• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust H∞Consensus Control for High-order Discrete-time Multi-agent Systems With Parameter Uncertainties and External Disturbances

    2017-03-12 03:40:25JunXuGuoliangZhangJingZengBoyangDuXiaoJia
    自動化學(xué)報 2017年10期

    Jun Xu Guoliang Zhang Jing Zeng Boyang Du Xiao Jia

    1 Introduction

    In recent years,distributed coordination of multi-agent systems(MASs)has received great attention from many researchers due to its broad applications on MASs in many areas including formation control[1],[2], fl ocking[3],[4],distributed fi ltering[5],[6],synchronization of coupled chaotic oscillators[7]?[9].Consensus is an essential problem of distributed coordination of MASs,which is to make each agent agree on some common values of interest through feedback of local information from neighboring agents.

    The theoretical framework for posing and solving the consensus problem for MASs was fi rst introduced in[10]?[12]. Their work mostly focused on the fi rst-order and second-order consensus in MASs.Furthermore,the consensus problem of MASs has obtained a tremendous surge of interest and extensive development.These works can be generally divided into two categories depending on whether the agent models are continuous-time or discrete-time.The union of interaction topologies must contain a spanning tree if MASs are expected to achieve consensus asymptotically[13].A framework of high-dimensional state space for the consensus problems of MASs was studied in[14],and then the consensus problems of high order or more general linear MASs models were discussed in[15]?[17].The consensus problem of discrete-time MASs(D-MASs)based on general linear models was investigated in[18],[19].The leaderfollowing consensus problem of D-MASs based on general linear models was studied in[20].The robust guaranteed cost consensus problem of general linear D-MASs models with parameter uncertainties and time-varying delays was investigated in[21].

    With the development of the research,theH∞consensus control problem of MASs subject to external disturbances was considered in[22]?[24].RobustH∞consensus control problems of fi rst-order MASs with external disturbances and model uncertainties are discussed in[22].The secondorder robustH∞consensus control problem of MASs with measurement noises and asymmetric delays is studied in[23].DistributedH2andH∞consensus control problems are investigated in[24]for MASs with linear dynamics subject to external disturbances.The robustH∞consensus control problem of high-order linear MASs with parameter uncertainties and external disturbances was studied in[25],which also considered the time-delay and switching topology simultaneously.Speci fi cally,the aforementioned works were based on continuous-time models,while the study of discrete-time model cases is more widely applied in practice.In[26],H∞synchronization and state estimation problems were considered for an array of coupled discrete time-varying stochastic complex networks over a fi nite horizon.The robustH∞consensus control problem of high-order linear time-varying D-MASs with uncertainties/disturbances and missing measurements was investigated in[27].The event-basedH∞consensus control problem for high-order linear time-varying D-MASs over a fi nite horizon was studied in[28].Nevertheless,although the robustH∞control consensus problem of high-order D-MASs with parameter uncertainties and external disturbances was addressed in[26]?[28],the fi nal convergence value was not provided in these studies.

    Motivated by the above,in this paper,the robustH∞control consensus problem of high-order D-MASs with parameter uncertainties and external disturbances is investigated by state space decomposition approach.We consider the leaderless consensus of the uncertain high-order D-MASs with fi xed topologies.In this problem,if an appropriate consensus protocol is applied,the D-MASs should converge to a common value.Comparing with the existing works,the contribution of this paper is two-fold.On one hand,by state space decomposition approach,a sufficient linear matrix inequality(LMI)condition is given to guarantee that,high-order D-MASs subject to parameter uncertainties and external disturbances achieve robust consensus with aH∞performance indexγ.On the other hand,withωx(k)≡0 orωx(k)interpreted as deterministicl2signal,fi nal consensus values of high-order D-MASs with parameter uncertainties and external disturbances,which are fi rst provided in this paper for the fi rst time.

    The rest of the paper is organized as follows.The problem formulation is presented in Section 2.In Section 3,the robustH∞consensus control problem of MASs(1)is transformed to a robustH∞control problem of a set of independent uncertain systems,and a sufficient LMI condition insuring the robust consensus,and a fi nal consensus value of MASs(1)with protocol(4)are given.A numerical example is provided in Section 4 to verify the theoretical analysis.Some conclusions are fi nally drawn in Section 5 which concludes the paper and proposes some possible future directions.The notions of graph theory and Kronecker product that will be used in this paper are summarized in Appendix A and Appendix B,respectively.

    Notations:A matrix or a vector is said to be positive(respectively,non-negative)if all of its entries are positive(respectively,non-negative).A square matrix is called Schur stable if all of its eigenvalues lie in the open unit disk.Let diag{a11,a22,...,ann}be the diagonal matrix with diagonal entriesa11,a22,...,ann.The symbol?represents the Kronecker product.MTdenotes the transpose conjugate of matrixM.Iis an appropriate dimensions identity matrix.1N=[1,...,1]Tdenotes an N-dimensional vector with all of its elements being 1.

    2 Problem Formulation

    A high-order MAS can be described as a linear system,which has been presented in[15],and thus,consider a highorder identical D-MAS consisting ofNagents indexed by 1,2,...,N,distributed on an undirected communication graphG,in which the dynamics of agentiis described by a linear discrete-time system as follows

    whereDis a real constant matrix,andFis an unknown matrix function satisfying

    The parameter uncertainties?Aand?Bare said to be admissible if both(2)and(3)hold.For the leaderless consensus problem of uncertain D-MASs(1),the following local consensus protocol is applied to each agenti

    whereKis a constant gain matrix with appropriate dimensions,andaijbeing the graph edge weights.This protocol is distributed in nature as it only depends on the immediate neighborsNiof agent(node)i.This is known as a local voting protocol because the control input of each agent depends on the difference between its state and all its neighbors.Then,the de fi nition of consensus for highorder D-MASs(1)with consensus protocol(4)is given as follows.

