• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust H∞Consensus Control for High-order Discrete-time Multi-agent Systems With Parameter Uncertainties and External Disturbances

    2017-03-12 03:40:25JunXuGuoliangZhangJingZengBoyangDuXiaoJia
    自動化學(xué)報 2017年10期

    Jun Xu Guoliang Zhang Jing Zeng Boyang Du Xiao Jia

    1 Introduction

    In recent years,distributed coordination of multi-agent systems(MASs)has received great attention from many researchers due to its broad applications on MASs in many areas including formation control[1],[2], fl ocking[3],[4],distributed fi ltering[5],[6],synchronization of coupled chaotic oscillators[7]?[9].Consensus is an essential problem of distributed coordination of MASs,which is to make each agent agree on some common values of interest through feedback of local information from neighboring agents.

    The theoretical framework for posing and solving the consensus problem for MASs was fi rst introduced in[10]?[12]. Their work mostly focused on the fi rst-order and second-order consensus in MASs.Furthermore,the consensus problem of MASs has obtained a tremendous surge of interest and extensive development.These works can be generally divided into two categories depending on whether the agent models are continuous-time or discrete-time.The union of interaction topologies must contain a spanning tree if MASs are expected to achieve consensus asymptotically[13].A framework of high-dimensional state space for the consensus problems of MASs was studied in[14],and then the consensus problems of high order or more general linear MASs models were discussed in[15]?[17].The consensus problem of discrete-time MASs(D-MASs)based on general linear models was investigated in[18],[19].The leaderfollowing consensus problem of D-MASs based on general linear models was studied in[20].The robust guaranteed cost consensus problem of general linear D-MASs models with parameter uncertainties and time-varying delays was investigated in[21].

    With the development of the research,theH∞consensus control problem of MASs subject to external disturbances was considered in[22]?[24].RobustH∞consensus control problems of fi rst-order MASs with external disturbances and model uncertainties are discussed in[22].The secondorder robustH∞consensus control problem of MASs with measurement noises and asymmetric delays is studied in[23].DistributedH2andH∞consensus control problems are investigated in[24]for MASs with linear dynamics subject to external disturbances.The robustH∞consensus control problem of high-order linear MASs with parameter uncertainties and external disturbances was studied in[25],which also considered the time-delay and switching topology simultaneously.Speci fi cally,the aforementioned works were based on continuous-time models,while the study of discrete-time model cases is more widely applied in practice.In[26],H∞synchronization and state estimation problems were considered for an array of coupled discrete time-varying stochastic complex networks over a fi nite horizon.The robustH∞consensus control problem of high-order linear time-varying D-MASs with uncertainties/disturbances and missing measurements was investigated in[27].The event-basedH∞consensus control problem for high-order linear time-varying D-MASs over a fi nite horizon was studied in[28].Nevertheless,although the robustH∞control consensus problem of high-order D-MASs with parameter uncertainties and external disturbances was addressed in[26]?[28],the fi nal convergence value was not provided in these studies.

    Motivated by the above,in this paper,the robustH∞control consensus problem of high-order D-MASs with parameter uncertainties and external disturbances is investigated by state space decomposition approach.We consider the leaderless consensus of the uncertain high-order D-MASs with fi xed topologies.In this problem,if an appropriate consensus protocol is applied,the D-MASs should converge to a common value.Comparing with the existing works,the contribution of this paper is two-fold.On one hand,by state space decomposition approach,a sufficient linear matrix inequality(LMI)condition is given to guarantee that,high-order D-MASs subject to parameter uncertainties and external disturbances achieve robust consensus with aH∞performance indexγ.On the other hand,withωx(k)≡0 orωx(k)interpreted as deterministicl2signal,fi nal consensus values of high-order D-MASs with parameter uncertainties and external disturbances,which are fi rst provided in this paper for the fi rst time.

    The rest of the paper is organized as follows.The problem formulation is presented in Section 2.In Section 3,the robustH∞consensus control problem of MASs(1)is transformed to a robustH∞control problem of a set of independent uncertain systems,and a sufficient LMI condition insuring the robust consensus,and a fi nal consensus value of MASs(1)with protocol(4)are given.A numerical example is provided in Section 4 to verify the theoretical analysis.Some conclusions are fi nally drawn in Section 5 which concludes the paper and proposes some possible future directions.The notions of graph theory and Kronecker product that will be used in this paper are summarized in Appendix A and Appendix B,respectively.

    Notations:A matrix or a vector is said to be positive(respectively,non-negative)if all of its entries are positive(respectively,non-negative).A square matrix is called Schur stable if all of its eigenvalues lie in the open unit disk.Let diag{a11,a22,...,ann}be the diagonal matrix with diagonal entriesa11,a22,...,ann.The symbol?represents the Kronecker product.MTdenotes the transpose conjugate of matrixM.Iis an appropriate dimensions identity matrix.1N=[1,...,1]Tdenotes an N-dimensional vector with all of its elements being 1.

    2 Problem Formulation

    A high-order MAS can be described as a linear system,which has been presented in[15],and thus,consider a highorder identical D-MAS consisting ofNagents indexed by 1,2,...,N,distributed on an undirected communication graphG,in which the dynamics of agentiis described by a linear discrete-time system as follows

    whereDis a real constant matrix,andFis an unknown matrix function satisfying

    The parameter uncertainties?Aand?Bare said to be admissible if both(2)and(3)hold.For the leaderless consensus problem of uncertain D-MASs(1),the following local consensus protocol is applied to each agenti

    whereKis a constant gain matrix with appropriate dimensions,andaijbeing the graph edge weights.This protocol is distributed in nature as it only depends on the immediate neighborsNiof agent(node)i.This is known as a local voting protocol because the control input of each agent depends on the difference between its state and all its neighbors.Then,the de fi nition of consensus for highorder D-MASs(1)with consensus protocol(4)is given as follows.

