)are the target contour results.The selected tumors only connect to object regions and are very similar with background.So they are easily assigned to the same labels.Hence,we will extract more effective and robust features to solve the issue of object segmentation.

    4.4 Over-segmentation

    In the proposed method,the spatial proximity weight and the number of super-pixels must be provided.The bigger the number is,the more super-pixels will be segmented;the smaller the number is,the less super-pixels will be segmented.Segmenting more super-pixels will take more time and vice versa.However,fewer super-pixels cannot offer the rich information of edges.Therefore,selecting a proper amount for over-segmentation is very important.For practical use,we will continue to research an adaptive segmentation algorithm according to the size of image or the frequency distribution of an image in the future.In our experiment,the spatial proximity weight and the number of super-pixels are set to 10 and 300.

    5 Conclusion

    In this paper,we have investigated a new approach for solving the issue of interactive object segmentation in the image.The presented TA was similar to CA.However,the TA could operate super-pixel directly.Based upon TA,a novel growcut strategy was motivated to handle superpixels via interactions with neighbors.Experiments illustrated that our approach achieved superior performance and exceeded other state-of-the-arts.It demonstrated by experiments that the context-based multi-layer TA could effectively enhance any given state-of-the-art methods to obtain more accurate results.

    Fig.9. The process of the convergence and corresponding results.

    Fig.10. The segmentation results with different neighborhood measure.(a),(g)and(b),(h)are the original images and the ground truth.(c),(i)and(d),(j)are the results obtained by using the feature space neighborhood measure.(e),(k)and(f),(l)are our results by using the new neighborhood measure.

    TABLE II COMPARISON OF SEGMENTATION EFFICIENCY

    In the future,we will continue to improve the performance of proposed approach by extracting more effective features and integrating more algorithms.Implementing a high performance version by the graphics processing unit to fully explore the parallel nature of the algorithm is also a promising direction.

    Fig.11. Failure examples.The result demonstrates that our method is a little sensitive to the color.

    Fig.12. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    Fig.13. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    Fig.14. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    1 V.Kolmogorov and R.Zabin,“What energy functions can be minimized via graph cuts,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.26,no.2,pp.147?159,Feb.2004.

    2 M.A.G.Carvalho and A.L.Costa,“Combining hierarchical structures on graphs and normalized cut for image segmentation,”New Frontiers in Graph Theory,Y.G.Zhang,Ed.Rijeka,Yugoslavia:InTech Open Access Publisher,2012.

    3 J.Carreira and C.Sminchisescu,“Constrained parametric min-cuts for automatic object segmentation,”inProc.2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.3241?3248.

    4 D.Kuettel and V.Ferrari,“Figure-ground segmentation by transferring window masks,”inProc.2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2012,pp.558?565.

    5 C.Rother,V.Kolmogorov,and A.Blake, “‘grabcut’:Interactive foreground extraction using iterated graph cuts,”ACM Trans.Graph.,vol.23,no.3,pp.309?314,Aug.2004.

    6 X.Bai and G.Sapiro,“A geodesic framework for fast interactive image and video segmentation and matting,”University of Minnesota,Minnesota,USA,Tech.Rep.2171,2007.

    7 L.Yu and C.S.Li,“Low depth of fi eld image automatic segmentation based on graph cut,”J.Autom.,no.10,pp.1471?1481,2014.

    8 O.Sener,K.Ugur,and A.A.Alatan,“Error-tolerant interactive image segmentation using dynamic and iterated graph-cuts,”inProc.2nd ACM International Workshop on Interactive Multimedia on Mobile and Portable Devices,New York,NY,USA,2012,pp.9?16.

    9 L.Grady, “Random walks for image segmentation,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.28,no.11,pp.1768?1783,Nov.2006.

    10 O.J.Arndt,B.Scheuermann,and B.Rosenhahn,“‘Regioncut’-interactive multi-label segmentation utilizing cellular automaton,”inProc.2013 IEEE Workshop on Applications of Computer Vision(WACV),Tampa,FL,USA,2013,pp.309?316.

    11 V.Vezhnevets and V.Konouchine,“”GrowCut”:Interactive multi-label N-D image segmentation by cellular automata,”inProc.Graphicon,Novosibirsk Akademgorodok,Russia,2005,pp.150?156.

