• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction

    2017-03-12 03:40:21JiaojiaoXiongHongyangLuMinghuiZhangQiegenLiu
    自動(dòng)化學(xué)報(bào) 2017年10期

    Jiaojiao Xiong Hongyang Lu Minghui Zhang Qiegen Liu

    1 Introduction

    Magnetic resonance imaging(MRI)is a crucial medical diagnostic technique which offers clinicians with signi fi cant anatomical structure for lack of ionizing.Unfortunately,although it enables highly resolution images and distinguishes depiction of soft tissues,the imaging speed is limited by physical and physiological constraints and increasing scan duration may bring in some physiological motion artifacts[1].Therefore,it is necessary to seek for a method to decrease the acquisition time.Reducing the number of measurements mandated by Nyquist sampling theory is a way to accelerate the data acquisition at the expense of introducing aliasing artifacts in the reconstructed results.In recent years,compressed sensing(CS)theory,as a promising method,has proposed an essential theoretical foundation for improving data acquisition speed.Particularly,the application of CS to MRI is known as CS-MRI[2]?[6].

    The CS theory states that the image which has a sparse representation in certain domain can be recovered from a reduced set of measurements largely below Nyquist sampling rates[2].The traditional CS-MRI usually utilizes prede fi ned dictionaries[1],[7]?[9],which may fail to sparsely represent the reconstructed images.For instance,Lustiget al.[1]employed the total variation(TV)penalty and the Daubechies wavelet transform for MRI reconstruction.Trzaskoet al.[6]proposed a homotopic minimization strategy to reconstruct the MR image.Instead,adaptive dictionary updating in CS-MRI can provide less reconstruction errors due to the dictionary learned from sampled data[10],[11]. Recently,Ravishankaret al.supposed that each image patch has sparse representation,and presented a prominent two-step alternating method named dictionary learning based MRI reconstruction(DLMRI)[12].The fi rst step is for adaptively learning the dictionary,and the second step is for reconstructing image from undersampledk-space data.Numerical experiments have indicated that these data-driven-learning approaches obtained considerable improvements than previous prede fi ned dictionaries-based methods.Liuet al.[13]proposed a gradient based dictionary learning method for image reconstruction(GradDL),which alleviated the drawback of the popular TV regularization by employing dictionary learning technique.Speci fi cally,it fi rstly trained dictionaries from the horizontal and vertical gradients of the image respectively,and then reconstructed the desired image using the sparse representations of both derivatives.They also extended their ideas to the CT reconstruction and InSAR phase noise fi ltering[14],[15].Nevertheless,most of existing methods did not consider the geometrical pro fi t information sufficiently,which may lead to the fi ne details to be lost.

    All the above methods use conventional patch-based sparse representation to reconstruct MR image,it has a fundamental disadvantage that the important spatial structures of the image of interest may be lost due to the subdivision into patches that are independent of each other.To make up for de fi ciencies of conventional patch-based sparse representation method,Zeileret al.[16]proposed a convolutional implementation of sparse coding method(CSC).In the convolutional decomposition procedure,the decomposition does not need to divide the entire image into overlapped patches,and can naturally utilize the consistency prior.CSC was fi rst introduced in the context of modeling receptive fi elds in human vision[17].Recently,it has been demonstrated that CSC has important applications in a wide range of computer vision problems,like low/midlevel feature learning,low-level reconstruction[18],[19],networks in high-level computer vision or hierarchical struc-tures challenges[16],[20],[21],and in physically-motivated computational imaging problems[22],[23].In addition,CSC can fi nd applications in many other reconstruction tasks and feature-based methods,including denoising,inpainting,super-resolution and classi fi cation[24]?[30].

    In this paper,we propose a new formulation of convolutional sparse coding tailored to the problem of MRI reconstruction.Moreover,due to the image gradients are a sparser representation than the image itself and therefore may have sparser representation with the CSC than the pixel-domain image,we learn CSC in gradient domain for better quality and efficient reconstruction.The present method has two bene fi ts. First,we introduce CSC for MRI reconstruction.Second,since the image gradients are usually sparser representation than the image itself,it is demonstrated that the CSC in gradient domain could lead to sparser representation than those using the conventional sparse representation methods in the pixel domain.

    The remainder of this paper is organized as follows.Section 2 states the prior work in CS and CSC.The proposed algorithm CSC in gradient domain(GradCSC)that employing the augmented Lagrangian(AL)iterative method is detailed in Section 3.Section 4 demonstrates the performance of the proposed algorithm on examples under a variety of sampling schemes and undersampling factors.Conclusions are given in Section 5.

    2 Background

    In this section,we fi rst review several classical models for CS-MRI,and then introduce the theory of CSC.The following notational conventions are used throughout the paper.Letu∈CNdenotes an image to be reconstructed,andf∈CQrepresents the undersampled Fourier measurements.The partially sampled Fourier encoding matrixFp∈CQ×Nmapsutofsuch thatFpu=f.An MRI reconstruction problem is formulated as the retrieval of the vectorubased on the observationfand given the encoding matrixFp.