    De fi nition 1:For a given gain matrixK,system(1)is said to achieve consensus if for any given bounded initial condition,there exists a vector-valuedc(k)which is dependent on the initial condition such that limk→∞(x(k)?1N?c(k))=0,wherec(k)is called a fi nal consensus value.

    The suboptimal robustH∞consensus control problem of system(5)is stated to fi nd a distributed protocol(4)such that

    1)withωx(k)=0,the closed-loop system(5)is asymptotically stable for all admissible uncertain matricesF.

    2)withωx(k)interpreted as deterministicl2signal,the closed-loop transfer function fromωx(k)toof system(5),which is denoted byTωz,satis fi es‖Tωz‖∞<γfor all admissible uncertain matricesFand a given allowable scalarγ>0,where‖Tωz‖∞is theH∞norm ofTωz,de fi ned by.

    In order to analyze the robustH∞consensus control problem of closed-loop D-MASs(6),we assume hereafter that the communication graphGis connected and give the following lemma about the graph theory.

    Lemma 1[29]:LetLbe the Laplacian matrix of an undirected graphG,then zero is an eigenvalue ofL.If,in addition,Gis connected,the zero eigenvalue ofLis simple,and all the other eigenvalues ofLare positive and real.

    Moreover,letλi(i=1,2,...,N)be eigenvalues of the Laplacian matrixL∈RNfor an undirected topologyG,whereλ1=0 with the associated eigenvector,andλ1≤λ2≤···≤λN.There exists an orthogonal matrix

    such thatUTLU=diag{λ1,λ2,...,λN}.

    Theorem 1:For a givenγ>0,system(5)is asymptotically stable and‖Tωz‖∞<γ,if and only if the followingNsystems are simultaneously asymptotically stable and theH∞norms of their transfer function matrices are all less thanγ:

    such thatUTLU=diag{λ1,λ2,...,λN}= Λ.Let

    Then,system(5)can be rewritten in terms ofas

    Moreover,reformulate the disturbance variableωx(k)and the performance variablevia

    Subsequently,substituting(9)and(10)into(8)gives

    Note that(11)is composed ofNindividual systems of(6).Denote bythe transfer function matrices of systems(11)and(5),respectively.Then,it follows from(5),(9),(10)and(11)that

    which implies that

    In addition,it is worth mentioning that,

    By Lemma 1,the discrete-time system(11)also can be rewritten as the followingNsubsystems

    Obviously,if subsystems(15)are asymptotically stable,then D-MASs(5)reach consensus.Subsystem(14)determines the fi nal consensus value of D-MASs(5),and the details of it will be discussed below.

    Remark 1:The robustH∞leaderless consensus problem of uncertain D-MASs(1)is to design distributed consensus protocols,?i∈Nisuch that the consensus is reached and‖Tωz‖∞<γ,simultaneously.Theorem 1 converts the robustH∞consensus control problem of D-MASs(5)into the robustH∞control problems ofNsubsystems(6),which is a set of independent systems having the same dimensions as a single agent in(1),thereby reducing the computational complexity signi fi cantly.The key tools leading to this result rely on the state space decomposition approach,as used in[15].

    3 Main Results

    Lemma 2:Given the pair(K,γ>0),if the matrix inequality

    admits a symmetric positive de fi nite solutionP∈Rd×d,whereˉAλi=A+?A?λi(B+?B)K=Aλi+DFEλi,Aλi=A?λiBK,Eλi=E1?λiE2K.Then,D-MASs(1)are said to achieve robust consensus with aH∞performance indexγ.

    Proof:GivenK,γ>0,assume thatP=PT>0 satisfi es the matrix inequality(16).In this case(dropping the quadratic semide fi nite positive term inP)it follows

    (complying with the previous assumptions)thatis asymptotically stable.To prove theH∞-norm.Inequality,we proceed as follows.For each system(6),consider the closed-loop transfer function fromgiven by

    De fi nings=ejω,ω∈[?π,π]and the auxiliary transfer functionafter simple but tedious algebraic manipulations,inequality(17)can be factorized as

    which,after completing squares,becomes

    meaning that‖Hλi‖∞<γ,which proves the lemma proposed.

    Remark 2:In Lemma 2,a sufficient condition is given to guarantee D-MASs(5)achieving robust consensus with aH∞performance indexγ.Nevertheless,it is not difficult to fi nd that(16)is a nonlinear matrix inequality(NMI)and therein lies parameter uncertainties.

    To cope with the uncertain matricesFand the nonlinear terms of(16),the following two lemmas are given.

    Lemma 4[30]:Given matricesY,DandEof appropriate dimensions and withYsymmetric,then for allFsatisfyingFTF≤I,if and only if there exists a scalarε>0 such that

    Lemma 5(Schur complement)[31]:The linear matrix inequality

    whereQ(x)=Q(x)T,R(x)=R(x)T,andS(x),depends affinely onx,is equivalent to one of the following conditions

    1)Q(x)>0,R(x)?S(x)TQ(x)?1S(x)>0;

    2)R(x)>0,Q(x)?S(x)R(x)?1S(x)T>0.

    Theorem 2:Consider D-MASs(1)with a fi xed,undirected and connected communication topologyG.The distributed consensus protocol(4)globally asymptotically solves the robust consensus problem of D-MASs(1)withH∞-norm consensus performance boundγif there exist a scalarε>0,a matrixWwith appropriate dimensions and a positive de fi nite matrixXsuch that

    wherei=1,2,...,N.Furthermore,if LMI(23)has a feasible solutionε,W,X,then the feedback gain matrixKof protocol(4)can be calculated byK=WX?1.

