• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interactive Multi-label Image Segmentation With Multi-layer Tumors Automata

    2017-03-12 03:40:15SixianChanXiaolongZhouZhuoZhangShengyongChen
    自動化學報 2017年10期
    關(guān)鍵詞:安樂死蘇丹雄性

    Sixian Chan Xiaolong Zhou Zhuo Zhang Shengyong Chen

    1 Introduction

    Image segmentation task is to divide an image into regions of interest that are suitable for machine or human operations[1],[2]like image retrieval and recognition.Recently,the accuracies of completely automatic segmentation techniques[3],[4]have been enhanced substantially.Nevertheless,the achievements of current state-of-the-art algorithms still cannot satisfy the accuracy requirement of professional image editors for choosing target boundaries.Many interactive algorithms have been proposed to improve the accuracy recently.These algorithms are based on the graph-based theory,including interactive grabcut[5],graph-cut[6]?[8],random walks[9],regioncut[10]and growcut[11].

    Graph-cut[6]is an assembled optimization strategy to address the issue of the object segmentation in an image.An image is treated as a graph and each pixel is a graph node.The globally optimal pixel labelling for two-label case(i.e.,object and background)can be efficiently computed by using max- fl ow/min-cut algorithms.Grabcut[5]is an improvement of graph-cut by merging an iterative segmentation mechanism.The fi rst proximity of the ultimate foreground/background labelling can be found when the user draws a rectangular box surrounding the target of interest.Random walker(RW)[9]acquires a few pixels as user-determined seed labels,but it gives an analytical decision of the probability which a random walker starts at each unlabelled pixel will attain one of the pre-labelled pixels fi rstly.Object segmentation is gained by distributing each pixel to the label for which the greatest probability is computed.Some special images with poor structure,color,and appearance features also can employ the RW for editing.But it is not easy to control and accomplish this kind of energy minimizing approach.Regioncut[10]associates the traits of the robustness of region information and the precision of gradient oriented segmentation approaches.Furthermore,the distributed seeds are initialized by region probabilities.This method can reach the state of convergence without user initialized seeds.Under the framework of the cellular automata(CA)[12],an interactive segmentation method,named growcut[11],is proposed.There are two major properties of this algorithm.One is the possibility to deal with the multi-label segmentations.The other is that this approach can be extended to handle the high-dimensional images.

    In computer vision,interactive object segmentation plays a signi fi cant role in photo analysis and image editing.Under interactions in terms of scribbles[1],[2]or bounding boxes[13]around the object of interest for seeds,users can directly utilize the segmentation algorithm towards a desired output.Recently,researchers have presented many powerful approaches for interactive image segmentation.In this paper,we focus on the literature of interactive segmentation performed with super-pixel.

    In regioncut[10],a Gaussian mixture model(GMM)and a precision of gradient oriented segmentation method are learned by combining the robustness of region information.The GMM is applied in pre-initializing the region probabilities.In this way,it is similar to distributed seeds.The fi nal segmentation output is still gained from building a pixel-based graph.Additionally,the ineffectiveness of only using fi nal segmentation mask is shown in the results.In[14],the method fuses the framework mentioned in[15]to obtain super-pixels on each frame independently.After that,the optical forward and backward information are utilized to build a spatio-temporal super-pixel graph.The graphs based on occlusion boundaries are focused on and the major contribution is to use the information ofan occlusion boundarydetectortomodifythem.Subsequently,the spatio-temporal super-pixel graph is partitioned into object and background by graph-cut.In[16],super-pixels serve as interactive buttons which can be tapped by the user quickly to add or remove an initial low quality segmentation mask,with the purpose of correcting the segmentation errors and generating promising results.Reference[17]develops an innovative segmentation framework based on bipartite graph partitioning,in which the multi-layer super-pixels can be fused in a principled manner.Computationally,it is tailored to unbalance bipartite graph structure and lead to a highly efficient,linear-time spectral algorithm.As far as our information goes,nevertheless,almost all the existing interactive approaches initialize the object and background via pixels.