    2.1 CS-MRI

    The choice of sparsifying transform is an important question in CS theory.In the past several years,reconstructing unknown image from undersampled measurements was usually formulated as in(1)where assuming the image gradients are sparse

    Sparse and redundant representations of image patches based on learned basis has been drawing considerable attention in recent years.Speci fi cally,Ravishankaret al.[12]presented a method named DLMRI to reconstruct MR image from highly undersampledk-space data with its objective shown as follows:

    where Γ =[α1,α1,...,αL]denotes the sparse coefficient matrix of image patches,R(u)=[R1u,R2u,...,RLu]consisting ofLsignals,‖·‖0denotes thel0quasi-norm which counts the number of non-zero coefficients of the vector andT0controls the sparsity of the patch representation.Images are reconstructed by the minimization of a linear combination of two terms corresponding to dictionary learningbased sparse representation and least squares data fi tting.The fi rst term enforces sparsity of the image patches with respect to an adaptive dictionary,and the second term enforces data fi delity ink-space.The method exhibited superior performance compared to those using fi xed basis,through learned adaptive transforms from image.Since DL techniques are more effective and efficient in the sparse domain of the image,Liuet al.[13]proposed a model to reconstruct the image by iteratively reconstructing the gradients via dictionary learning and solving for the fi nal image,instead of learning adaptive structure from the image itself.The method is based on the observation that the gradients are sparser than the image itself.Therefore,it possesses sparser representation in the learned dictionary than the pixel-domain.

    Although conventional patch-based sparse representation has widely applications,it has some drawbacks.First,it typically assumes that training image patches are independent from each other,hence the consistency of pixels and important spatial structures of the signal of interest may be lost.This assumption typically results in fi lters are simply translated versions of each other,and generates highly redundant feature representation.Second,due to the nature of the mathematical formulation that a linear combination of learned patches,these traditional patchbased representation approaches may fail to adequately represent high-frequency and high-contrast image features,thus loses some details and textures of the signal,which is important for MR images.

    2.2 Convolutional Sparse Coding

    Zeileret al.[16]proposed an alternative to patchbased approaches named CSC,decomposing the image into spatially-invariant convolutional features.CSC is the sum of a set of convolutions of the feature maps by replacing the linear combination of a set of dictionary vectors.LetXbe a training set containing 2Dimages with dimensionm×n.Letbe the 2Dconvolutional fi lter bank havingKfi lters,where eachdkis ah×hconvolutional kernel.zkis the sparse feature maps,each of which is the same size asX.CSC aims to decompose the input imageXinto the sparse feature mapszkconvolved with kernelsdkfrom the fi lter bankD,by solving the following objective function:

    Fig.1. One illustration of fi lters learned.(a)Learned dictionary by DLMRI,(b)Learned dictionary by GradDL,and(c)Learned fi lter by GradCSC,respectively.

    where the fi rst and the second terms represent the reconstruction error and the?1-norm penalty respectively;βis a regularization parameter that controls the relative weight of the sparsity term;?is the 2Ddiscrete convolution operator;and fi lters are restricted to have unit energy to avoid trivial solutions.Note that here‖zk‖1represents the entrywise matrix norm,the construction of is realized by balancing the reconstruction error and the?1-norm penalty.

    However,the CSC has led to some difficulties in optimization,Zeileet al.[16]used the continuation method to relax the equality constraints,and employed the conjugate gradient(CG)decent to solve the convolutional least square approximation problem.By considering the property of block circulant with circulant block(BCCB)matrix in the Fourier domain,Bristowet al.[32]presented a fast CSC method.Recently,Wohlberg[33]presented an effi-cient alternating direction method of multipliers(ADMM)to further improve this method.

    3 Convolutional Sparse Coding in Gradient Domain

    The image gradients are sparser than the image itself[13],therefore it has sparser representation in the CSC than that in the pixel-domain image.This motivates us to consider the CSC in the gradient domain.It is expected that such learning is more accurate and robust than that from pixel domain.In this work,we propose an algorithm to reconstruct the image by iteratively reconstructing the gradients via CSC and solving for the fi nal image.

    3.1 Proposed Model

    To reconstruct image from the image gradients,we propose a new model as follows:

    where(▽x,▽y)=(▽(1),▽(2)).The fi rst term and the second term in the cost function(4)capture the sparse prior of the gradient image patches with respect to CSC,and the third termrepresents the data fi delity term ink-space withl2-norm controlling the error.The weightv1balances the tradeoffbetween these three terms,and is set asν1=(λ1/σ)like the DLMRI algorithm does[13],whereλ1is a positive constant.βis a regularization parameter and controls the relative weight of the sparsity term with respect to the data term.The constraint,?k∈{1,...,K}can be included in the objective function via an indicator functionindC(·),which is de fi ned on the convex set of the constraint.

    In order to better understand the bene fi t of the CSC in the gradient domain,one demonstration of visual inspection between traditional sparse coded dictionaries and GradCSC fi lter is shown in Fig.1.The learned dictionaries by DLMRI and GradDL are depicted in Figs.1(a)and(b),both of which are learned from the Lumbar spine image in Fig.2.The learned fi lters by GradCSC shown in Fig.1(c)are learned from the dataset in[16].Compared to the traditional sparse coded dictionaries in Figs.1(a)and(b),it can be seen from Fig.1(c)that the convolutional fi lter in GradCSC shows less redundancy,crisper features,and a larger range of feature orientations.

    3.2 Algorithm Solver

    In the regularization term of(4),the global fi nite difference operators▽(i)are coupled,hence we resort to the splitting technique to decouple them.Speci fi cally,to fi nd a solution to the model(4),an AL iterative technique is employed and an algorithm called GradCSC is developed.The algorithm alternately updates sparse representations of the image patches,reconstructs the horizontal and vertical gradients,and estimates the original image from both gradients.A full description of the algorithm is given in Algorithm 1.