    Proof:By Lemma 5,matrix inequality(16)is equivalent to

    Moreover,the above inequality can be rewritten as

    It follows from the Lemma 4 that(25)can be expressed as

    Through Lemma 5 again,matrix inequality(26)is equivalent to

    Pre-and post-multiplying both sides of(27)by

    lettingX=P?1,W=KP?1,and applying Lemma 5 again yield LMI(23),wherei=1,2,...,N.

    Remark 3:In Theorem 2,it can be noted that the NMI(16)is transformed to a LMI condition(23).Subsequently,high-order D-MASs(1)with the distributed consensus protocol(4)achieve robust consensus with aH∞performance indexγ.Thereby the neighboring feedback matrixKalso can be obtained.Then,the local consensus protocol(4)can be implemented by each agent in a fully distributed fashion requiring no global information of the communication topology.

    Remark 4:From Theorem 2,we can also get that,the communication disturbances have effects on the performance of the control object,such as switching interaction topologies.In[32],[33],the time-varying formation tracking problems for second-order MASs with switching interaction topologies were studied.Switching topologies include two cases.One is that every interaction topology of MASs has a spanning tree;another is joint-contained spanning tree topologies.It should be mentioned that,this approach can be easily extended to the fi rst case,and more details can be seen in our work[34].There have been some difficulties to the joint-contained spanning tree case.We will consider it in the future.

    Theorem 3:Withωx(k)interpreted as deterministicl2signal,when D-MASs(5)achieve robust consensus,the final consensus valuec(k)satis fi es

    Proof:Letand,then by(7),xxx(k)can be uniquely decomposed as.As discussed above,we can know that if the system(5)achieves robust guaranteed cost consensus,the subsystem(15)should be Schur stable,which means that the response of system(15)due toshould satisfy.Hence the final consensus valuec(k)is determined solely upon.Since,we have,and because,then we can obtain,that is to say

    Hence,we have

    then the fi nal consensus valuesatis fi es

    Corollary 1:Withωx(k)≡0,when multi-agent system(5)achieves robust consensus,the fi nal consensus valuesatis fi es

    Proof:This proof can be easily obtained from the proof of Theorem 3.

    Remark 5:Withωx(k)interpreted as deterministicl2signal,the fi nal consensus valueof system(5)is given by Theorem 3.The fi nal consensus valuecan be divided into two parts,one is,which is related to the system matrixA+?Aand initial statex(0),the other is,which is related to the external disturbanceωx(k).This implies that the external disturbanceωx(k)has an effect on the fi nal consensus value,and which is also related to the system matrixA+?A,and initial state.This condition is different from that of highorder D-MASs without parameter uncertainties and external disturbances,which is discussed in[34].Withωx(k)≡0,the fi nal consensus valueof system(5)is given by Corollary 1.That is,in this case,the fi nal consensus value is only related to the system matrixA+?A,and initial state.

    Remark 6:It should be pointed out that,in[26]?[28],by recursive linear matrix inequalities(RLMIs)techniques,the robustH∞consensus control problem of high-order D-MASs(1)with uncertainties/disturbances was investigated over a fi nite horizon.They were concerned about the boundedness of the consensus error but did not actually guarantee its convergence.Different from[26]?[28],we consider the in fi nite time horizon case,which took care of the consensusability of D-MASs rather than consensus errors.In Theorems 1 and 2,a sufficient LMI condition is given to guarantee that high-order D-MASs(1)with parameter uncertainties and external disturbances achieve robust consensus with a performance levelγ.Comparing to related works[25]?[28],this approach has a favorable decoupling feature.Speci fi cally,note that theH∞performance levelγminof network(6),consisting ofNagents in D-MASs(1)under consensus protocols(4),is actually equal to the minimalH∞norm of a single agent(1)by means of a state feedback controller of the form,independent of the communication topologyGas long as it is connected.In addition, fi nal consensus values of highorder D-MASs(1)with parameter uncertainties and external disturbances are fi rst given in this paper.In addition,practical consensus problems for general high-order linear time-invariant swarm systems with interaction uncertainties and time-varying external disturbances on directed graphs were investigated in[35].The authors paid attention to the output consensus of continuous-time highorder linear time-invariant swarm systems.However,the state consensus problem of discrete-time multi-agent systems is addressed in this paper.Moreover,the external disturbance was solved by the Lyapunov-Krasovskii functional approach and the linear matrix inequality technique in the literature,but we use theH∞control method to deal with it.

    4 Simulations

    In this section,a numerical example is given to illustrate the effectiveness of the proposed theoretical results.We apply the above proposed consensus protocol(4)to achieve state alignment among 8 agents.The dynamics of them are described by(1),where

    andr1,r2andr3are uncertain parameters which satisfy?1≤r1≤1,?1≤r2≤1 and?1≤r3≤1.Then,D-MASs(1)can be rewritten as

    We apply the consensus protocol(4)to achieve consensus among the above those 8 agents under a fi xed topologyG,which is shown in Fig.1.

    Fig.1. The interaction topology G of 8 agents.