    12 J.Von Neumann and A.W.Burks,Theory of Selfreproducing Automata.Champaign,IL,USA:University of Illinois Press,1966.

    13 A.Blake,C.C.E.Rother,and P.Anandan,“Foreground extraction using iterated graph cuts,”U.S.Patent 7 660 463,Feb.9,2010.

    14 R.Dondera,V.Morariu,Y.L.Wang,and L.Davis,“Interactive video segmentation using occlusion boundaries and temporally coherent superpixels,”inProc.2014 IEEE Winter Conference on Applications of Computer Vision(WACV),Steamboat Springs,CO,USA,2014,pp.784?791.

    15 M.Ghafarianzadeh,M.B.Blaschko,and G.Sibley,“Unsupervised spatio-temporal segmentation with sparse spectral clustering,”inProc.British Machine Vision Conference(BMVC),Nottingham,UK,2014.

    16 I.Gallo,A.Zamberletti,and L.Noce,“Interactive object class segmentation for mobile devices,”inProc.27th SIBGRAPI Conference on Graphics,Patterns and Images(SIBGRAPI),Rio de Janeiro,Brazil,2014,pp.73?79.

    17 Z.G.Li,X.M.Wu,and S.F.Chang,“Segmentation using superpixels:A bipartite graph partitioning approach,”inProc.2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2012,pp.789?796.

    18 R.Achanta,A.Shaji,K.Smith,A.Lucchi,P.Fua,and S.S¨usstrunk,“Slic superpixels compared to state-of-the-art superpixel methods,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.34,no.11,pp.2274?2282,Nov.2012.

    19 C.M.Li,C.Y.Xu,C.F.Gui,and M.D.Fox,“Distance regularized level set evolution and its application to image segmentation,”IEEE Trans.Image Process.,vol.19,no.12,pp.3243?3254,Dec.2010.

    20 P.L.Rosin,“Image processing using 3-state cellular automata,”Comp.Vision Image Understand.,vol.114,no.7,pp.790?802,Jul.2010.

    21 Y.Qin,H.C.Lu,Y.Q.Xu,and H.Wang,“Saliency detection via cellular automata,”inProc.2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Boston,MA,USA,2015,pp.110?119.

    22 M.Everingham,L.Van Gool,C.K.I.Williams,J.Winn,and A.Zisserman,“The Pascal visual object classes challenge 2009(VOC2009),”inSummary Presentation at the 2009 PASCAL VOC Workshop,2009.

    23 V.Gulshan,C.Rother,A.Criminisi,A.Blake,and A.Zisserman,“Geodesic star convexity for interactive image segmentation,”inProc.2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.3129?3136.

    24 J.Santner,T.Pock,and H.Bischof,“Interactive multi-label segmentation,”inAsian Conference on Computer Vision,R.Kimmel,R.Klette,and A.Sugimoto,Eds.Berlin,Heidelberg,Germany:Springer,2010,pp.397?410.

    25 Y.Y.Boykov and M.P.Jolly,“Interactive graph cuts for optimal boundary®ion segmentation of objects in ND images,”inProc.8th IEEE International Conference on Computer Vision,Vancouver,BC,USA,vol.1,pp.105?112,Jul.2001.

    26 P.A.V.de Miranda,A.X.Falc′ao,and J.K.Udupa,“Synergistic arc-weight estimation for interactive image segmentation using graphs,”Comp.Vision Image Understand.,vol.114,no.1,pp.85?99,Jan.2010.