    Equation(4)can be rewritten as follows by introducing auxiliary variablesw(i),i=1,2.

    Fig.2. The reconstruction results of the Lumbar spine image under different undersampling factors with 2D random sampling.

    Algorithm 1.The GradCSC algorithm

    whereν2denotes the positive penalty parameter. The ADMM can be used to address the minimization of(6)with respect tou,w,z,andd.This technique carries out approximation via alternating minimization with respect to one variable while keeping other variables fi xed.

    1)Updating the Solution u:At thejth iteration,we assumew,z,anddto be fi xed with their values denoted aswj,zj,anddj,respectively.Eliminating the constant variables,the objective function for updatinguis given as

    Recognizing that(8)is a simple least squares problem admitting an analytical solution.The least squares solution satis fi es the normal equation

    However,directly solving the equation can be tedious due to(9)has a high computation complexity(O(P3)).Fortunately,we can use the convolution theorem of Fourier transform to obtain the solution:

    similarly as described in DLMRI and GradDL method[12],the matrixis a diagonal matrix consisting of ones and zeroes corresponding to the sampled location ink-space.

    2)Updating the Gradient Image Variables w(i),i=1,2:The minimization in(6)with respect tow(1)andw(2)are decoupled,and then can be solved separately.It yields:

    The least squares solution satis fi es the normal equation,and the solution of(11)is as follow:

    3)Updating the Coefficients z,and the Filters d:The minimization(6)with respect to CSC and coefficient variables of the gradient image in horizontal and vertical yields:

    The problem in(13)can be solved by employing an AL algorithm like mentioned above,(13)needs to introduce auxiliary variables,it solves:

    at the?th iteration fordj+1,?+1,zj+1,?+1,then updates the multipliersλ1,λ2andλ3by the formula

    ADMM is chosen to solve the(14).The corresponding fi ve subproblems can be solved as follows:

    where?represents the point-wise product function and the operation is implemented by component-wise manner.

    4 Experimental Results

    In this section,we evaluate the performance of proposed method at a variety of sampling schemes and undersampling factors.The sampling schemes employed in the experiments contain the 2D random sampling,pseudo radial sampling,and Cartesian sampling with random phase encoding(1D random).The size of images we use in the synthetic experiments are 512×512.The CS data acquisition was simulated by subsampling the 2D discrete Fourier transform of the MR images(except the test with real acquired data)in the light of many prior work on CS-MRI approaches,.In order to fi nd the sparse feature mapzk,we use a fi xed fi lterDwhich is trained from reference MR images.We fi nd that learningK=100 fi lters of size 11×11 pixels ful fi lls these conditions for our data and works well for all the images tested.In the experiment,the proposed method GradCSC is compared with the leading DLMRI[12]and GradDL[13]methods that have shown the substantially outperform other CS-MRI methods.In addition,we use the peak signal-to-noise ratio(PSNR)and highfrequency error norm(HFEN)[20]to evaluate the quality of reconstruction.All of these algorithms are implemented in MATLAB 7.1 on a PC equipped with AMD 2.31GHz CPU and 3GByte RAM.

    4.1 Experiments Under Different Undersampling Factors

    In this subsection,we evaluate the performance of Grad-CSC under different undersampling factors with same sampling scheme.Fig.2 illustrates the reconstruction results at a range of undersampling factors with 2.5,4,6,8,10 and 20.We added the zero-mean complex white Gaussian noise withσ=10.2 in the 2D random sampledk-space.The PSNR and HFEN values for DLMRI,GradDL and GradCSC at various undersampling factors are presented in Figs.2(b)and(c),additionally the PSNR values are listed in Table I.For the subjective comparison,the construction results and magnitude image of the reconstruction error provided by the three methods at 8-fold undersampling are presented in Figs.2(d),(e),(f)and(g),(h),(i),respectively.In this case,it can be seen that the image reconstructed by the DLMRI method(shown in Fig.2(d))is blurred and loses some textures.Although both GradDL and GradCSC present excellent performances on suppressing aliasing artifacts,our GradCSC provides a better reconstruction of object edges(such as the spine)and preserves fi ner texture information(such as the bottom-right of the reconstruction).Such difference in reconstruction quality is particularly clear in the image errors shown in Figs.2(g),(h)and(i).In general,our proposed method provides greater intensity fi delity to the image reconstructed from the full data.

    4.2 Impact of Undersampling Schemes

    In this subsection,we evaluate the performance of Grad-CSC at various sampling schemes.The results are presented in Fig.3 which reconstructed an axial T2-weighted brain image at 8-fold undersampling factors by applying three different sampling schemes,including 2D random sampling,1D Cartesian sampling,and pseudo radial sampling.The PSNR and HFEN indexes versus iterative number for method DLMRI,GradDL and GradCSC are plotted in Figs.3(b)and(c).Particularly,we present the reconstructions of DLMRI,GradDL and GradCSC with 2D random sampling in Figs.3(d),(e),and(f),respectively.In order to facilitate the observation,the difference image between reconstruction results are shown in Figs.3(g),(h),and(i).As can be expected,the convolution operator enables CSC outperform DLMRI and GradDL methods for most of speci fi ed undersampling ratios and trajectories.This exhibits the bene fi ts of employing the convolutional fi lter for sparse coding. In particular,in Fig.3(d),(e),and(f)the skeletons in the top half part of the Grad-CSC reconstruction appear less obscured than those in the DLMRI and GradDL results.the proposed method Grad-CSC reconstructs the images more accurately with larger PSNR and lower HFEN values than the GradDL approach.Particularly when sampled at 2D random trajectory,our method GradCSC outperforms others with a remarkable improvement from 0.7dB to 5.8dB.