    In this paper,a new interactive segmentation algorithm is developed.It is based on the super-pixel level and the simple linear iterative clustering(SLIC)[18]is employed as the super-pixels generators.Each generated super-pixel is simply labelled as object or background.The segmentation is then updated by the graph-cut.To obtain the best result,both level set[19]and multi-layer TA approaches are applied.The corresponding segmentation results of our algorithm are illustrated in Fig.1.The major contributions of our work are summarized as following.

    Fig.1. The fi nal results of our proposed interactive segmentation system.(a),(b)and(c)are single object segmentations and(d)is the multi-object segmentation.

    1)A novel mechanism called tumors automata(TA)is proposed to improve the traditional CA method by using super-pixel to replace pixel.

    2)For better incorporating the super-pixel to deal with TA mechanism,an improved growcut approach is developed.

    3)A level set method[19]is applied for smoothing the object boundary,which uses the output from the previous process for initialization.

    4)To make use of multiple fi nal outputs,a multi-layer tumors automata(MTA)is proposed.By integrating different segmentation results,the MTA brings a boost in performance and beats many leading methods in the state-ofthe-art.

    The process of the proposed algorithm and the corresponding outputs are illustrated in Fig.2.The original image(Fig.2(a)is fi rst over-segmented(Fig.2(b))and then initialized to select seeds(Fig.2(c)). Black,white and gray colors represent the background labelled bacteria,object labelled bacteria and the neutral territory,respectively.Fig.2(d),Fig.2(e)and Fig.2(f)demonstrate the results of object binary,object region and object boundary by our algorithm,respectively.

    We show each module of our algorithm in Fig.3.User labelling is needed fi rstly and neighbors information is computed by super-pixel-based calculation.Then,we apply the modi fi ed growcut approach with TA in segmenting the whole image.The proposed method also absorbs the level set method to smooth the boundary.

    2 Proposed Algorithm

    2.1 Initial Segmentation

    As demonstrated in Fig.2,we need to over-segment the image initially.The spatial proximity weight and the number of super-pixels must be provided.The image is then divided into super-pixelsS=s1···skat the beginning.Those super-pixels are the source of TA,which will be introduced in next section.

    2.2 Tumors Automata

    The CA has been widely used.For example,it has been absorbed in computer vision tasks including image processing[20]and saliency detection[21].Being spatially and temporally discrete,CA operates on a lattice of sitesp∈P?Zn(pixels or voxels in image processing).Commonly used neighborhood systemsNare the von Neumann[12]and Moore neighborhoods:

    1)Von Neumann Neighborhood:

    In order to better obtain intrinsic structural information and compute more efficiently,the TA is put forward.The TA performs in a similar way as CA.The only difference is that the TA is operated with super-pixel rather than pixel.Therefore,an over-segmentation approach for pre-processing an image and generating super-pixels is necessary.

    Numpsuper-pixels are obtained via SLIC[18].Each of them is described with mean color features and coordinates of pixels.Then,the proposed TA algorithm performs directly on the super-pixels.Each super-pixel in our algorithm is analogous to a tumor.A(bi-directional,deterministic)TA is a tripletA=(S,N,δ),whereSis a non-empty state set,Nis the super-pixel neighborhood system,andδ:SN→Sis the local transition function.Int+1 time step,this function makes the rule for calculating the tumor’s state when given the states of the neighborhood tumors at previous time stept.The theory of eight neighborhoods is still employed in our super-pixel neighborhood strategyN(as shown in Fig.4).We look for each tumor’s neighbors including tumors surrounding it as well as sharing conjunct boundaries with their adjacent tumors(as shown in Algorithm 1).

    Fig.2. The process of our interactive segmentation algorithm.

    Fig.3.The framework of proposed algorithm.

    Fig.4. The super-pixel neighborhood in our algorithm.

    Algorithm 1. Search super-pixel neighborhoods algorithm

    The tumor’s stateSpin our case is actually a triplet(lp,θp,Cp).Thelpmeans the current tumor’s label.The strength of the current tumor isθp,andCpstands for the tumor feature vector,de fi ned by the image.Without loss generality we will assignθp∈[0,1].Any input image(k×m)is segmented intoNumpsuper-pixels.Then,a seg-mented image can be treated as a special con fi guration condition of a TA,where tumor spacePis represented byNumpsuper-pixels,and initial states for?p∈Pare set as:

    whereRGBpis the three dimensional vector of mean color of super-pixel in RGB space.The fi nal goal of the segmentation is to assign each super-pixel one of theKpossible labels.