    De fi nition 1:For a given gain matrixK,system(1)is said to achieve consensus if for any given bounded initial condition,there exists a vector-valuedc(k)which is dependent on the initial condition such that limk→∞(x(k)?1N?c(k))=0,wherec(k)is called a fi nal consensus value.

    The suboptimal robustH∞consensus control problem of system(5)is stated to fi nd a distributed protocol(4)such that

    1)withωx(k)=0,the closed-loop system(5)is asymptotically stable for all admissible uncertain matricesF.

    2)withωx(k)interpreted as deterministicl2signal,the closed-loop transfer function fromωx(k)toof system(5),which is denoted byTωz,satis fi es‖Tωz‖∞<γfor all admissible uncertain matricesFand a given allowable scalarγ>0,where‖Tωz‖∞is theH∞norm ofTωz,de fi ned by.

    In order to analyze the robustH∞consensus control problem of closed-loop D-MASs(6),we assume hereafter that the communication graphGis connected and give the following lemma about the graph theory.

    Lemma 1[29]:LetLbe the Laplacian matrix of an undirected graphG,then zero is an eigenvalue ofL.If,in addition,Gis connected,the zero eigenvalue ofLis simple,and all the other eigenvalues ofLare positive and real.

    Moreover,letλi(i=1,2,...,N)be eigenvalues of the Laplacian matrixL∈RNfor an undirected topologyG,whereλ1=0 with the associated eigenvector,andλ1≤λ2≤···≤λN.There exists an orthogonal matrix

    such thatUTLU=diag{λ1,λ2,...,λN}.

    Theorem 1:For a givenγ>0,system(5)is asymptotically stable and‖Tωz‖∞<γ,if and only if the followingNsystems are simultaneously asymptotically stable and theH∞norms of their transfer function matrices are all less thanγ:

    such thatUTLU=diag{λ1,λ2,...,λN}= Λ.Let

    Then,system(5)can be rewritten in terms ofas

    Moreover,reformulate the disturbance variableωx(k)and the performance variablevia

    Subsequently,substituting(9)and(10)into(8)gives

    Note that(11)is composed ofNindividual systems of(6).Denote bythe transfer function matrices of systems(11)and(5),respectively.Then,it follows from(5),(9),(10)and(11)that

    which implies that

    In addition,it is worth mentioning that,

    By Lemma 1,the discrete-time system(11)also can be rewritten as the followingNsubsystems

    Obviously,if subsystems(15)are asymptotically stable,then D-MASs(5)reach consensus.Subsystem(14)determines the fi nal consensus value of D-MASs(5),and the details of it will be discussed below.

    Remark 1:The robustH∞leaderless consensus problem of uncertain D-MASs(1)is to design distributed consensus protocols,?i∈Nisuch that the consensus is reached and‖Tωz‖∞<γ,simultaneously.Theorem 1 converts the robustH∞consensus control problem of D-MASs(5)into the robustH∞control problems ofNsubsystems(6),which is a set of independent systems having the same dimensions as a single agent in(1),thereby reducing the computational complexity signi fi cantly.The key tools leading to this result rely on the state space decomposition approach,as used in[15].

    3 Main Results

    Lemma 2:Given the pair(K,γ>0),if the matrix inequality

    admits a symmetric positive de fi nite solutionP∈Rd×d,whereˉAλi=A+?A?λi(B+?B)K=Aλi+DFEλi,Aλi=A?λiBK,Eλi=E1?λiE2K.Then,D-MASs(1)are said to achieve robust consensus with aH∞performance indexγ.

    Proof:GivenK,γ>0,assume thatP=PT>0 satisfi es the matrix inequality(16).In this case(dropping the quadratic semide fi nite positive term inP)it follows

    (complying with the previous assumptions)thatis asymptotically stable.To prove theH∞-norm.Inequality,we proceed as follows.For each system(6),consider the closed-loop transfer function fromgiven by

    De fi nings=ejω,ω∈[?π,π]and the auxiliary transfer functionafter simple but tedious algebraic manipulations,inequality(17)can be factorized as

    which,after completing squares,becomes

    meaning that‖Hλi‖∞<γ,which proves the lemma proposed.

    Remark 2:In Lemma 2,a sufficient condition is given to guarantee D-MASs(5)achieving robust consensus with aH∞performance indexγ.Nevertheless,it is not difficult to fi nd that(16)is a nonlinear matrix inequality(NMI)and therein lies parameter uncertainties.

    To cope with the uncertain matricesFand the nonlinear terms of(16),the following two lemmas are given.

    Lemma 4[30]:Given matricesY,DandEof appropriate dimensions and withYsymmetric,then for allFsatisfyingFTF≤I,if and only if there exists a scalarε>0 such that

    Lemma 5(Schur complement)[31]:The linear matrix inequality

    whereQ(x)=Q(x)T,R(x)=R(x)T,andS(x),depends affinely onx,is equivalent to one of the following conditions

    1)Q(x)>0,R(x)?S(x)TQ(x)?1S(x)>0;

    2)R(x)>0,Q(x)?S(x)R(x)?1S(x)T>0.

    Theorem 2:Consider D-MASs(1)with a fi xed,undirected and connected communication topologyG.The distributed consensus protocol(4)globally asymptotically solves the robust consensus problem of D-MASs(1)withH∞-norm consensus performance boundγif there exist a scalarε>0,a matrixWwith appropriate dimensions and a positive de fi nite matrixXsuch that

    wherei=1,2,...,N.Furthermore,if LMI(23)has a feasible solutionε,W,X,then the feedback gain matrixKof protocol(4)can be calculated byK=WX?1.