    猜你喜歡
    安樂死蘇丹雄性
    麥穗魚(雄性)
    垂釣(2023年11期)2024-01-21 16:07:04
    大鰭鱊(雄性)
    垂釣(2023年9期)2023-12-10 19:39:30
    再見,蘇丹
    趣味(語文)(2019年10期)2020-01-14 03:26:02
    蘇丹總統(tǒng)被推翻驚世界
    “蘇丹”之死
    萌物
    飛碟探索(2016年5期)2016-05-10 23:44:30
    法律形式和道德判斷:安樂死與協(xié)助自殺
    飼料無酶褐變對雄性虹鱒魚胃蛋白酶活性的影響
    飼料博覽(2016年7期)2016-04-05 14:20:34
    病理解剖醫(yī)生理解的“安樂死
    安樂死的立法困境及其破解
    亚洲精品国产色婷婷电影| 国产精品亚洲av一区麻豆| 日韩熟女老妇一区二区性免费视频| videos熟女内射| 亚洲成人手机| 可以免费在线观看a视频的电影网站| 纵有疾风起免费观看全集完整版| 日韩视频一区二区在线观看| 90打野战视频偷拍视频| 精品一区二区三卡| 不卡一级毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图av天堂| 日日夜夜操网爽| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成电影免费在线| 18禁黄网站禁片午夜丰满| a级片在线免费高清观看视频| 我的亚洲天堂| 国产精品一区二区免费欧美| 免费一级毛片在线播放高清视频 | 人妻 亚洲 视频| 在线亚洲精品国产二区图片欧美| 一本综合久久免费| 一级毛片精品| 国精品久久久久久国模美| 正在播放国产对白刺激| 最新的欧美精品一区二区| 亚洲精品国产精品久久久不卡| 啦啦啦免费观看视频1| 一级黄色大片毛片| 中文字幕高清在线视频| 国产人伦9x9x在线观看| 大香蕉久久成人网| 日韩视频一区二区在线观看| 男女无遮挡免费网站观看| 国产精品影院久久| 老司机靠b影院| 精品亚洲乱码少妇综合久久| 国产精品久久久久久精品古装| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品人妻蜜桃| 国产精品亚洲av一区麻豆| 欧美日韩视频精品一区| 国产亚洲精品久久久久5区| 国产av精品麻豆| 这个男人来自地球电影免费观看| 亚洲天堂av无毛| 免费人妻精品一区二区三区视频| 日韩人妻精品一区2区三区| 狠狠婷婷综合久久久久久88av| 精品少妇黑人巨大在线播放| 国产伦理片在线播放av一区| 成人手机av| 一级,二级,三级黄色视频| 欧美日韩成人在线一区二区| 男人操女人黄网站| 丝袜美腿诱惑在线| 他把我摸到了高潮在线观看 | 久久午夜亚洲精品久久| 精品福利永久在线观看| 久久99一区二区三区| 日韩欧美免费精品| 久久久久久久精品吃奶| 少妇被粗大的猛进出69影院| 天天影视国产精品| 韩国精品一区二区三区| 中文亚洲av片在线观看爽 | 久久人人爽av亚洲精品天堂| 首页视频小说图片口味搜索| 亚洲人成伊人成综合网2020| 亚洲av国产av综合av卡| 满18在线观看网站| 国产在线免费精品| avwww免费| 好男人电影高清在线观看| www日本在线高清视频| 制服人妻中文乱码| 少妇的丰满在线观看| 中文欧美无线码| 男女之事视频高清在线观看| 久久中文字幕人妻熟女| 国产一区二区激情短视频| 国产精品免费一区二区三区在线 | 免费在线观看日本一区| 国产单亲对白刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 久9热在线精品视频| 国产国语露脸激情在线看| 久久免费观看电影| 欧美精品人与动牲交sv欧美| 久久中文字幕人妻熟女| 日韩精品免费视频一区二区三区| 国产视频一区二区在线看| 又紧又爽又黄一区二区| 一本久久精品| 一区二区三区乱码不卡18| 女人精品久久久久毛片| 这个男人来自地球电影免费观看| 亚洲av电影在线进入| 久久国产精品大桥未久av| 99在线人妻在线中文字幕 | 午夜福利乱码中文字幕| 男女午夜视频在线观看| 国产亚洲精品第一综合不卡| 天天躁夜夜躁狠狠躁躁| 亚洲国产成人一精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 在线永久观看黄色视频| 亚洲中文av在线| 一级片免费观看大全| 久久香蕉激情| 亚洲人成伊人成综合网2020| 18在线观看网站| av超薄肉色丝袜交足视频| 亚洲av第一区精品v没综合| 免费观看a级毛片全部| 国产高清国产精品国产三级| 成人永久免费在线观看视频 | 亚洲精品中文字幕一二三四区 | 成人特级黄色片久久久久久久 | 亚洲精品粉嫩美女一区| 亚洲av电影在线进入| 性高湖久久久久久久久免费观看| 美女高潮喷水抽搐中文字幕| 国产真人三级小视频在线观看| av线在线观看网站| 亚洲精品在线观看二区| 狠狠精品人妻久久久久久综合| 亚洲av成人不卡在线观看播放网| 2018国产大陆天天弄谢| 人成视频在线观看免费观看| 久久中文字幕一级| 欧美精品人与动牲交sv欧美| 欧美人与性动交α欧美精品济南到| 99热国产这里只有精品6| 亚洲人成伊人成综合网2020| 精品第一国产精品| 