    2.3 Improved Growcut Algorithm

    Growcut is one of the major methods that is used to determine some seed pixels which iteratively attempt to attack their neighbors.Different from growcut,super-pixels are selected for initial seeds in our algorithm.Therefore,each super-pixel has a pre-de fi ned strength.The strength values of the initially selected seed super-pixels are set to one.Instead,all other super-pixels’strength values are set to zero.This initializes the state of the TA.Henceforth,the seed super-pixels expand over the image until the edges of two different labels contact each other.Otherwise,superpixels continue to attack their neighbors(as shown in the Algorithm 2).

    Algorithm 2.Tumors automata evolution rule

    For each iteration,to weaken the power of occupying super-pixels,the strength value of an occupying super-pixel is multiplied with a linear weighting functiong(x)→[0,1].The difference in the colour of super-pixels between the attacked super-pixelsqand the attacking super-pixelspare used to de fi ne theg(x).The goal is to effectively weaken the power of an attacking super-pixel.Theg(x)is given as following:

    where(Ip,Iq)is the color vector of super-pixelspandq,andCmaxis the maximum color difference.

    Letpbe the attacking andqthe attacked super-pixel.θpdenotes the strength andxis the color gradient betweenpandq.Thenpoccupiesqif the decreased strengthθp?g(Ip,Iq)is higher thanθq.In this case,the labellqwill be set tolpand the strengthθqwill be set toθp?g(Ip,Iq).Iteratively each super-pixel inItries to occupy its neighbors until a stable state is reached for automation.Fig.2 reveals the processing of image segmentation.Fig.1 shows some examples of image segmentation results.Our proposed algorithm can be sure to reach the state of convergence by expanding the strength of each tumor until bounded.Fig.9 illustrates the processing of the iteration.Since the given competition rule is multi-label capable,the improved growcut naturally supports multi-label segmentations.

    2.4 Boundary Smoothness Mechanism

    The improved growcut method is able to achieve quality segmentation(as shown in Fig.1).However,the resulting segments boundary can be ragged(as shown in Fig.5:the right,middle and left images denote the fi nal binary segmentation results after using level set,the binary segmentation results without level set method and the original images,respectively)in some images.Sometimes the task is to extract the smallest details of the boundaries.However,this can be an unwanted artifact when editing generic high-resolution images.

    Fig.5. Object’s boundary optimized by the level set.

    Once the output is obtained from the improved growcut algorithm with TA,we treat it as the initial boundary of the object.A distance regularized level set evolution(DRLSE)[19]is then applied for optimizing the boundary.Level set approach is the basic principle of plane closed curve and it can be implicitly represented as a two-dimensional surface level set function.The solution of curve movement can be implicited through the processing of the level set function surfaces.The basic equation of the level set function is:

    where Φ is the level set function andtis time.Before performing the optimization,difference image has to be calculated.In calculus of variations,searching the stable state of the gradient fl ow equationF(Φ)is the standard approach to minimize an energy function.

    Fig.6. The results given by the multi-layer TA.

    where(x,y)is pixel of the boundary andtis time step.Fig.6 shows the optimized results by TA.

    The results illustrate that the multi-layer TA algorithm can optimize the boundary of an object.Even though some results are not satisfying,it is clear that all of those are greatly improved and reach a high accuracy level after evolution.

    2.5 Multi-layer Tumors Automata Mechanism

    Numerous novel approaches have been raised to solve the issue of the interactive object segmentation.Each of them has its own superiorities and disadvantages.To make use of the advantage of each approach,an effective mechanism to amalgamateMsegmentation outputs generated byMstate-of-the-art algorithms has been designed by Yao[21].Inspired by it,we treat each of those re-labelled images as a layer of the TA.We employ two state-of-the-art algorithms proposed by Arndt[10]and Li[17]as two individual layers of the TA.