    Proof:By Lemma 5,matrix inequality(16)is equivalent to

    Moreover,the above inequality can be rewritten as

    It follows from the Lemma 4 that(25)can be expressed as

    Through Lemma 5 again,matrix inequality(26)is equivalent to

    Pre-and post-multiplying both sides of(27)by

    lettingX=P?1,W=KP?1,and applying Lemma 5 again yield LMI(23),wherei=1,2,...,N.

    Remark 3:In Theorem 2,it can be noted that the NMI(16)is transformed to a LMI condition(23).Subsequently,high-order D-MASs(1)with the distributed consensus protocol(4)achieve robust consensus with aH∞performance indexγ.Thereby the neighboring feedback matrixKalso can be obtained.Then,the local consensus protocol(4)can be implemented by each agent in a fully distributed fashion requiring no global information of the communication topology.

    Remark 4:From Theorem 2,we can also get that,the communication disturbances have effects on the performance of the control object,such as switching interaction topologies.In[32],[33],the time-varying formation tracking problems for second-order MASs with switching interaction topologies were studied.Switching topologies include two cases.One is that every interaction topology of MASs has a spanning tree;another is joint-contained spanning tree topologies.It should be mentioned that,this approach can be easily extended to the fi rst case,and more details can be seen in our work[34].There have been some difficulties to the joint-contained spanning tree case.We will consider it in the future.

    Theorem 3:Withωx(k)interpreted as deterministicl2signal,when D-MASs(5)achieve robust consensus,the final consensus valuec(k)satis fi es

    Proof:Letand,then by(7),xxx(k)can be uniquely decomposed as.As discussed above,we can know that if the system(5)achieves robust guaranteed cost consensus,the subsystem(15)should be Schur stable,which means that the response of system(15)due toshould satisfy.Hence the final consensus valuec(k)is determined solely upon.Since,we have,and because,then we can obtain,that is to say

    Hence,we have

    then the fi nal consensus valuesatis fi es

    Corollary 1:Withωx(k)≡0,when multi-agent system(5)achieves robust consensus,the fi nal consensus valuesatis fi es

    Proof:This proof can be easily obtained from the proof of Theorem 3.

    Remark 5:Withωx(k)interpreted as deterministicl2signal,the fi nal consensus valueof system(5)is given by Theorem 3.The fi nal consensus valuecan be divided into two parts,one is,which is related to the system matrixA+?Aand initial statex(0),the other is,which is related to the external disturbanceωx(k).This implies that the external disturbanceωx(k)has an effect on the fi nal consensus value,and which is also related to the system matrixA+?A,and initial state.This condition is different from that of highorder D-MASs without parameter uncertainties and external disturbances,which is discussed in[34].Withωx(k)≡0,the fi nal consensus valueof system(5)is given by Corollary 1.That is,in this case,the fi nal consensus value is only related to the system matrixA+?A,and initial state.

    Remark 6:It should be pointed out that,in[26]?[28],by recursive linear matrix inequalities(RLMIs)techniques,the robustH∞consensus control problem of high-order D-MASs(1)with uncertainties/disturbances was investigated over a fi nite horizon.They were concerned about the boundedness of the consensus error but did not actually guarantee its convergence.Different from[26]?[28],we consider the in fi nite time horizon case,which took care of the consensusability of D-MASs rather than consensus errors.In Theorems 1 and 2,a sufficient LMI condition is given to guarantee that high-order D-MASs(1)with parameter uncertainties and external disturbances achieve robust consensus with a performance levelγ.Comparing to related works[25]?[28],this approach has a favorable decoupling feature.Speci fi cally,note that theH∞performance levelγminof network(6),consisting ofNagents in D-MASs(1)under consensus protocols(4),is actually equal to the minimalH∞norm of a single agent(1)by means of a state feedback controller of the form,independent of the communication topologyGas long as it is connected.In addition, fi nal consensus values of highorder D-MASs(1)with parameter uncertainties and external disturbances are fi rst given in this paper.In addition,practical consensus problems for general high-order linear time-invariant swarm systems with interaction uncertainties and time-varying external disturbances on directed graphs were investigated in[35].The authors paid attention to the output consensus of continuous-time highorder linear time-invariant swarm systems.However,the state consensus problem of discrete-time multi-agent systems is addressed in this paper.Moreover,the external disturbance was solved by the Lyapunov-Krasovskii functional approach and the linear matrix inequality technique in the literature,but we use theH∞control method to deal with it.

    4 Simulations

    In this section,a numerical example is given to illustrate the effectiveness of the proposed theoretical results.We apply the above proposed consensus protocol(4)to achieve state alignment among 8 agents.The dynamics of them are described by(1),where

    andr1,r2andr3are uncertain parameters which satisfy?1≤r1≤1,?1≤r2≤1 and?1≤r3≤1.Then,D-MASs(1)can be rewritten as

    We apply the consensus protocol(4)to achieve consensus among the above those 8 agents under a fi xed topologyG,which is shown in Fig.1.

    Fig.1. The interaction topology G of 8 agents.