久久久国产成人免费| 麻豆av在线久日| 久久久久久久久久久久大奶| 大型av网站在线播放| 精品久久久久久久毛片微露脸| 国产欧美亚洲国产| 91成年电影在线观看| 亚洲一码二码三码区别大吗| 肉色欧美久久久久久久蜜桃| 欧美激情高清一区二区三区| 欧美激情极品国产一区二区三区| 男女床上黄色一级片免费看| 精品人妻在线不人妻| 亚洲欧美色中文字幕在线| 亚洲少妇的诱惑av| 免费在线观看影片大全网站| 欧美性长视频在线观看| 脱女人内裤的视频| 国产aⅴ精品一区二区三区波| 操美女的视频在线观看| 欧美精品一区二区免费开放| 精品免费久久久久久久清纯 | 亚洲欧美色中文字幕在线| 12—13女人毛片做爰片一| 麻豆乱淫一区二区| 色老头精品视频在线观看| 在线 av 中文字幕| 亚洲专区字幕在线| 黑人操中国人逼视频| 国精品久久久久久国模美| 91老司机精品| 伦理电影免费视频| 丰满人妻熟妇乱又伦精品不卡| 中文字幕色久视频| 国产国语露脸激情在线看| 一区在线观看完整版| 桃红色精品国产亚洲av| 亚洲精品中文字幕一二三四区 | 高潮久久久久久久久久久不卡| 亚洲精品国产一区二区精华液| 老司机午夜福利在线观看视频 | 搡老熟女国产l中国老女人| 欧美日韩国产mv在线观看视频| 啦啦啦在线免费观看视频4| 国产免费视频播放在线视频| 美女福利国产在线| 高清欧美精品videossex| 免费日韩欧美在线观看| 亚洲精品国产区一区二| 99久久人妻综合| 午夜福利视频在线观看免费| 久久中文看片网| 国产精品av久久久久免费| 日本av免费视频播放| 精品欧美一区二区三区在线| av网站在线播放免费| 99九九在线精品视频| 成人精品一区二区免费| av免费在线观看网站| 老熟妇仑乱视频hdxx| 精品亚洲成国产av| 精品一区二区三卡| 欧美黑人欧美精品刺激| 国产av精品麻豆| 亚洲精华国产精华精| 久久久精品国产亚洲av高清涩受| e午夜精品久久久久久久| 国产精品亚洲av一区麻豆| 亚洲国产中文字幕在线视频| 久久人妻av系列| 99精品在免费线老司机午夜| 美国免费a级毛片| 老熟妇乱子伦视频在线观看| 国产亚洲av高清不卡| 建设人人有责人人尽责人人享有的| 蜜桃国产av成人99| 啦啦啦免费观看视频1| 亚洲精品美女久久av网站| 国产伦人伦偷精品视频| 中文字幕人妻熟女乱码| 50天的宝宝边吃奶边哭怎么回事| 国产精品1区2区在线观看. | 无限看片的www在线观看| videos熟女内射| 巨乳人妻的诱惑在线观看| 亚洲国产毛片av蜜桃av| 精品一区二区三卡| 亚洲全国av大片| 在线观看免费视频网站a站| 国产日韩欧美在线精品| 一区二区日韩欧美中文字幕| 他把我摸到了高潮在线观看 | 99国产精品99久久久久| 中文字幕高清在线视频| 亚洲午夜精品一区,二区,三区| 亚洲成人免费电影在线观看| 丁香六月天网| a级片在线免费高清观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 嫩草影视91久久| 十八禁网站网址无遮挡| 桃红色精品国产亚洲av| 成人18禁在线播放| 在线观看舔阴道视频| 99久久人妻综合| 性高湖久久久久久久久免费观看| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 一进一出好大好爽视频| 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 国产又爽黄色视频| 久久精品国产亚洲av高清一级| 两人在一起打扑克的视频| 亚洲av成人一区二区三| 午夜免费成人在线视频| 视频区欧美日本亚洲| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| 久久精品91无色码中文字幕| svipshipincom国产片| 一级a爱视频在线免费观看| 新久久久久国产一级毛片| 亚洲视频免费观看视频| 一个人免费在线观看的高清视频| 99精品久久久久人妻精品| 99精品在免费线老司机午夜| 成人特级黄色片久久久久久久 | 97在线人人人人妻| 日韩 欧美 亚洲 中文字幕| 日本精品一区二区三区蜜桃| 久久99一区二区三区| 香蕉国产在线看| 亚洲国产中文字幕在线视频| av电影中文网址| av线在线观看网站| 亚洲精品美女久久av网站| 久久精品亚洲av国产电影网| 91麻豆av在线| 国产精品99久久99久久久不卡| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 国产亚洲午夜精品一区二区久久| 精品一区二区三区av网在线观看 | 亚洲av成人一区二区三| 激情在线观看视频在线高清 | 一级黄色大片毛片| 日韩视频在线欧美| 国产亚洲精品久久久久5区| 久久这里只有精品19| 一级片'在线观看视频| 一本综合久久免费| 成年人午夜在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 一个人免费看片子| 国产免费av片在线观看野外av| 欧美日韩中文字幕国产精品一区二区三区 | 久久人妻福利社区极品人妻图片| 亚洲精品中文字幕一二三四区 | 麻豆成人av在线观看| 亚洲精品在线观看二区| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| av又黄又爽大尺度在线免费看| 