    In MTA,each tumor represents a super-pixel.Numpdenotes the total number of the super-pixels in an image.Different from the de fi nition of neighborhood in Section 4.1,super-pixels with the same center coordinate in different outputs are neighbors for MTA.For any tumor,in fact,it hasM?1 neighbors which get from other outputs.Meanwhile,each neighbor is considered to have the same force to control the tumor’s next state.

    After segmentation,the super-pixeliwill be determined and denoted as following:

    wherelsp=1 means that this super-pixel belongs to an object.In contrast,lsp=0 indicates that this super-pixel belongs to the background.Since the segmentation may not always be correct,a super-pixel binarized or determined as object does not mean that it actually belongs to the foreground.Thus,the MTA is proposed to improve the segmentation accuracy.Different from Yao’s method[21]that makes use of multiple fi nal outputs in the Bayesian framework,the tumors are fed back to the improved growcut framework in our method.In Fig.5,(a),(d),(g),(j),(m),(p)are the original images,(b),(e),(h),(k),(n),(q)are the binary segmentations,and(c),(f),(i),(l),(o),(r)are the object segmented contours.(a)?(c),(g)?(i),(m)?(o)are the segmentations without MTA,while(d)?(f),(j)?(l),(p)?(r)are the segmentations with MTA.

    3 Experiments

    We conduct several experiments to test and verify the effectiveness and robustness of the proposed approach.It is tested in the PASCAL VOC segmentation challenge[22]to evaluate the quality of our interactive segmentation method and compare it with existing algorithms based on the new and harder dataset[23]which augments the existing grabcut dataset[8]with images and ground truth taken from the PASCAL VOC segmentation challenge[22].Details are described below.

    3.1 Robustness Analysis of Our Algorithm

    Interactive system quality is evaluated as the average number of super-pixel seeds required to achieve segmentation quality within a certain band.Fig.7 illustrates the result and measure interaction effort.The graph of overlap score versus number of super-pixel seeds captures how the accuracy of the segmentation varies with successive user interactions,and the average number of seeds summarizes that in a single score.Here overlap score,the measure used to evaluate segmentation quality in the VOC segmentation challenge[22],is given by

    whereydenotes output segmentation andygtdenotes ground truth.The average is computed over a certain range of scores,and we takeSlow=83,Shigh=95.

    Fig.7. Plotting overlap score vs.no.of seeds.

    3.2 Quantitative Analysis of Segmentation and Segmentation Efficiency

    where theNumolpis the number of overlap label pixels andNumtpdenotes the total pixels.For the issue of multi-label segmentation,we use the IcgBench dataset mentioned by Santneret al.[24],and the mean Dice evaluation score is given as following:

    where|·|denotes the region of a segmentationEi.GTimeans the ground truth labeling andNis the number of segments.

    Table I shows the evaluation of the proposed algorithm on the test images compared with the super-pixel-based approaches,for instance,regioncut[10]and the BGPA[17]as well as the pixel-based approaches,such as RW[9],growcut[11]and graph-cut[6].It is clearly shown that both improvements,the TA mechanism and the Multi-layer mechanism,increase the accuracy of the proposed scheme.In summary,our algorithm clearly outperforms not only the original growcut method but also the graph-cut framework in terms of mean error rate.

    TABLE I ACCURACY RATES ON THE HARDER DATASET[23]BASED ON DIFFERENT METHODS

    The proposed interactive object segmentation algorithm is evaluated via a lasso initialization.The initializations given by the introduced dataset are utilized.There is no need for regional analysis by using the lasso initialization.Our pre-initialization measure is conducted to initialize as much as possible of the image except the edges.Compared to the original growcut algorithm,our proposed algorithm performs better and outperforms the regioncut with discriminatively learning parameters.In addition,the proposed method can handle the issue of the Multi-label segmentation(as shown in Fig.8).