    Assume that the initial state values of the all agents 1,...,8 are randomly produced withx1(0)=[1,5,?2]T,x2(0)=[2,4,3]T,x3(0)=[1,1,2]T,x4(0)=[3,2,1]T,x5(0)=[5,6,?2]T,x6(0)=[?3,3,4]T,x7(0)=[?2,?4,?3]T,x8(0)=[?5,?2,?1]T,and letr1=0.15,r2=0.25,r3=0.15 andτmax=3.Each agent uses protocol(4).Letγ=1 and suppose that the exogenous disturbance inputs are selected asωi,x(k)=0.1ie?0.5ksin(k).By Theorem 2,we can get that

    In Figs.2?4,the simulation results are given.The state trajectories of uncertain D-MASs(1)with and without external disturbances are shown in Figs.2?4(b)and(a),respectively.Final consensus valuesc(k)andc?(k),which are produced by Corollary 1 and Theorem 3,are marked by the red asterisk and blue circle,respectively.

    Fig.2. The state 1 trajectories of D-MASs(1).

    From Figs.2?4(a),it can be seen that the state trajectories of D-MASs(1)withωx(k)≡0 asymptotically converge to the common value,which is related torj(j=1,2,3).The fi nal consensus value of D-MASs(1)with parameter uncertainties is.This is in accord with Corollary 1.Nevertheless,in Figs.2?4(b),we can know that the common value of D-MASs(1)is related toωx(k),and ifωx(k)/=0,c(k)is altered and asymptotically converges to

    which is in accordance with Theorem 3.By De fi nition 1,it is clear that D-MASs(1)achieves robust consensus with protocol(4).Therefore,the correctness and validity of proposed protocols and theorems are demonstrated.

    Fig.3. The state 2 trajectories of D-MASs(1).

    Fig.4. The state 3 trajectories of D-MASs(1).

    5 Conclusions

    The robustH∞consensus control problem of high-order D-MASs with parameter uncertainties and external disturbances is investigated in this paper.A sufficient LMI condition is obtained to guarantee that D-MASs(1)achieve robust consensus with protocol(4).Meanwhile,the convergence result is given as a fi nal consensus value.Finally,an illustrative example is given to demonstrate the correctness and effectiveness of the theoretical results.Further research will be conducted on the consensus problem of DMASs with switching topologies and time-delays.

    Appendix A Graph

    Let a weighted digraph(or directed graph)G=(V,E,A)of orderNrepresents an interaction topology of a network of agents,with the set of nodesV={v1,...,vN},set of edgesE?V×V,and a weighted adjacency matrixA=[aij]with nonnegative adjacency elementsaij.

    The node indexes belong to a fi nite index setI={1,2,...,N}.An edge ofGis denoted byeij=(vi,vj),whereviandvjare called the initial and terminal nodes.It implies that nodevjcan receive information from nodevi,but not necessarily vice versa.The adjacency elements associated with the edges of the graph are positive ifeij∈Ewhileaij=0 ifeij/∈E.Furthermore,we assumeaii=0 for alli∈I.The set of neighbors of nodeviis denoted byNi={vj∈V:(vi,vj)∈E}.A cluster is any subsetJ?Vof the nodes of the graph.The set of neighbors of a clusterNJis de fi ned byNJ=∪vi∈JNi={vj∈V:vi∈J,(vi,vj)∈E}.The in-degree and out-degree of nodeviare de fi ned asand,respectively,The degree matrix of the digraphGis a diagonal matrix ? =[?ij],where

    The graph Laplacian matrix associated with the digraphGis de fi ned asL(G)=L=??A.

    Appendix B Kronecker Product

    Given matricesP=(pij)n×n∈Rm×nandQ=(qij)n×n∈Rp×q,their Kronecker product is de fi ned as

    P?Q=[pijQ]∈Rmp×nq

    in[36].For matricesA,B,CandD,with appropriate dimensions,we have the following conditions.

    1)(γA)?B=A?(γB),whereγis a constant;

    2)(A+B)?C=A?C+B?C;

    3)(A?B)(C?D)=(AC)?(BD);

    4)(A?B)T=AT?BT;

    5)Suppose thatAandBare invertible,then(A?B)?1=A?1?B?1;

    6)IfAandBare symmetric,so is(A?B);

    7)IfAandBare symmetric positive de fi nite(respectively,positive semide fi nite),so is(A?B);

    8)Suppose thatAhas the eigenvaluesβiwith associated eigenvectorsfi∈Rp,i=1,...,p,andBhas the eigenvaluesρiwith associated eigenvectorsgj∈Rp,j=1,...,q.Then thepqeigenvalues of(A?B)areβiρjwith associated eigenvectorsfi?gj,i=1,...,p,j=1,...,q.

    1 A.Sinha and D.Ghose,“Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents,”IEEE Trans.Automat.Control,vol.51,no.11,pp.1819?1824,Nov.2006.

    2 M.Cao,C.B.Yu,and B.D.O.Anderson,“Formation control using range-only measurements,”Automatica,vol.47,no.4,pp.776?781,Apr.2011.

    3 R.Olfati-Saber,“Flocking for multi-agent dynamic systems:Algorithms and theory,”IEEE Trans.Automat.Control,vol.51,no.3,pp.401?420,Mar.2006.

    4 H.T.Zhang,C.Zhai,and Z.Y.Chen,“A general alignment repulsion algorithm for fl ocking of multi-agent systems,”IEEE Trans.Automat.Control,vol.56,no.2,pp.430?435,Feb.2011.

    5 R.Olfati-Saber,“Distributed Kalman fi lter with embedded consensus fi lters,”Proc.44th IEEE Conference on Decision and Control,and the European Control Conference,Seville,Spain,2005,pp.8179?8184.

    6 B.A?cskme?se,M.Mandi′c,and J.L.Speyer, “Decentralized observers with consensus fi lters for distributed discrete-time linear systems,”Automatica,vol.50,no.4,pp.1037?1052,Apr.2014.