久久国产亚洲av麻豆专区| 亚洲精品成人av观看孕妇| 色在线成人网| 露出奶头的视频| 久久午夜亚洲精品久久| 国产激情久久老熟女| 国产精品国产高清国产av | 侵犯人妻中文字幕一二三四区| av天堂在线播放| 久久精品国产亚洲av香蕉五月 | 亚洲成人国产一区在线观看| 亚洲av日韩在线播放| 麻豆国产av国片精品| 男女高潮啪啪啪动态图| 久久精品亚洲精品国产色婷小说| 激情视频va一区二区三区| 国产主播在线观看一区二区| 性高湖久久久久久久久免费观看| 精品福利永久在线观看| 多毛熟女@视频| 国产成人精品久久二区二区免费| 亚洲欧美精品综合一区二区三区| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 交换朋友夫妻互换小说| 亚洲人成伊人成综合网2020| 丝袜美足系列| 国产精品亚洲一级av第二区| 亚洲国产看品久久| 国产成人精品在线电影| 大香蕉久久成人网| 久久久久国产一级毛片高清牌| 免费在线观看日本一区| 少妇 在线观看| 97在线人人人人妻| av有码第一页| 18禁黄网站禁片午夜丰满| 久久热在线av| 国产精品一区二区精品视频观看| 午夜福利视频在线观看免费| 免费观看av网站的网址| 国产极品粉嫩免费观看在线| 热re99久久国产66热| 91字幕亚洲| 日韩三级视频一区二区三区| 1024视频免费在线观看| 夫妻午夜视频| 亚洲午夜精品一区,二区,三区| 国产xxxxx性猛交| av有码第一页| 亚洲国产av新网站| 免费一级毛片在线播放高清视频 | 亚洲精品国产区一区二| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 亚洲精品国产色婷婷电影| 麻豆乱淫一区二区| 日韩欧美一区二区三区在线观看 | 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 久久热在线av| 黄色 视频免费看| 黄片小视频在线播放| 男女边摸边吃奶| 久久久久精品国产欧美久久久| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 欧美精品人与动牲交sv欧美| 精品午夜福利视频在线观看一区 | 三上悠亚av全集在线观看| 视频区欧美日本亚洲| 桃花免费在线播放| 高潮久久久久久久久久久不卡| 午夜视频精品福利| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| 欧美人与性动交α欧美软件| 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 免费人妻精品一区二区三区视频| 在线播放国产精品三级| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 久久99一区二区三区| 可以免费在线观看a视频的电影网站| 在线观看免费高清a一片| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 99热国产这里只有精品6| 色播在线永久视频| 国产精品久久久av美女十八| 大型av网站在线播放| 午夜激情久久久久久久| 久久精品国产综合久久久| 老熟女久久久| 国产精品九九99| 午夜精品久久久久久毛片777| 中文字幕高清在线视频| 日韩免费av在线播放| 精品人妻熟女毛片av久久网站| 两性夫妻黄色片| 亚洲精品av麻豆狂野| 好男人电影高清在线观看| 99re6热这里在线精品视频| 精品久久久久久电影网| 久久精品亚洲熟妇少妇任你| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| 一级毛片女人18水好多| 国产深夜福利视频在线观看| 大型av网站在线播放| 丁香六月欧美| 午夜福利视频在线观看免费| 最新的欧美精品一区二区| 久久人人爽av亚洲精品天堂| 亚洲 国产 在线| 精品福利永久在线观看| 啦啦啦中文免费视频观看日本| 欧美精品高潮呻吟av久久| 久久免费观看电影| 在线播放国产精品三级| 国产亚洲精品第一综合不卡| 亚洲国产欧美在线一区| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| av在线播放免费不卡| 久久久国产一区二区| 精品视频人人做人人爽| 国产亚洲午夜精品一区二区久久| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 国产又爽黄色视频| √禁漫天堂资源中文www| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 久久av网站| 最新美女视频免费是黄的| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 19禁男女啪啪无遮挡网站| 91老司机精品| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 激情视频va一区二区三区| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 午夜福利,免费看| 亚洲欧洲日产国产| av天堂在线播放| 99riav亚洲国产免费| 