    Assume that the initial state values of the all agents 1,...,8 are randomly produced withx1(0)=[1,5,?2]T,x2(0)=[2,4,3]T,x3(0)=[1,1,2]T,x4(0)=[3,2,1]T,x5(0)=[5,6,?2]T,x6(0)=[?3,3,4]T,x7(0)=[?2,?4,?3]T,x8(0)=[?5,?2,?1]T,and letr1=0.15,r2=0.25,r3=0.15 andτmax=3.Each agent uses protocol(4).Letγ=1 and suppose that the exogenous disturbance inputs are selected asωi,x(k)=0.1ie?0.5ksin(k).By Theorem 2,we can get that

    In Figs.2?4,the simulation results are given.The state trajectories of uncertain D-MASs(1)with and without external disturbances are shown in Figs.2?4(b)and(a),respectively.Final consensus valuesc(k)andc?(k),which are produced by Corollary 1 and Theorem 3,are marked by the red asterisk and blue circle,respectively.

    Fig.2. The state 1 trajectories of D-MASs(1).

    From Figs.2?4(a),it can be seen that the state trajectories of D-MASs(1)withωx(k)≡0 asymptotically converge to the common value,which is related torj(j=1,2,3).The fi nal consensus value of D-MASs(1)with parameter uncertainties is.This is in accord with Corollary 1.Nevertheless,in Figs.2?4(b),we can know that the common value of D-MASs(1)is related toωx(k),and ifωx(k)/=0,c(k)is altered and asymptotically converges to

    which is in accordance with Theorem 3.By De fi nition 1,it is clear that D-MASs(1)achieves robust consensus with protocol(4).Therefore,the correctness and validity of proposed protocols and theorems are demonstrated.

    Fig.3. The state 2 trajectories of D-MASs(1).

    Fig.4. The state 3 trajectories of D-MASs(1).

    5 Conclusions

    The robustH∞consensus control problem of high-order D-MASs with parameter uncertainties and external disturbances is investigated in this paper.A sufficient LMI condition is obtained to guarantee that D-MASs(1)achieve robust consensus with protocol(4).Meanwhile,the convergence result is given as a fi nal consensus value.Finally,an illustrative example is given to demonstrate the correctness and effectiveness of the theoretical results.Further research will be conducted on the consensus problem of DMASs with switching topologies and time-delays.

    Appendix A Graph

    Let a weighted digraph(or directed graph)G=(V,E,A)of orderNrepresents an interaction topology of a network of agents,with the set of nodesV={v1,...,vN},set of edgesE?V×V,and a weighted adjacency matrixA=[aij]with nonnegative adjacency elementsaij.

    The node indexes belong to a fi nite index setI={1,2,...,N}.An edge ofGis denoted byeij=(vi,vj),whereviandvjare called the initial and terminal nodes.It implies that nodevjcan receive information from nodevi,but not necessarily vice versa.The adjacency elements associated with the edges of the graph are positive ifeij∈Ewhileaij=0 ifeij/∈E.Furthermore,we assumeaii=0 for alli∈I.The set of neighbors of nodeviis denoted byNi={vj∈V:(vi,vj)∈E}.A cluster is any subsetJ?Vof the nodes of the graph.The set of neighbors of a clusterNJis de fi ned byNJ=∪vi∈JNi={vj∈V:vi∈J,(vi,vj)∈E}.The in-degree and out-degree of nodeviare de fi ned asand,respectively,The degree matrix of the digraphGis a diagonal matrix ? =[?ij],where

    The graph Laplacian matrix associated with the digraphGis de fi ned asL(G)=L=??A.

    Appendix B Kronecker Product

    Given matricesP=(pij)n×n∈Rm×nandQ=(qij)n×n∈Rp×q,their Kronecker product is de fi ned as

    P?Q=[pijQ]∈Rmp×nq

    in[36].For matricesA,B,CandD,with appropriate dimensions,we have the following conditions.

    1)(γA)?B=A?(γB),whereγis a constant;

    2)(A+B)?C=A?C+B?C;

    3)(A?B)(C?D)=(AC)?(BD);

    4)(A?B)T=AT?BT;

    5)Suppose thatAandBare invertible,then(A?B)?1=A?1?B?1;

    6)IfAandBare symmetric,so is(A?B);

    7)IfAandBare symmetric positive de fi nite(respectively,positive semide fi nite),so is(A?B);

    8)Suppose thatAhas the eigenvaluesβiwith associated eigenvectorsfi∈Rp,i=1,...,p,andBhas the eigenvaluesρiwith associated eigenvectorsgj∈Rp,j=1,...,q.Then thepqeigenvalues of(A?B)areβiρjwith associated eigenvectorsfi?gj,i=1,...,p,j=1,...,q.

    1 A.Sinha and D.Ghose,“Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents,”IEEE Trans.Automat.Control,vol.51,no.11,pp.1819?1824,Nov.2006.

    2 M.Cao,C.B.Yu,and B.D.O.Anderson,“Formation control using range-only measurements,”Automatica,vol.47,no.4,pp.776?781,Apr.2011.

    3 R.Olfati-Saber,“Flocking for multi-agent dynamic systems:Algorithms and theory,”IEEE Trans.Automat.Control,vol.51,no.3,pp.401?420,Mar.2006.

    4 H.T.Zhang,C.Zhai,and Z.Y.Chen,“A general alignment repulsion algorithm for fl ocking of multi-agent systems,”IEEE Trans.Automat.Control,vol.56,no.2,pp.430?435,Feb.2011.

    5 R.Olfati-Saber,“Distributed Kalman fi lter with embedded consensus fi lters,”Proc.44th IEEE Conference on Decision and Control,and the European Control Conference,Seville,Spain,2005,pp.8179?8184.

    6 B.A?cskme?se,M.Mandi′c,and J.L.Speyer, “Decentralized observers with consensus fi lters for distributed discrete-time linear systems,”Automatica,vol.50,no.4,pp.1037?1052,Apr.2014.