    7 M.Barahona and L.M.Pecora,Synchronization in smallworld systems,”Phys.Rev.Lett.,vol.89,no.5,Article ID:054101,Jul.2002.

    8 K.Hengster-Movric,K.Y.You,F.L.Lewis,and L.H.Xie,“Synchronization of discrete-time multi-agent systems on graphs using Riccati design,”Automatica,vol.49,no.2,pp.414?423,Feb.2013.

    9 Z.H.Wang,J.J.Xu,and H.S.Zhang,“Consensusability of multi-agent systems with time-varying communication delay,”Syst.Control Lett.,vol.65,pp.37?42,Mar.2014.

    10 R.O.Saber and R.M.Murray,“Consensus protocols for networks of dynamic agents,”inProc.2003 American Control Conference,Denver,CO,USA,2003,pp.951?956.

    11 R.Olfati-Saber and R.M.Murray,“Consensus problems in networks of agents with switching topology and timedelays,”IEEE Trans.Automat.Control,vol.49,no.9,pp.1520?1533,Sep.2004.

    12 R.Olfati-Saber,J.A.Fax,and R.M.Murray,Consensus and cooperation in networked multi-agent systems,”Proc.IEEE,vol.95,no.1,pp.215?233,Jan.2007.

    13 W.Ren and R.W.Beard,“Consensus seeking in multiagent systems under dynamically changing interaction topologies,”IEEE Trans.Automat.Control,vol.50,no.5,pp.655?661,May2005.

    14 F.Xiao and L.Wang,“Consensus problems for highdimensional multi-agent systems,”IET Control Theory Appl.,vol.1,no.3,pp.830?837,May2007.

    15 J.X.Xi,N.Cai,and Y.S.Zhong,“Consensus problems for high-order linear time-invariant swarm systems,”Phys.A,vol.389,no.24,pp.5619?5627,Dec.2010.

    16 J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Consensus and consensualization of high-order swarm systems with time delays and external disturbances,”J.Dyn.Syst.Meas.Control,vol.134,no.4,Article ID:041011,May2012.

    17 J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Consensus analysis and design for high-order linear swarm systems with time-varying delays,”Phys.A:Statist.Mech.Appl.,vol.390,no.23?24,pp.4114?4123,Nov.2011.

    18 K.Y.You and L.H.Xie,“Network topology and communication data rate for consensusability of discrete-time multiagent systems,”IEEE Trans.Automat.Control,vol.56,no.10,pp.2262?2275,Oct.2011.

    19 G.X.Gu,L.Marinovici,and F.L.Lewis,“Consensusability of discrete-time dynamic multiagent systems,”IEEE Trans.Automat.Control,vol.57,no.8,pp.2085?2089,Aug.2012.

    20 Y.F.Su and J.Huang,“Two consensus problems for discrete-time multi-agent systems with switching network topology,”Automatica,vol.48,no.9,pp.1988?1997,Sep.2012.

    21 J.Xu,G.L.Zhang,J.Zeng,J.X.Xi,and B.Y.Du,“Robust guaranteed cost consensus for high-order discrete-time multi-agent systems with parameter uncertainties and timevarying delays,”IET Control Theory Appl.,vol.11,no.5,pp.647?667,Mar.2017.

    22 P.Lin,Y.M.Jia,and L.Li,“Distributed robustH∞consensus control in directed networks of agents with time-delay,”Syst.Control Lett.,vol.57,no.8,pp.643?653,Aug.2008.

    23 Y.G.Sun and L.Wang,“H∞consensus of second-order multi-agent systems with asymmetric delays,”Syst.Control Lett.,vol.61,no.8,pp.857?862,Aug.2012.

    24 Z.K.Li,Z.S.Duan,and G.R.Chen,“OnH∞andH2performance regions of multi-agent systems,”Automatica,vol.47,no.4,pp.797?803,Apr.2011.

    25 Y.Liu and Y.M.Jia,“RobustH∞consensus control of uncertain multi-agent systems with time delays,”Int.J.Control,Automat.Syst.,vol.9,no.6,pp.1086?1094,Dec.2011.

    26 B.Shen,Z.D.Wang,and X.H.Liu,“BoundedH∞synchronization and state estimation for discrete time-varying stochastic complex networks over a fi nite horizon,”IEEE Trans.Neural Network,vol.22,no.1,pp.145?157,Jan.2011.

    27 Z.D.Wang,D.R.Ding,H.L.Dong,and H.S.Shu,“H∞consensus control for multi-agent systems with missing measurements:The fi nite-horizon case,”Syst.Control Lett.,vol.62,no.10,pp.827?836,Oct.2013.

    28 Q.Y.Liu,Z.D.Wang,X.He,and D.H.Zhou,“Event-BasedH∞consensus control of multi-agent systems with relative output feedback:The fi nite-horizon case,”IEEE Trans.Automat.Control,vol.60,no.9,pp.2553?2558,Sep.2015.

    29 J.A.Fax and R.M.Murray,“Information fl ow and cooperative control of vehicle formations,”IEEE Trans.Automat.Control,vol.49,no.9,pp.1465?1476,Sep.2004.

    30 Y.Y.Wang,L.H.Xie,and C.E.de Souza,“Robust control of a class of uncertain nonlinear systems,”Syst.Control Lett.,vol.19,no.2,pp.139?149,Aug.1992.

    31 S.Boyd,L.El Ghaoui,E.Feron,and V.Balakrishnan,Linear Matrix Inequalities in System and Control Theory.Philadelphia,USA:Society for Industrial and Applied Mathematics,1994.

    32 X.W.Dong,Y.Zhou,Z.Ren,and Y.S.Zhong,“Timevarying formation control for unmanned aerial vehicles with switching interaction topologies,”Control Eng.Pract.,vol.46,pp.26?36,Jan.2016.