    4.3 Performances at Different Noise Levels

    We also conduct experiments to investigate the sensitivity of GradCSC to different levels of complex white Gaussian noise.DLMRI,GradDL and GradCSC are applied to reconstruct a noncontrast MRA of the circle of Willis under pseudo radial sampling at 6.67-fold acceleration.Fig.4 presents the reconstruction results of three methods at different levels of complex white Gaussian noise,which are added to thek-space samples.Fig.4(c)presents the PSNRs of DLMRI,GradDL and GradCSC at a sequence of different standard deviations(0,2,5,8,10,12,15).Reconstruction results with noise 5 are shown in Figs.4(d),(e),and(f).The PSNRs gained by DLMRI and GradDL are 27.03dB and 29.78dB,while the GradCSC method achieves 30.45dB.Obviously,the reconstruction obtained by GradCSC is clearer than those by DLMRI and GradDL.It can be observed that our GradCSC method can reconstruct the images more precisely than DLMRI and GradDL,in terms of extracting more structural and detail information from gradient domain.The corresponding error magnitudes of the reconstruction are displayed in Figs.4(g),(h),and(i).It reveals that our method provides a more accurate reconstruction of image contrast and sharper anatomical depiction in noisy case.

    5 Conclusion

    In this work,a novel CSC method in gradient domain for MR image reconstruction was proposed.The important spatial structures of the signal were preserved by convolutional sparse coding.For the new derived model,we utilized the AL method to implement the algorithm in a few number of iterations.A variety of experimental results demonstrated the superior performance of the method under various sampling trajectories andk-space acceleration factors.The proposed method can produce highly accurate reconstructions for severely undersampled factors.It provided superior performance in both noiseless and noisy cases.The presented framework will be extended to parallel imaging applications in the future work.

    TABLE I RECONSTRUCTION PSNR VALUES AT DIFFERENT UNDERSAMPLING FACTORS WITH THE SAME 2D RANDOM SAMPLING TRAJECTORIES

    Fig.3.The reconstruction results of the axial T2-weighted brain image under different undersampling schemes.

    1 M.Lustig,D.Donoho,and J.M.Pauly,“Sparse MRI:The application of compressed sensing for rapid MR imaging,”Magn.Reson.Med.,vol.58,no.6,pp.1182?1195,Dec.2007.

    2 D.L.Donoho,“Compressed sensing,”IEEE Trans.Inform.Theory,vol.52,no.4,pp.1289?1306,Apr.2006.

    3 D.Liang,B.Liu,J.Wang,and L.Ying,“Accelerating SENSE using compressed sensing,”Magn.Reson.Med.,vol.62,no.6,pp.1574?1584,Dec.2009.

    4 M.Lustig,J.M.Santos,D.L.Donoho,and J.M.Pauly,“k-t SPARSE:high frame rate dynamic MRI exploiting spatiotemporal sparsity,”inProc.13th Ann.Meeting of ISMRM,Seattle,USA,2006.

    5 S.Q.Ma,W.T.Yin,Y.Zhang,and A.Chakraborty,“An efficient algorithm for compressed MR imaging using total variation and wavelets,”inProc.IEEE Conf.Computer Vision and Pattern Recognition,Anchorage,AK,USA,2008,pp.1?8.

    6 J.Trzasko and A.Manduca,“Highly undersampled magnetic resonance image reconstruction via homotopic?0-minimization,”IEEE Trans.Med.Imaging,vol.28,no.1,pp.106?121,Jan.2009.

    7 S.M.Gho,Y.Nam,S.Y.Zho,E.Y.Kim,and D.H.Kim,“Three dimension double inversion recovery gray matter imaging using compressed sensing,”Magn.Reson.Imaging,vol.28,no.10,pp.1395?1402,Dec.2010.

    8 M.Guerquin-Kern,M.Haberlin,K.P.Pruessmann,and M.Unser,“A fast wavelet-based reconstruction method for magnetic resonance imaging,”IEEE Trans.Med.Imaging,vol.30,no.9,pp.1649?1660,Sep.2011.

    9 L.Y.Chen,M.C.Schabel,and E.V.R.DiBella,“Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints,”Magn.Reson.Imaging,vol.28,no.5,pp.637?645,Jun.2010.

    10 Q.G.Liu,S.S.Wang,K.Yang,J.H.Luo,Y.M.Zhu,and D.Liang,“Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating,”IEEE Trans.Med.Imaging,vol.32,no.7,pp.1290?1301,Jul.2013.

    11 X.B.Qu,D.Guo,B.D.Ning,Y.K.Hou,Y.L.Lin,S.H.Cai,and Z.Chen,“Undersampled MRI reconstruction with patch-based directional wavelets,”Magn.Reson.Imaging,vol.30,no.7,pp.964?977,Sep.2012.

    12 S.Ravishankar and Y.Bresler,“MR image reconstruction from highly undersampled k-space data by dictionary learning,”IEEE Trans.Med.Imaging,vol.30,no.5,pp.1028?1041,May 2011.