    7 M.Barahona and L.M.Pecora,Synchronization in smallworld systems,”Phys.Rev.Lett.,vol.89,no.5,Article ID:054101,Jul.2002.

    8 K.Hengster-Movric,K.Y.You,F.L.Lewis,and L.H.Xie,“Synchronization of discrete-time multi-agent systems on graphs using Riccati design,”Automatica,vol.49,no.2,pp.414?423,Feb.2013.

    9 Z.H.Wang,J.J.Xu,and H.S.Zhang,“Consensusability of multi-agent systems with time-varying communication delay,”Syst.Control Lett.,vol.65,pp.37?42,Mar.2014.

    10 R.O.Saber and R.M.Murray,“Consensus protocols for networks of dynamic agents,”inProc.2003 American Control Conference,Denver,CO,USA,2003,pp.951?956.

    11 R.Olfati-Saber and R.M.Murray,“Consensus problems in networks of agents with switching topology and timedelays,”IEEE Trans.Automat.Control,vol.49,no.9,pp.1520?1533,Sep.2004.

    12 R.Olfati-Saber,J.A.Fax,and R.M.Murray,Consensus and cooperation in networked multi-agent systems,”Proc.IEEE,vol.95,no.1,pp.215?233,Jan.2007.

    13 W.Ren and R.W.Beard,“Consensus seeking in multiagent systems under dynamically changing interaction topologies,”IEEE Trans.Automat.Control,vol.50,no.5,pp.655?661,May2005.

    14 F.Xiao and L.Wang,“Consensus problems for highdimensional multi-agent systems,”IET Control Theory Appl.,vol.1,no.3,pp.830?837,May2007.

    15 J.X.Xi,N.Cai,and Y.S.Zhong,“Consensus problems for high-order linear time-invariant swarm systems,”Phys.A,vol.389,no.24,pp.5619?5627,Dec.2010.

    16 J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Consensus and consensualization of high-order swarm systems with time delays and external disturbances,”J.Dyn.Syst.Meas.Control,vol.134,no.4,Article ID:041011,May2012.

    17 J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Consensus analysis and design for high-order linear swarm systems with time-varying delays,”Phys.A:Statist.Mech.Appl.,vol.390,no.23?24,pp.4114?4123,Nov.2011.

    18 K.Y.You and L.H.Xie,“Network topology and communication data rate for consensusability of discrete-time multiagent systems,”IEEE Trans.Automat.Control,vol.56,no.10,pp.2262?2275,Oct.2011.

    19 G.X.Gu,L.Marinovici,and F.L.Lewis,“Consensusability of discrete-time dynamic multiagent systems,”IEEE Trans.Automat.Control,vol.57,no.8,pp.2085?2089,Aug.2012.

    20 Y.F.Su and J.Huang,“Two consensus problems for discrete-time multi-agent systems with switching network topology,”Automatica,vol.48,no.9,pp.1988?1997,Sep.2012.

    21 J.Xu,G.L.Zhang,J.Zeng,J.X.Xi,and B.Y.Du,“Robust guaranteed cost consensus for high-order discrete-time multi-agent systems with parameter uncertainties and timevarying delays,”IET Control Theory Appl.,vol.11,no.5,pp.647?667,Mar.2017.

    22 P.Lin,Y.M.Jia,and L.Li,“Distributed robustH∞consensus control in directed networks of agents with time-delay,”Syst.Control Lett.,vol.57,no.8,pp.643?653,Aug.2008.

    23 Y.G.Sun and L.Wang,“H∞consensus of second-order multi-agent systems with asymmetric delays,”Syst.Control Lett.,vol.61,no.8,pp.857?862,Aug.2012.

    24 Z.K.Li,Z.S.Duan,and G.R.Chen,“OnH∞andH2performance regions of multi-agent systems,”Automatica,vol.47,no.4,pp.797?803,Apr.2011.

    25 Y.Liu and Y.M.Jia,“RobustH∞consensus control of uncertain multi-agent systems with time delays,”Int.J.Control,Automat.Syst.,vol.9,no.6,pp.1086?1094,Dec.2011.

    26 B.Shen,Z.D.Wang,and X.H.Liu,“BoundedH∞synchronization and state estimation for discrete time-varying stochastic complex networks over a fi nite horizon,”IEEE Trans.Neural Network,vol.22,no.1,pp.145?157,Jan.2011.

    27 Z.D.Wang,D.R.Ding,H.L.Dong,and H.S.Shu,“H∞consensus control for multi-agent systems with missing measurements:The fi nite-horizon case,”Syst.Control Lett.,vol.62,no.10,pp.827?836,Oct.2013.

    28 Q.Y.Liu,Z.D.Wang,X.He,and D.H.Zhou,“Event-BasedH∞consensus control of multi-agent systems with relative output feedback:The fi nite-horizon case,”IEEE Trans.Automat.Control,vol.60,no.9,pp.2553?2558,Sep.2015.

    29 J.A.Fax and R.M.Murray,“Information fl ow and cooperative control of vehicle formations,”IEEE Trans.Automat.Control,vol.49,no.9,pp.1465?1476,Sep.2004.

    30 Y.Y.Wang,L.H.Xie,and C.E.de Souza,“Robust control of a class of uncertain nonlinear systems,”Syst.Control Lett.,vol.19,no.2,pp.139?149,Aug.1992.

    31 S.Boyd,L.El Ghaoui,E.Feron,and V.Balakrishnan,Linear Matrix Inequalities in System and Control Theory.Philadelphia,USA:Society for Industrial and Applied Mathematics,1994.

    32 X.W.Dong,Y.Zhou,Z.Ren,and Y.S.Zhong,“Timevarying formation control for unmanned aerial vehicles with switching interaction topologies,”Control Eng.Pract.,vol.46,pp.26?36,Jan.2016.