    33 X.W.Dong,Y.Zhou,Z.Ren,and Y.S.Zhong,“Timevarying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation fl ying,”IEEE Trans.Ind.Electron.,Jul.2016,doi:10.1109/TIE.2016.2593656.

    34 G.L.Zhang,J.Xu,J.Zeng,J.X.Xi,and W.J.Tang,“Consensus of high-order discrete-time linear networked multi-agent systems with switching topology and time delays,”Trans.Inst.Measur.Control,Feb.2016,doi:10.1177/0142331216629197.

    35 X.W.Dong,J.X.Xi,Z.Y.Shi,and Y.S.Zhong,“Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties,time-varying delays and external disturbances,”Int.J.Syst.Sci.,vol.44,no.10,pp.1843?1856,Oct.2013.

    36 R.A.Horn and C.R.Johnson,Matrix Analysis.Cambridge,USA:Cambridge University Press,1999.

    尾随美女入室| 免费播放大片免费观看视频在线观看| 一本色道久久久久久精品综合| 色视频在线一区二区三区| 夜夜骑夜夜射夜夜干| 飞空精品影院首页| 18禁国产床啪视频网站| 亚洲精品aⅴ在线观看| 亚洲国产av影院在线观看| 制服人妻中文乱码| 亚洲欧美中文字幕日韩二区| videos熟女内射| 久久久久国产网址| freevideosex欧美| 一级a做视频免费观看| 18禁在线无遮挡免费观看视频| 超碰97精品在线观看| 国产午夜精品一二区理论片| 男女免费视频国产| av免费在线看不卡| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 黄色配什么色好看| 成人国产麻豆网| 亚洲精品久久午夜乱码| 欧美日韩亚洲高清精品| 亚洲性久久影院| 男女下面插进去视频免费观看 | 日本欧美国产在线视频| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| 国产免费现黄频在线看| 亚洲精品视频女| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 中文字幕制服av| 日韩成人伦理影院| 1024视频免费在线观看| 少妇的逼好多水| 国产亚洲精品久久久com| 乱人伦中国视频| 黄色一级大片看看| 国产麻豆69| av国产精品久久久久影院| 天堂俺去俺来也www色官网| 日韩视频在线欧美| 国产精品 国内视频| 久久久久视频综合| 9热在线视频观看99| 国产日韩欧美在线精品| 伊人亚洲综合成人网| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 欧美3d第一页| 亚洲,欧美精品.| 成人毛片a级毛片在线播放| 中国三级夫妇交换| 九色亚洲精品在线播放| 久热这里只有精品99| 午夜福利网站1000一区二区三区| 欧美少妇被猛烈插入视频| 国产黄色视频一区二区在线观看| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 婷婷成人精品国产| 国产免费现黄频在线看| 中文精品一卡2卡3卡4更新| www日本在线高清视频| 亚洲欧美色中文字幕在线| 国产精品久久久久久久电影| 2018国产大陆天天弄谢| 精品一区二区三区视频在线| 国产精品国产av在线观看| 美女大奶头黄色视频| 一边亲一边摸免费视频| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕| xxxhd国产人妻xxx| 亚洲国产精品国产精品| 亚洲国产精品一区二区三区在线| 国产亚洲最大av| 少妇 在线观看| 久久毛片免费看一区二区三区| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 一级,二级,三级黄色视频| 搡老乐熟女国产| 韩国高清视频一区二区三区| 亚洲性久久影院| 波多野结衣一区麻豆| 久久青草综合色| 在线观看www视频免费| 国产成人一区二区在线| 街头女战士在线观看网站| 黄片播放在线免费| 日韩制服丝袜自拍偷拍| 男女免费视频国产| 欧美另类一区| 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 亚洲av男天堂| 九色亚洲精品在线播放| 亚洲中文av在线| 免费观看a级毛片全部| 91在线精品国自产拍蜜月| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 亚洲国产av新网站| 女性被躁到高潮视频| 极品少妇高潮喷水抽搐| 精品人妻偷拍中文字幕| 久久ye,这里只有精品| 久久99热6这里只有精品| 欧美+日韩+精品| 美女主播在线视频| 老司机影院成人| 日韩精品免费视频一区二区三区 | 91精品国产国语对白视频| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 少妇的丰满在线观看| 精品一区二区三区视频在线| 97超碰精品成人国产| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| 在线观看人妻少妇| 超色免费av| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲 | 久久久久久人人人人人| 在线看a的网站| 丰满乱子伦码专区| 内地一区二区视频在线| 伊人亚洲综合成人网| 成人漫画全彩无遮挡| 亚洲国产欧美日韩在线播放| 精品熟女少妇av免费看| 国产高清国产精品国产三级| 亚洲伊人色综图| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 日日啪夜夜爽| 欧美日韩成人在线一区二区| 婷婷色综合www| 一区二区日韩欧美中文字幕 | 欧美国产精品va在线观看不卡| 久久精品aⅴ一区二区三区四区 | 日韩中文字幕视频在线看片| 亚洲国产色片| 中国美白少妇内射xxxbb| 日本午夜av视频| 激情五月婷婷亚洲| 51国产日韩欧美| 国产毛片在线视频| 十分钟在线观看高清视频www| 亚洲国产精品成人久久小说| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 99视频精品全部免费 在线| 久久人人爽人人爽人人片va| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 