    13 Q.G.Liu,S.S.Wang,L.Ying,X.Peng,Y.J.Zhu,and D.Liang,“Adaptive dictionary learning in sparse gradient domain for image recovery,”IEEE Trans.Image Process.,vol.22,no.12,pp.4652?4663,Dec.2013.

    14 Z.L.Hu,Q.G.Liu,N.Zhang,Y.W.Zhang,X.Peng,P.Z.Wu,H.R.Zheng,and D.Liang,“Image reconstruction from few-view CT data by gradient-domain dictionary learning,”J.X-Ray Sci.Technol.,vol.24,no.4,pp.627?638,Jul.2016.

    15 X.M.Luo,Z.Y.Suo,and Q.G.Liu,“Efficient InSAR phase noise fi ltering based on adaptive dictionary learning in gradient vector domain,”Chin.J.Eng.Math.,vol.32,no.6,pp.801?811,Dec.2015.

    16 M.D.Zeiler,D.Krishnan,G.W.Taylor,and R.Fergus,“Deconvolutional networks,”inProc.2010 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.2528?2535.

    17 B.A.Olshausen and D.J.Field,“Sparse coding with an overcomplete basis set:a strategy employed by V1?,”Vision Res.,vol.37,no.23,pp.3311?3325,Dec.1997.

    18 A.Szlam,K.Kavukcuoglu,and Y.LeCun,“Convolutional matching pursuit and dictionary training,”arXiv:1010.0422,Oct.2010.

    19 B.Chen,G.Polatkan,G.Sapiro,D.Blei,D.Dunson,and L.Carin,“Deep learning with hierarchical convolutional factor analysis,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.35,no.8,pp.1887?1901,Aug.2013.

    20 K.Kavukcuoglu,P.Sermanet,Y.L.Boureau,K.Gregor,M.Mathieu,and Y.LeCun,“Learning convolutional feature hierarchies for visual recognition,”inProc.23rd Int.Conf.Neural Information Processing Systems,Vancouver,British Columbia,Canada,2010,pp.1090?1098.

    21 M.D.Zeiler,G.W.Taylor,and R.Fergus,“Adaptive deconvolutional networks for mid and high level feature learning,”inProc.2011 IEEE Int.Conf.Computer Vision(ICCV),Barcelona,USA,2011,pp.2018?2025.

    22 F.Heide,L.Xiao,A.Kolb,M.B.Hullin,and W.Heidrich,“Imaging in scattering media using correlation image sensors and sparse convolutional coding,”O(jiān)pt.Express,vol.22,no.21,pp.26338?26350,Oct.2014.

    23 X.M.Hu,Y.Deng,X.Lin,J.L.Suo,Q.H.Dai,C.Barsi,and R.Raskar,“Robust and accurate transient light transport decomposition via convolutional sparse coding,”O(jiān)pt.Lett.,vol.39,no.11,pp.3177?3180,Jun.2014.

    24 J.Y.Xie,L.L.Xu,and E.H.Chen,“Image denoising and inpainting with deep neural networks,”inProc.25th Int.Conf.Neural Information Processing Systems,Lake Tahoe,Nevada,USA,2012,pp.341?349.

    25 S.H.Gu,W.M.Zuo,Q.Xie,D.Y.Meng,X.C.Feng,and L.Zhang,“Convolutional sparse coding for image superresolution,”inProc.2015 IEEE Int.Conf.Computer Vision(ICCV),Santiago,Chile,2015,pp.1823?1831.

    26 A.Krizhevsky,I.Sutskever,and G.E.Hinton,“Imagenet classi fi cation with deep convolutional neural networks,”inProc.25th Int.Conf.Neural Information Processing Systems,Lake Tahoe,Nevada,USA,2012,pp.1097?1105.

    27 Y.Y.Zhu,M.Cox,and S.Lucey,“3D motion reconstruction for real-world camera motion,”inProc.2011 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2011,pp.1?8.

    28 Y.Y.Zhu and S.Lucey,“Convolutional sparse coding for trajectory reconstruction,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.37,no.3,pp.529?540,Mar.2015.

    29 Y.Y.Zhu,D.Huang,F.De La Torre,and S.Lucey,“Complex non-rigid motion 3D reconstruction by union of subspaces,”inProc.2014 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Columbus,OH,USA,2014,pp.1542?1549.

    30 A.Serrano,F.Heide,D.Gutierrez,G.Wetzstein,and B.Masia,“Convolutional sparse coding for high dynamic range imaging,”Computer Graphics,vol.35,no.2,pp.153?163,May 2016.

    31 J.F.Yang,Y.Zhang,and W.T.Yin,“A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,”IEEE J.Sel.Topics Signal Process.,vol.4,no.2,pp.288?297,Apr.2010.

    32 H.Bristow,A.Eriksson,and S.Lucey,“Fast convolutional sparse coding,”inProc.2013 IEEE Conf.Computer Vision and Pattern Recognition(CVPR),Portland,OR,USA,2013,pp.391?398.

    33 B.Wohlberg, “Efficient convolutional sparse coding,” inProc.2014 IEEE Int.Conf.Acoustics,Speech and Signal Processing(ICASSP),Florence,Italy,2014,pp.7173?7177.