    33 X.W.Dong,Y.Zhou,Z.Ren,and Y.S.Zhong,“Timevarying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation fl ying,”IEEE Trans.Ind.Electron.,Jul.2016,doi:10.1109/TIE.2016.2593656.

    34 G.L.Zhang,J.Xu,J.Zeng,J.X.Xi,and W.J.Tang,“Consensus of high-order discrete-time linear networked multi-agent systems with switching topology and time delays,”Trans.Inst.Measur.Control,Feb.2016,doi:10.1177/0142331216629197.

    35 X.W.Dong,J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties,time-varying delays and external disturbances,”Int.J.Syst.Sci.,vol.44,no.10,pp.1843?1856,Oct.2013.

    36 R.A.Horn and C.R.Johnson,Matrix Analysis.Cambridge,USA:Cambridge University Press,1999.

    国产伦理片在线播放av一区| 国产精品久久久久久精品古装| 美女cb高潮喷水在线观看| 国产在视频线精品| 国产亚洲一区二区精品| 乱系列少妇在线播放| 国产中年淑女户外野战色| 国产精品伦人一区二区| 免费少妇av软件| 黄色一级大片看看| 日韩av不卡免费在线播放| 美女主播在线视频| 亚洲欧美日韩无卡精品| 日韩av在线免费看完整版不卡| 日韩av在线免费看完整版不卡| 美女主播在线视频| 最近最新中文字幕免费大全7| 久久人人爽人人爽人人片va| 搡老乐熟女国产| 一二三四中文在线观看免费高清| 美女高潮的动态| 午夜免费男女啪啪视频观看| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| 99热6这里只有精品| 老女人水多毛片| 女人久久www免费人成看片| 3wmmmm亚洲av在线观看| 久久人人爽人人爽人人片va| 在线观看美女被高潮喷水网站| 日本一二三区视频观看| 精品一区二区三卡| h日本视频在线播放| 国产av码专区亚洲av| 国产免费一级a男人的天堂| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 五月天丁香电影| 韩国高清视频一区二区三区| 91狼人影院| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂 | 色哟哟·www| 18禁裸乳无遮挡动漫免费视频 | 国产成人a区在线观看| 美女被艹到高潮喷水动态| 中文字幕久久专区| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产av在线观看| 欧美激情久久久久久爽电影| 免费av不卡在线播放| 亚洲一区二区三区欧美精品 | 久久久久久久久久久丰满| 伊人久久精品亚洲午夜| 99热国产这里只有精品6| 日本av手机在线免费观看| 色视频www国产| 91精品一卡2卡3卡4卡| 国产乱人视频| 中国国产av一级| 国产中年淑女户外野战色| 国产在线男女| 日本与韩国留学比较| 欧美另类一区| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 国产精品福利在线免费观看| 嫩草影院新地址| 女的被弄到高潮叫床怎么办| 三级经典国产精品| 我的女老师完整版在线观看| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 全区人妻精品视频| 国产成人精品婷婷| 日本黄色片子视频| 内射极品少妇av片p| 日韩欧美精品v在线| 日本av手机在线免费观看| 香蕉精品网在线| 九草在线视频观看| 中国三级夫妇交换| 男人和女人高潮做爰伦理| 免费少妇av软件| 国产精品一区二区性色av| 精品久久久久久久久av| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 日本色播在线视频| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产精品成人综合色| 亚洲不卡免费看| av福利片在线观看| 国产男女内射视频| 美女高潮的动态| 日韩,欧美,国产一区二区三区| 日韩中字成人| 一本一本综合久久| 日韩成人伦理影院| av播播在线观看一区| 搡老乐熟女国产| 免费在线观看成人毛片| 亚洲成色77777| av免费在线看不卡| 少妇 在线观看| av一本久久久久| 能在线免费看毛片的网站| 久久精品国产鲁丝片午夜精品| 一级av片app| 夫妻午夜视频| 精品久久久久久电影网| 精品久久久久久久久av| videossex国产| 99热6这里只有精品| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 国产高潮美女av| 国产伦精品一区二区三区视频9| 男女国产视频网站| 免费观看的影片在线观看| 一级av片app| 日韩欧美一区视频在线观看 | av在线播放精品| 97精品久久久久久久久久精品| 赤兔流量卡办理| 精品人妻视频免费看| 国产免费视频播放在线视频| 国产免费又黄又爽又色| 中文字幕av成人在线电影| 亚洲av电影在线观看一区二区三区 | 日韩欧美一区视频在线观看 | 男女啪啪激烈高潮av片| 亚洲国产精品成人综合色| 国产综合懂色| 亚洲精品,欧美精品| 91久久精品国产一区二区成人| 伊人久久国产一区二区| 亚洲一区二区三区欧美精品 | 亚洲第一区二区三区不卡| 麻豆国产97在线/欧美| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 国产久久久一区二区三区| 日本免费在线观看一区| 一级毛片久久久久久久久女| 亚洲人成网站高清观看| 亚洲熟女精品中文字幕| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 街头女战士在线观看网站| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 搡女人真爽免费视频火全软件| 一本一本综合久久| 久久久久久久久久成人| 亚洲av福利一区| 青春草国产在线视频| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 亚洲av国产av综合av卡| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 精品国产乱码久久久久久小说| av福利片在线观看| 午夜福利网站1000一区二区三区| av免费观看日本| 综合色av麻豆| 久久久久精品性色| 