手机成人av网站| videosex国产| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 成人特级黄色片久久久久久久 | 亚洲成国产人片在线观看| 午夜免费成人在线视频| 一区二区av电影网| 999久久久精品免费观看国产| 日韩大码丰满熟妇| 曰老女人黄片| 国产精品一区二区在线观看99| 99国产精品99久久久久| 国产精品九九99| 日韩欧美免费精品| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯 | 老司机亚洲免费影院| 国产三级黄色录像| 国产人伦9x9x在线观看| 久热这里只有精品99| 777米奇影视久久| 精品人妻1区二区| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲| 久久精品人人爽人人爽视色| 高潮久久久久久久久久久不卡| avwww免费| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 水蜜桃什么品种好| a级毛片在线看网站| 老司机亚洲免费影院| 国产伦人伦偷精品视频| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 成人精品一区二区免费| 五月开心婷婷网| 亚洲精品久久午夜乱码| 亚洲av美国av| 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| av在线播放免费不卡| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 不卡一级毛片| 日本av免费视频播放| 动漫黄色视频在线观看| 久久精品成人免费网站| 又紧又爽又黄一区二区| 成人手机av| 成人av一区二区三区在线看| 十八禁人妻一区二区| 午夜激情av网站| 精品福利永久在线观看| 免费日韩欧美在线观看| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 少妇裸体淫交视频免费看高清 | 国产在线精品亚洲第一网站| 免费看a级黄色片| 三级毛片av免费| 国产精品熟女久久久久浪| 91精品三级在线观看| 大片电影免费在线观看免费| 999精品在线视频| 满18在线观看网站| 五月天丁香电影| 国产成人系列免费观看| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 大香蕉久久成人网| 精品一区二区三区视频在线观看免费 | 嫩草影视91久久| 国产精品秋霞免费鲁丝片| 成人特级黄色片久久久久久久 | 国产成人欧美在线观看 | 午夜福利影视在线免费观看| 久久亚洲精品不卡| 亚洲av日韩精品久久久久久密| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 国产亚洲午夜精品一区二区久久| 韩国精品一区二区三区| 亚洲熟女精品中文字幕| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 咕卡用的链子| 亚洲第一青青草原| 欧美日韩亚洲国产一区二区在线观看 | 亚洲黑人精品在线| 亚洲综合色网址| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久毛片微露脸| 欧美国产精品va在线观看不卡| 一本一本久久a久久精品综合妖精| 我的亚洲天堂| 精品视频人人做人人爽| 成人三级做爰电影| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 久久久久久免费高清国产稀缺| 欧美精品一区二区免费开放| 高清欧美精品videossex| 他把我摸到了高潮在线观看 | 成人精品一区二区免费| 久久久久精品人妻al黑| 一级毛片精品| 国产精品免费一区二区三区在线 | 免费观看av网站的网址| 精品国内亚洲2022精品成人 | 超碰成人久久| 成在线人永久免费视频| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| 五月天丁香电影| 日韩视频一区二区在线观看| 欧美性长视频在线观看| 亚洲av电影在线进入| 大片免费播放器 马上看| 51午夜福利影视在线观看| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 精品乱码久久久久久99久播| 啦啦啦视频在线资源免费观看| av欧美777| 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 久久天堂一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| videos熟女内射| 欧美黄色淫秽网站| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站 | 欧美日韩国产mv在线观看视频| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| www.999成人在线观看| 最新美女视频免费是黄的| 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放|