    中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 亚洲av熟女| 别揉我奶头~嗯~啊~动态视频| 免费在线观看成人毛片| 久久人妻av系列| 好看av亚洲va欧美ⅴa在| 久久香蕉精品热| 美女免费视频网站| 国产精品爽爽va在线观看网站| www.www免费av| 欧美丝袜亚洲另类 | 欧美乱码精品一区二区三区| 日韩免费av在线播放| 男女做爰动态图高潮gif福利片| 国产三级黄色录像| 久久久国产成人免费| 丰满人妻熟妇乱又伦精品不卡| 又黄又粗又硬又大视频| 老汉色∧v一级毛片| 五月伊人婷婷丁香| 亚洲av熟女| 两人在一起打扑克的视频| 免费在线观看日本一区| 麻豆久久精品国产亚洲av| 亚洲美女视频黄频| 精品久久久久久久末码| 久久伊人香网站| 超碰成人久久| 日韩欧美精品v在线| 亚洲中文av在线| 嫁个100分男人电影在线观看| 老司机福利观看| 9191精品国产免费久久| 日韩欧美 国产精品| 久久久成人免费电影| 一夜夜www| 午夜激情福利司机影院| 国产成人精品久久二区二区免费| www.自偷自拍.com| 久久香蕉国产精品| 可以在线观看的亚洲视频| 真实男女啪啪啪动态图| 日本黄色视频三级网站网址| 国产免费av片在线观看野外av| 免费看美女性在线毛片视频| 中出人妻视频一区二区| 特级一级黄色大片| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 日本黄色片子视频| 久久久久国产精品人妻aⅴ院| 色在线成人网| 国产伦人伦偷精品视频| 亚洲精品456在线播放app | 老鸭窝网址在线观看| 亚洲精品456在线播放app | 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 激情在线观看视频在线高清| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 在线播放国产精品三级| 亚洲国产高清在线一区二区三| 丰满的人妻完整版| 久久九九热精品免费| 一本精品99久久精品77| 国产极品精品免费视频能看的| 一进一出好大好爽视频| 日本一二三区视频观看| 啦啦啦韩国在线观看视频| 日本黄大片高清| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 午夜两性在线视频| 长腿黑丝高跟| aaaaa片日本免费| 国产精品野战在线观看| 嫩草影视91久久| 亚洲中文av在线| 熟女人妻精品中文字幕| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 国产乱人视频| 亚洲性夜色夜夜综合| 国产成人av教育| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看 | 女生性感内裤真人,穿戴方法视频| 精品熟女少妇八av免费久了| www.精华液| 亚洲欧洲精品一区二区精品久久久| av欧美777| 日韩欧美国产一区二区入口| 国产成人系列免费观看| 变态另类丝袜制服| 欧美激情在线99| 男人和女人高潮做爰伦理| 国产亚洲欧美98| 免费观看精品视频网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区二区三区色噜噜| 国产一区在线观看成人免费| 亚洲国产欧美人成| 性色avwww在线观看| 欧美黄色淫秽网站| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 国产 一区 欧美 日韩| 亚洲av片天天在线观看| 网址你懂的国产日韩在线| 国产视频一区二区在线看| 国产三级在线视频| 亚洲精品国产精品久久久不卡| 91av网站免费观看| 男人的好看免费观看在线视频| 18禁黄网站禁片午夜丰满| 国产aⅴ精品一区二区三区波| 91九色精品人成在线观看| 在线观看66精品国产| 日韩欧美国产一区二区入口| 色吧在线观看| 国产精品久久久久久人妻精品电影| 99久国产av精品| 婷婷亚洲欧美| 久久精品国产亚洲av香蕉五月| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 黄色 视频免费看| 成年女人永久免费观看视频| 色综合欧美亚洲国产小说| 精品福利观看| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 无限看片的www在线观看| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看 | 亚洲国产精品久久男人天堂| 男人舔女人的私密视频| 色播亚洲综合网| 亚洲天堂国产精品一区在线| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区| 国模一区二区三区四区视频 | 精品久久久久久久毛片微露脸| 舔av片在线| 又大又爽又粗| 亚洲欧美激情综合另类| 99精品在免费线老司机午夜| 女同久久另类99精品国产91| 国产一区在线观看成人免费| 少妇裸体淫交视频免费看高清| 99久久国产精品久久久| 欧美国产日韩亚洲一区| 特级一级黄色大片| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩卡通动漫| 精品久久久久久成人av| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 欧美zozozo另类| 中文在线观看免费www的网站| 欧美三级亚洲精品| 国产高清有码在线观看视频| 夜夜躁狠狠躁天天躁| 男人舔女人的私密视频| 免费看十八禁软件| 国产熟女xx| 国产不卡一卡二| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| 亚洲美女黄片视频| 禁无遮挡网站| 国产久久久一区二区三区| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 性色av乱码一区二区三区2| www.