国产日韩欧美在线精品| 国产av码专区亚洲av| 精品久久久久久电影网| 一个人观看的视频www高清免费观看| 免费看日本二区| 欧美老熟妇乱子伦牲交| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久 | 高清视频免费观看一区二区| 亚洲成人精品中文字幕电影| 欧美国产精品一级二级三级 | 91久久精品电影网| 97超视频在线观看视频| 97热精品久久久久久| 熟妇人妻不卡中文字幕| 日韩,欧美,国产一区二区三区| 精品人妻视频免费看| 午夜亚洲福利在线播放| 久久久久性生活片| 小蜜桃在线观看免费完整版高清| 亚洲激情五月婷婷啪啪| 久久精品综合一区二区三区| 熟女人妻精品中文字幕| 可以在线观看毛片的网站| 边亲边吃奶的免费视频| 少妇的逼好多水| 下体分泌物呈黄色| 国产精品国产av在线观看| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 麻豆成人午夜福利视频| 国产精品国产av在线观看| 只有这里有精品99| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区三区| 亚洲最大成人手机在线| 免费看日本二区| 日韩三级伦理在线观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲高清精品| 免费看光身美女| 亚洲av中文av极速乱| 久久ye,这里只有精品| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 男的添女的下面高潮视频| 久久ye,这里只有精品| 国产成人aa在线观看| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 亚洲自偷自拍三级| 国内精品宾馆在线| 亚洲av成人精品一区久久| 在线看a的网站| 国产成人a∨麻豆精品| 99热6这里只有精品| 亚洲精品一二三| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 国产精品久久久久久精品古装| 看十八女毛片水多多多| 亚洲国产精品专区欧美| 欧美性感艳星| 少妇人妻精品综合一区二区| 极品少妇高潮喷水抽搐| 亚洲国产精品999| 国产爱豆传媒在线观看| av网站免费在线观看视频| 又粗又硬又长又爽又黄的视频| 能在线免费看毛片的网站| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| xxx大片免费视频| 最近的中文字幕免费完整| av在线亚洲专区| 少妇人妻一区二区三区视频| 久久97久久精品| 国产欧美日韩一区二区三区在线 | 一级毛片黄色毛片免费观看视频| 精品午夜福利在线看| 水蜜桃什么品种好| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 亚洲丝袜综合中文字幕| 大码成人一级视频| 国产精品99久久99久久久不卡 | 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 亚洲伊人久久精品综合| 中文字幕制服av| 免费高清在线观看视频在线观看| 狂野欧美白嫩少妇大欣赏| 插逼视频在线观看| 综合色丁香网| 97在线人人人人妻| 日本与韩国留学比较| 高清欧美精品videossex| 黄色配什么色好看| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 大话2 男鬼变身卡| 免费观看的影片在线观看| 可以在线观看毛片的网站| 自拍偷自拍亚洲精品老妇| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 国产成人免费无遮挡视频| 尾随美女入室| 搡老乐熟女国产| 嘟嘟电影网在线观看| .国产精品久久| 男女边摸边吃奶| 国产高清不卡午夜福利| 久久99热这里只有精品18| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av天美| 国产黄片美女视频| 色吧在线观看| 五月天丁香电影| 91精品一卡2卡3卡4卡| eeuss影院久久| 丰满少妇做爰视频| 国产色婷婷99| 久久精品人妻少妇| 欧美一区二区亚洲| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆| 亚洲综合色惰| 麻豆成人午夜福利视频| av在线亚洲专区| 草草在线视频免费看| 日本一二三区视频观看| 欧美高清成人免费视频www| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 欧美潮喷喷水| 一区二区av电影网| 亚洲国产精品成人久久小说| 精品少妇黑人巨大在线播放| 99久久中文字幕三级久久日本| 三级国产精品片| 99久久九九国产精品国产免费| 国产男女内射视频| 老司机影院成人| 日本欧美国产在线视频| 欧美97在线视频| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 国产一区二区三区综合在线观看 | 久久热精品热| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 亚洲欧美精品专区久久| 国内精品宾馆在线| 久久久久国产网址| 国产男女内射视频| 精品亚洲乱码少妇综合久久| 神马国产精品三级电影在线观看| 最近手机中文字幕大全| 80岁老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 久久久色成人| 人人妻人人澡人人爽人人夜夜| 一级毛片久久久久久久久女| 欧美97在线视频| www.色视频.com| 国产乱来视频区| 欧美xxⅹ黑人| 大片免费播放器 马上看| 97超碰精品成人国产| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性xxxx在线观看| 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 午夜爱爱视频在线播放| 波野结衣二区三区在线| 一级二级三级毛片免费看| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 韩国av在线不卡| 国产高潮美女av| 欧美成人一区二区免费高清观看| 亚洲无线观看免费| 爱豆传媒免费全集在线观看| 极品教师在线视频| 中文天堂在线官网| 精品久久久精品久久久| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 国产视频首页在线观看| 秋霞在线观看毛片| 国产探花极品一区二区| 黄片wwwwww| 久久久久精品性色| 99久久九九国产精品国产免费| 尾随美女入室| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 成人无遮挡网站| 婷婷色av中文字幕| 午夜福利高清视频| 能在线免费看毛片的网站| 欧美变态另类bdsm刘玥| 国内揄拍国产精品人妻在线| 成年人午夜在线观看视频| 