制服人妻中文乱码| 午夜影院在线不卡| 亚洲天堂av无毛| 成人无遮挡网站| 在线观看免费视频网站a站| 街头女战士在线观看网站| 丰满少妇做爰视频| 18禁国产床啪视频网站| av又黄又爽大尺度在线免费看| 麻豆精品久久久久久蜜桃| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 亚洲成人一二三区av| 九九在线视频观看精品| 欧美少妇被猛烈插入视频| 中文字幕免费在线视频6| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| h视频一区二区三区| 日本色播在线视频| 美女国产高潮福利片在线看| videosex国产| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃 | 香蕉精品网在线| 精品熟女少妇av免费看| 亚洲色图综合在线观看| 秋霞伦理黄片| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 成人黄色视频免费在线看| 亚洲av免费高清在线观看| 国内精品宾馆在线| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 国产片特级美女逼逼视频| 亚洲精品美女久久久久99蜜臀 | 日韩成人伦理影院| 午夜激情久久久久久久| 国产日韩欧美亚洲二区| 波多野结衣一区麻豆| 在现免费观看毛片| 色94色欧美一区二区| 亚洲欧洲日产国产| 男女午夜视频在线观看 | 黑人巨大精品欧美一区二区蜜桃 | 欧美丝袜亚洲另类| 国产成人精品无人区| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 大香蕉久久成人网| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 美女福利国产在线| 免费在线观看完整版高清| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 亚洲综合精品二区| 深夜精品福利| 午夜久久久在线观看| 国产在线一区二区三区精| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 熟女av电影| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 久久久久久久久久久久大奶| 日韩免费高清中文字幕av| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 十八禁高潮呻吟视频| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 亚洲成av片中文字幕在线观看 | 久久综合国产亚洲精品| 久久这里有精品视频免费| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 超色免费av| 在线 av 中文字幕| 国产有黄有色有爽视频| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 最近最新中文字幕免费大全7| 另类精品久久| 国产免费一级a男人的天堂| 99久久综合免费| 亚洲性久久影院| 午夜激情久久久久久久| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 女人被躁到高潮嗷嗷叫费观| 一区二区三区精品91| 在线 av 中文字幕| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 中国美白少妇内射xxxbb| 2018国产大陆天天弄谢| 亚洲第一av免费看| 亚洲av.av天堂| 美女视频免费永久观看网站| 亚洲精品自拍成人| 欧美日韩av久久| 在线天堂最新版资源| 看免费av毛片| 国产毛片在线视频| 丰满迷人的少妇在线观看| 亚洲第一av免费看| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 国产精品一区二区在线观看99| 青青草视频在线视频观看| 一区二区日韩欧美中文字幕 | 日韩制服丝袜自拍偷拍| 日韩中字成人| 飞空精品影院首页| 国产熟女午夜一区二区三区| 国产精品久久久久久久久免| 街头女战士在线观看网站| 一二三四在线观看免费中文在 | 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 一级毛片电影观看| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 美女中出高潮动态图| 美女国产视频在线观看| av线在线观看网站| 日韩制服骚丝袜av| 丝瓜视频免费看黄片| 五月伊人婷婷丁香| 丝袜在线中文字幕| 99香蕉大伊视频| 国产乱来视频区| 国产精品 国内视频| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 精品一区二区三区视频在线| 人成视频在线观看免费观看| 久久久久网色| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 免费观看av网站的网址| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 国产探花极品一区二区| 视频中文字幕在线观看| 亚洲成av片中文字幕在线观看 | 亚洲国产最新在线播放| 亚洲人成77777在线视频| 91精品国产国语对白视频| 国产一区二区三区综合在线观看 | 老司机影院毛片| av国产精品久久久久影院| 深夜精品福利| 最近中文字幕高清免费大全6| kizo精华| 亚洲av电影在线观看一区二区三区| 欧美变态另类bdsm刘玥| 成人影院久久| 人人妻人人爽人人添夜夜欢视频| 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 大码成人一级视频| 国产精品久久久av美女十八| av又黄又爽大尺度在线免费看| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 亚洲伊人久久精品综合| av黄色大香蕉| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 亚洲精品色激情综合| 一个人免费看片子| 爱豆传媒免费全集在线观看| 成人综合一区亚洲| √禁漫天堂资源中文www| 欧美97在线视频| 国产欧美另类精品又又久久亚洲欧美| 男人添女人高潮全过程视频| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 中国国产av一级| 日韩成人伦理影院| xxxhd国产人妻xxx| 久久久国产精品麻豆| 高清不卡的av网站| 久久精品人人爽人人爽视色| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久成人av| 精品国产露脸久久av麻豆| 久久午夜福利片| 国产成人精品在线电影| 