精华液| 悠悠久久av| 午夜福利免费观看在线| 可以在线观看的亚洲视频| 国产久久久一区二区三区| 亚洲在线自拍视频| 日韩欧美在线乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 色综合亚洲欧美另类图片| 亚洲无线在线观看| 色精品久久人妻99蜜桃| 欧美成人免费av一区二区三区| 亚洲av片天天在线观看| 免费在线观看影片大全网站| 丰满的人妻完整版| 最近最新中文字幕大全免费视频| 亚洲人成伊人成综合网2020| 脱女人内裤的视频| 麻豆成人av在线观看| 精华霜和精华液先用哪个| 麻豆国产97在线/欧美| 成年人黄色毛片网站| 亚洲国产精品久久男人天堂| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 亚洲无线在线观看| x7x7x7水蜜桃| 99国产精品99久久久久| 国产精品综合久久久久久久免费| 亚洲精品美女久久av网站| 性色avwww在线观看| 久久午夜综合久久蜜桃| 99久久精品国产亚洲精品| 国产精品 国内视频| 欧美3d第一页| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 1024香蕉在线观看| 国产精品 国内视频| 99热这里只有精品一区 | 亚洲电影在线观看av| 亚洲精品美女久久久久99蜜臀| 在线观看一区二区三区| 亚洲国产高清在线一区二区三| 日本 av在线| a级毛片在线看网站| 精品午夜福利视频在线观看一区| 中文资源天堂在线| 日本五十路高清| a级毛片a级免费在线| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 久久人人精品亚洲av| 黄频高清免费视频| 亚洲avbb在线观看| 亚洲色图av天堂| 免费av毛片视频| 国产亚洲av嫩草精品影院| 欧美最黄视频在线播放免费| 伊人久久大香线蕉亚洲五| 久久久久久国产a免费观看| 成人午夜高清在线视频| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| av在线天堂中文字幕| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av | 午夜福利18| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 国产91精品成人一区二区三区| 欧美三级亚洲精品| 亚洲熟妇熟女久久| 亚洲黑人精品在线| 日本撒尿小便嘘嘘汇集6| 日本在线视频免费播放| 男女下面进入的视频免费午夜| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲男人的天堂狠狠| 三级男女做爰猛烈吃奶摸视频| 黄片小视频在线播放| 嫁个100分男人电影在线观看| 免费在线观看视频国产中文字幕亚洲| 久久亚洲精品不卡| 亚洲成人久久爱视频| 亚洲av成人一区二区三| 一二三四社区在线视频社区8| aaaaa片日本免费| 日本熟妇午夜| 国产高清激情床上av| 久久久久国内视频| 看黄色毛片网站| 啦啦啦免费观看视频1| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 国产精品1区2区在线观看.| 中文亚洲av片在线观看爽| 久久久水蜜桃国产精品网| 在线播放国产精品三级| 波多野结衣高清无吗| 999精品在线视频| 亚洲黑人精品在线| 窝窝影院91人妻| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 91av网站免费观看| 久久久久久久久中文| 国产一区在线观看成人免费| 国产精品女同一区二区软件 | 99国产精品一区二区蜜桃av| 精品一区二区三区四区五区乱码| 亚洲 欧美一区二区三区| 精品一区二区三区视频在线 | 欧美日韩中文字幕国产精品一区二区三区| 免费人成视频x8x8入口观看| 黄色视频,在线免费观看| 欧美在线一区亚洲| 精品一区二区三区四区五区乱码| 午夜久久久久精精品| 又黄又爽又免费观看的视频| www.自偷自拍.com| 宅男免费午夜| 国产亚洲欧美在线一区二区| 成在线人永久免费视频| 一级作爱视频免费观看| 亚洲精品乱码久久久v下载方式 | 国产一区二区三区在线臀色熟女| 国产高清有码在线观看视频| 亚洲国产欧美网| 一a级毛片在线观看| 国产亚洲精品久久久com| 国产精品一区二区免费欧美| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 国产真实乱freesex| 久久精品综合一区二区三区| 母亲3免费完整高清在线观看| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 国产精品精品国产色婷婷| 99热这里只有精品一区 | 亚洲av成人不卡在线观看播放网| 欧美xxxx黑人xx丫x性爽| svipshipincom国产片| 欧美+亚洲+日韩+国产| а√天堂www在线а√下载| 国产成人欧美在线观看| 男女午夜视频在线观看| 日韩三级视频一区二区三区| 精品午夜福利视频在线观看一区| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 成人三级做爰电影| ponron亚洲| 国产真实乱freesex| 亚洲午夜精品一区,二区,三区| 亚洲国产欧洲综合997久久,| 久久国产精品人妻蜜桃| 欧美av亚洲av综合av国产av| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| 极品教师在线免费播放| 狂野欧美白嫩少妇大欣赏| 亚洲人成伊人成综合网2020| 久久性视频一级片| 久9热在线精品视频| 男女那种视频在线观看| 国产99白浆流出| 天堂√8在线中文| 一进一出抽搐动态| 天堂av国产一区二区熟女人妻| 欧美日韩精品网址| 波多野结衣高清无吗| 亚洲九九香蕉| 久久久久国内视频| 精品国内亚洲2022精品成人| 国产高清激情床上av| 中国美女看黄片| 久久精品国产综合久久久| 午夜福利成人在线免费观看| 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看 | 日韩欧美在线乱码| 亚洲人成网站高清观看| 久久热在线av| 在线十欧美十亚洲十日本专区| 久久久久久九九精品二区国产| 一个人观看的视频www高清免费观看 | 免费看美女性在线毛片视频| 午夜成年电影在线免费观看| aaaaa片日本免费| 又爽又黄无遮挡网站| 国产精品野战在线观看| 欧美黄色片欧美黄色片| 久9热在线精品视频| xxx96com| 99re在线观看精品视频| 国产精品爽爽va在线观看网站| 母亲3免费完整高清在线观看| e午夜精品久久久久久久| 熟妇人妻久久中文字幕3abv| 色哟哟哟哟哟哟| 国产精品九九99| 亚洲国产精品成人综合色| 高清在线国产一区| 欧美不卡视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 成人性生交大片免费视频hd| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| www日本在线高清视频| 