老司机影院毛片| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 一区二区三区精品91| 在现免费观看毛片| 国产成人精品福利久久| 久久久精品欧美日韩精品| 欧美极品一区二区三区四区| 日韩欧美 国产精品| 一个人观看的视频www高清免费观看| 一级毛片aaaaaa免费看小| 亚洲美女视频黄频| 五月天丁香电影| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影小说 | 午夜亚洲福利在线播放| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 超碰97精品在线观看| 国产黄频视频在线观看| 黄色视频在线播放观看不卡| 国产精品一区二区三区四区免费观看| 亚洲av一区综合| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 黄色配什么色好看| 国产精品三级大全| 日本一本二区三区精品| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 人妻少妇偷人精品九色| 人妻夜夜爽99麻豆av| 日本欧美国产在线视频| 在线播放无遮挡| 欧美日韩精品成人综合77777| 禁无遮挡网站| 麻豆成人av视频| 国产男人的电影天堂91| 久久久久久久久久久丰满| 国产精品成人在线| 亚洲欧美日韩另类电影网站 | 三级经典国产精品| 天美传媒精品一区二区| 丝瓜视频免费看黄片| 一区二区三区精品91| 性色avwww在线观看| 国产高清不卡午夜福利| 欧美zozozo另类| 搞女人的毛片| 色视频在线一区二区三区| 久久久久久久久久成人| 视频中文字幕在线观看| 老师上课跳d突然被开到最大视频| 自拍偷自拍亚洲精品老妇| 久久精品夜色国产| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡人人爽人人夜夜| 69人妻影院| 国产欧美亚洲国产| 欧美一区二区亚洲| 人妻一区二区av| 在线观看国产h片| 伊人久久国产一区二区| 亚洲一区二区三区欧美精品 | 精品熟女少妇av免费看| videossex国产| 国产精品麻豆人妻色哟哟久久| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 国产精品无大码| 久久精品久久久久久久性| 亚洲精品久久久久久婷婷小说| 久久久久精品性色| 1000部很黄的大片| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 色播亚洲综合网| 久久亚洲国产成人精品v| 综合色av麻豆| 欧美老熟妇乱子伦牲交| 在线观看国产h片| 亚洲国产精品999| 国产亚洲最大av| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 在线播放无遮挡| 中国国产av一级| 小蜜桃在线观看免费完整版高清| 国产亚洲91精品色在线| 久久精品熟女亚洲av麻豆精品| 国产精品一二三区在线看| 成人高潮视频无遮挡免费网站| 免费观看性生交大片5| 看免费成人av毛片| 久久精品久久精品一区二区三区| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 99热这里只有精品一区| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 99热网站在线观看| 亚洲精品一区蜜桃| 亚洲国产av新网站| av黄色大香蕉| 国产女主播在线喷水免费视频网站| 亚洲av一区综合| 看免费成人av毛片| 大片免费播放器 马上看| 99视频精品全部免费 在线| 性插视频无遮挡在线免费观看| av福利片在线观看| 国产免费一区二区三区四区乱码| 99久久九九国产精品国产免费| 午夜亚洲福利在线播放| 免费看不卡的av| 国产高清国产精品国产三级 | 欧美激情国产日韩精品一区| 久久人人爽av亚洲精品天堂 | 成年版毛片免费区| 嫩草影院入口| 夫妻性生交免费视频一级片| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 最近中文字幕高清免费大全6| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久 | av在线天堂中文字幕| 日本三级黄在线观看| 日韩制服骚丝袜av| 女人被狂操c到高潮| 日韩伦理黄色片| 成年av动漫网址| 99热网站在线观看| tube8黄色片| 午夜激情久久久久久久| 精品视频人人做人人爽| 日韩精品有码人妻一区| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 日韩成人av中文字幕在线观看| www.av在线官网国产| 亚洲国产最新在线播放| 免费观看av网站的网址| 精品人妻熟女av久视频| 亚洲精品视频女| 乱系列少妇在线播放| 欧美亚洲 丝袜 人妻 在线| 香蕉精品网在线| 精品一区二区免费观看| 又爽又黄a免费视频| 日韩伦理黄色片| 久久久a久久爽久久v久久| 七月丁香在线播放| av专区在线播放| 狂野欧美激情性xxxx在线观看| 成人高潮视频无遮挡免费网站| 午夜福利视频精品| 国产精品久久久久久久电影| 亚洲国产欧美人成| 赤兔流量卡办理| 一级毛片久久久久久久久女| 成人免费观看视频高清| 免费观看的影片在线观看| 国产免费福利视频在线观看| 免费黄色在线免费观看| 久久国产乱子免费精品| 伊人久久国产一区二区| 日韩三级伦理在线观看| 免费看不卡的av| 毛片一级片免费看久久久久| .国产精品久久| 国产精品久久久久久精品电影小说 | 成人综合一区亚洲| 在线观看国产h片| 伦理电影大哥的女人| 久久久色成人| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 国产免费福利视频在线观看| 国产中年淑女户外野战色| 日本午夜av视频| 亚洲天堂国产精品一区在线| 亚洲国产欧美在线一区| 97超碰精品成人国产| 欧美激情在线99| 一级毛片黄色毛片免费观看视频| 国产成人aa在线观看| 日韩人妻高清精品专区| a级毛色黄片| 美女国产视频在线观看| 亚洲天堂国产精品一区在线| 久久久久久久午夜电影| 黄色配什么色好看| 一本一本综合久久| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线 | 乱系列少妇在线播放| av免费观看日本| 欧美极品一区二区三区四区| 成人国产av品久久久| av国产精品久久久久影院| 天堂中文最新版在线下载 | 亚洲在久久综合| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区性色av| 少妇熟女欧美另类| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 国产成人午夜福利电影在线观看| 国产高清有码在线观看视频| 色网站视频免费| 欧美xxxx性猛交bbbb| 日本色播在线视频| 日本三级黄在线观看| 国产av不卡久久| 人妻制服诱惑在线中文字幕| 久久久久精品性色| av国产免费在线观看|