高清欧美精品videossex| 全区人妻精品视频| 热99国产精品久久久久久7| 草草在线视频免费看| 中文字幕制服av| 久久久久精品久久久久真实原创| 九九爱精品视频在线观看| 国产国语露脸激情在线看| 中文字幕免费在线视频6| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 亚洲欧洲国产日韩| tube8黄色片| 国产男人的电影天堂91| 秋霞伦理黄片| 亚洲情色 制服丝袜| 色5月婷婷丁香| 黑人欧美特级aaaaaa片| 免费看光身美女| 啦啦啦视频在线资源免费观看| 深夜精品福利| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 性色avwww在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| freevideosex欧美| 国产精品蜜桃在线观看| av免费观看日本| 天天躁夜夜躁狠狠躁躁| 色婷婷av一区二区三区视频| 国产精品久久久av美女十八| 黑人猛操日本美女一级片| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 国产av码专区亚洲av| 在现免费观看毛片| freevideosex欧美| 久久久久久人人人人人| 十分钟在线观看高清视频www| 久久国产精品男人的天堂亚洲 | 国产一区二区激情短视频 | 在线观看人妻少妇| 色哟哟·www| 熟女av电影| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 日本欧美国产在线视频| freevideosex欧美| 中文字幕亚洲精品专区| 一本色道久久久久久精品综合| 日韩电影二区| 国产综合精华液| 亚洲中文av在线| 一级毛片我不卡| 免费女性裸体啪啪无遮挡网站| 丝袜脚勾引网站| 久久99精品国语久久久| 欧美成人午夜免费资源| 亚洲av福利一区| 秋霞伦理黄片| xxxhd国产人妻xxx| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美成人午夜免费资源| 免费在线观看黄色视频的| 日日啪夜夜爽| √禁漫天堂资源中文www| 亚洲性久久影院| 久久国产亚洲av麻豆专区| 伦理电影大哥的女人| 午夜老司机福利剧场| 永久免费av网站大全| 少妇 在线观看| 婷婷色综合大香蕉| 少妇精品久久久久久久| 97在线视频观看| 亚洲精品美女久久久久99蜜臀 | 男女啪啪激烈高潮av片| 欧美 日韩 精品 国产| 日日撸夜夜添| 在线观看免费视频网站a站| 9色porny在线观看| 成人亚洲欧美一区二区av| 老司机影院成人| 只有这里有精品99| 国产在线一区二区三区精| 大片电影免费在线观看免费| 日韩成人伦理影院| 美女内射精品一级片tv| 国产永久视频网站| 久久久久久人人人人人| 精品午夜福利在线看| 宅男免费午夜| 国产精品久久久久久av不卡| 纵有疾风起免费观看全集完整版| 999精品在线视频| 久久久久久伊人网av| 久久精品aⅴ一区二区三区四区 | 日本欧美国产在线视频| 国产精品成人在线| 国产亚洲精品第一综合不卡 | 久久鲁丝午夜福利片| 亚洲国产最新在线播放| 亚洲一区二区三区欧美精品| 亚洲美女搞黄在线观看| 精品久久国产蜜桃| 亚洲精品美女久久久久99蜜臀 | 在线观看免费日韩欧美大片| 久久精品国产亚洲av天美| 777米奇影视久久| 蜜桃在线观看..| 中文字幕av电影在线播放| 天堂中文最新版在线下载| a级毛色黄片| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 99久久综合免费| 男的添女的下面高潮视频| 香蕉精品网在线| 黑人高潮一二区| 亚洲精品一二三| 国产免费视频播放在线视频| 久久99一区二区三区| 久久99热6这里只有精品| 日本vs欧美在线观看视频| 亚洲人成网站在线观看播放| 99久久综合免费| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美日韩在线播放| 在线观看三级黄色| 日本黄色日本黄色录像| av不卡在线播放| 欧美精品一区二区免费开放| 91成人精品电影| 亚洲av电影在线观看一区二区三区| 久久久国产精品麻豆| 午夜激情av网站| 国产极品粉嫩免费观看在线| 美女中出高潮动态图| 免费观看性生交大片5| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| 亚洲综合精品二区| 街头女战士在线观看网站| 国产色爽女视频免费观看| 中国国产av一级| 插逼视频在线观看| 欧美成人午夜精品| av免费在线看不卡| 80岁老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱| 夜夜骑夜夜射夜夜干| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品电影小说| av网站免费在线观看视频| 欧美成人午夜精品| 色吧在线观看| 国产成人午夜福利电影在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 热99国产精品久久久久久7| av免费观看日本| 美女中出高潮动态图| 免费观看无遮挡的男女| 久久久亚洲精品成人影院| 天天躁夜夜躁狠狠躁躁| 男女国产视频网站| 精品国产一区二区三区久久久樱花| 麻豆精品久久久久久蜜桃| 中国三级夫妇交换| 亚洲精品美女久久久久99蜜臀 | 国产 一区精品| 成人综合一区亚洲| 啦啦啦视频在线资源免费观看| 国产精品 国内视频| 久久精品国产a三级三级三级| 狂野欧美激情性xxxx在线观看| 美女脱内裤让男人舔精品视频| 久久精品久久久久久久性| 五月玫瑰六月丁香| 免费看光身美女| a 毛片基地| 国产一区二区在线观看av| 18+在线观看网站| 最近手机中文字幕大全| 国产一区二区三区av在线| 老女人水多毛片| 久久人人爽av亚洲精品天堂| 亚洲第一区二区三区不卡| 飞空精品影院首页| 国产亚洲午夜精品一区二区久久| 久久久久久久久久久免费av| 麻豆乱淫一区二区| 国产一区亚洲一区在线观看| 在线天堂中文资源库| 国产成人aa在线观看| 久久这里只有精品19| 宅男免费午夜| 国内精品宾馆在线| 久久精品久久久久久噜噜老黄| 久久久欧美国产精品| 欧美人与性动交α欧美软件 | 精品亚洲成a人片在线观看| 成人漫画全彩无遮挡| 大话2 男鬼变身卡| 九九爱精品视频在线观看| 成人漫画全彩无遮挡| 久久99一区二区三区| 国产成人午夜福利电影在线观看| 春色校园在线视频观看| 日本色播在线视频| 国产av一区二区精品久久| 日日爽夜夜爽网站| 丝袜人妻中文字幕| 久久久a久久爽久久v久久| 国精品久久久久久国模美| 午夜日本视频在线| 一级爰片在线观看| 91精品伊人久久大香线蕉| 大香蕉久久成人网| 精品视频人人做人人爽| 亚洲国产最新在线播放| 免费观看a级毛片全部| 少妇的逼水好多| 亚洲四区av| 日本wwww免费看| 另类亚洲欧美激情| 日本欧美国产在线视频| 草草在线视频免费看|