亚洲在线自拍视频| 国产精品一区二区三区四区免费观看 | 麻豆一二三区av精品| ponron亚洲| 亚洲熟妇熟女久久| 国产成人av教育| 三级国产精品欧美在线观看 | 狂野欧美激情性xxxx| 人妻丰满熟妇av一区二区三区| 12—13女人毛片做爰片一| 69av精品久久久久久| 香蕉久久夜色| 91麻豆精品激情在线观看国产| 少妇裸体淫交视频免费看高清| 亚洲中文日韩欧美视频| www.999成人在线观看| 男女那种视频在线观看| 俄罗斯特黄特色一大片| 国产一区在线观看成人免费| 99热6这里只有精品| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 搞女人的毛片| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式 | 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 又粗又爽又猛毛片免费看| 最近最新免费中文字幕在线| 一个人看视频在线观看www免费 | av在线天堂中文字幕| 国产高清三级在线| 身体一侧抽搐| 国产成人影院久久av| www日本在线高清视频| 精品久久久久久久毛片微露脸| 精品久久蜜臀av无| ponron亚洲| 亚洲欧美一区二区三区黑人| 国产欧美日韩精品一区二区| 久久久久久人人人人人| 欧美日韩乱码在线| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影 | 婷婷六月久久综合丁香| 国产高清三级在线| 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 久久久久久大精品| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美三级三区| 两人在一起打扑克的视频| 国产午夜福利久久久久久| 亚洲av电影在线进入| 久久久国产精品麻豆| 最近最新中文字幕大全电影3| 欧美日韩精品网址| 色精品久久人妻99蜜桃| 日本熟妇午夜| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 可以在线观看的亚洲视频| 国语自产精品视频在线第100页| 一本久久中文字幕| 亚洲最大成人中文| 毛片女人毛片| 久久精品人妻少妇| 国产淫片久久久久久久久 | 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 1024手机看黄色片| 国语自产精品视频在线第100页| 好男人在线观看高清免费视频| 最好的美女福利视频网| 亚洲人成电影免费在线| 丁香欧美五月| 午夜福利在线观看吧| 黄色 视频免费看| 日本撒尿小便嘘嘘汇集6| 成人国产一区最新在线观看| 精品日产1卡2卡| 色吧在线观看| 级片在线观看| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 日本与韩国留学比较| 国产日本99.免费观看| 久久精品人妻少妇| 国产成人一区二区三区免费视频网站| 18禁观看日本| 女警被强在线播放| 国产一区二区在线观看日韩 | 国产亚洲av嫩草精品影院| 黄色成人免费大全| 亚洲成人久久爱视频| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 天天添夜夜摸| 精品不卡国产一区二区三区| 国产麻豆成人av免费视频| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 在线观看一区二区三区| 美女被艹到高潮喷水动态| 日本精品一区二区三区蜜桃| 一个人看视频在线观看www免费 | 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 狂野欧美激情性xxxx| 99精品欧美一区二区三区四区| 日本黄色片子视频| 亚洲av免费在线观看| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲| 一级黄色大片毛片| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| 99久久国产精品久久久| 老司机在亚洲福利影院| 欧美zozozo另类| 99热这里只有精品一区 | 亚洲精品乱码久久久v下载方式 | 亚洲熟妇中文字幕五十中出| 国产精品日韩av在线免费观看| 精品日产1卡2卡| 美女大奶头视频| 亚洲成人久久爱视频| av在线蜜桃| 成年女人永久免费观看视频| 久久热在线av| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 一个人看视频在线观看www免费 | 在线视频色国产色| 麻豆av在线久日| 国产精品乱码一区二三区的特点| 1024香蕉在线观看| 国产高清三级在线| 亚洲精品国产精品久久久不卡| 欧美极品一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 日韩免费av在线播放| 黄片大片在线免费观看| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 999久久久国产精品视频| 国产精品久久电影中文字幕| 变态另类丝袜制服| 韩国av一区二区三区四区| 毛片女人毛片| 日本五十路高清| www国产在线视频色| 日韩三级视频一区二区三区| 国产精品一区二区三区四区免费观看 | 色av中文字幕| 日本 av在线| 黑人操中国人逼视频| 中国美女看黄片| av在线蜜桃| 亚洲精品乱码久久久v下载方式 | 国产亚洲欧美在线一区二区| 久久久精品大字幕| 岛国在线免费视频观看| 久久久久久人人人人人| 国内精品久久久久久久电影| 国产精品一及| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 国内少妇人妻偷人精品xxx网站 | 午夜两性在线视频| 首页视频小说图片口味搜索| 十八禁网站免费在线| 中文字幕高清在线视频| 免费观看的影片在线观看| 美女免费视频网站| 国产人伦9x9x在线观看| 18禁美女被吸乳视频| 男人舔女人的私密视频| 美女高潮的动态| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 亚洲av电影在线进入| 9191精品国产免费久久| 久久精品影院6| 国产成人精品久久二区二区免费| 男女下面进入的视频免费午夜| 亚洲国产精品久久男人天堂| 久久精品人妻少妇| 成人鲁丝片一二三区免费| 波多野结衣高清无吗| 美女 人体艺术 gogo| 天堂网av新在线| 综合色av麻豆|