    4 Discussion

    4.1 Neighborhood Measure

    To strengthen smoothness,only neighboring pixels weights could be attained by the von Neumann and Moore neighborhoods.However,this situation will end up with the super-pixels applied in our algorithm.To compensate for the smoothness on the neighboring across super-pixels,different methods have been proposed.Reference[17]connects the neighboring super-pixels which are similar in feature space.It is different from the well known CA,the in fl uences of all neighbors are fi xed[11],[12]or depending on the similarity between any pair of cells in color feature space[18],[25].If the object’s color is similar with the background,this will bring noise and cause confusion with background.It is very hard to handle those solutions(as shown in Fig.10:(a),(g)and(b),(h)are the original images and the ground truth.(c),(i)and(d),(j)are the results obtained by using the feature space neighborhood measure.(e),(k)and(f),(l)are our results by using the proposed neighborhood measure).For the proposed superpixel neighborhood systems,we still use the idea of eight neighborhoods(see Fig.4).More details are shown in the Algorithm 1.

    Fig.8. Multi-labels segmentation results.

    In Algorithm 1,we set threshold value as 20.If the overlap boundary line is more than 20 pixels,we think that the boundary is the common border.The super-pixel pair are the neighborhood.Otherwise,this boundary will be out of our consideration.

    4.2 Efficiency Analysis

    Similarly as the regioncut[10]that ignores pre-learning and pre-classi fi cation,we analyze the efficiency of the proposed algorithm by ignoring the pre-process of oversegmentation.Fig.9 shows a segmentation example of the lotus image compared to graph-cut[25]and regioncut[10].In Fig.9,the bottom,middle and top images represent the results of regioncut,graph-cut and ours,respectively.It is easy to fi nd that the convergence speed of the proposed method is faster than others.

    這是一個悲傷的故事,世界上最后一頭雄性北白犀Sudan(“蘇丹”)在 3 月 19 日被實施安樂死,北白犀這個在地球生存了上千萬年的物種走向滅絕。

    Fig.9 shows that our method is with the least user strokes compared with regioncut and graph-cut.Clearly,the results are the best not only in the speed of convergence but also the accuracy.The results are summarized in Table II.The evaluation of the proposed algorithm on the segmentation benchmark is demonstrated,which is compared with the original growcut algorithm and graph-cut based on a coarse initialization.The results illustrate that our method is better than the graph-cut and regioncut.Compared to graph-cut,the super-pixel contains the boundary feature as well as the space information,which promotes the accuracy of segmentation.Meanwhile,compared to regioncut,the processing of pre-classi fi cation brings imprecise weights for superpxiels.It is not conducive to the fi nal segmentation.Even though the total time(4.75s)of our method is more than the time(3.28s)of the graph-cut,our accuracy is higher than graph-cut’s.The Figs.12?14 are the example results compared with different segmentation methods.The fi rst,second,third and fourth rows are the results of the BGPA[17],graph-cut[6],regioncut[10]and our method,respectively.It is clear that the proposed algorithm achieves better result than other methods.

    4.3 Shortcoming

    The results demonstrate how cogent our algorithm can be if the initialization with distributed and reasonable seeds is given.However,the experimental results also illustrate the de fi ciencies of the proposed method.Our approach has the ability to compete with state-of-the-art segmentation methods,by contrast,without needing the time consumption by user initializations.Since only the RGB color feature is extracted,it is a fl aw that our approach is a little sensitive to color distribution.It is empirically found that if the seeds can cover the main features of the object and background,good segmentation boundary can be extracted.Some promising works[17],[26]have addressed effective methods for arc weight estimation during the seeds marking process.Their works take into account image attributes and object information to enhance the discontinuities between object and background,whereas a visual feedback can be provided to the user for next action.We will investigate how to incorporate these methods into our work in the future.Fig.11 demonstrates the failure examples.(a),(f)are the original images,(b),(g)are the marked seeds,(c),(h)are the binary segmentation results,(d),(i)are the ground truth and(e),(j)are the target contour results.The selected tumors only connect to object regions and are very similar with background.So they are easily assigned to the same labels.Hence,we will extract more effective and robust features to solve the issue of object segmentation.

    4.4 Over-segmentation

    In the proposed method,the spatial proximity weight and the number of super-pixels must be provided.The bigger the number is,the more super-pixels will be segmented;the smaller the number is,the less super-pixels will be segmented.Segmenting more super-pixels will take more time and vice versa.However,fewer super-pixels cannot offer the rich information of edges.Therefore,selecting a proper amount for over-segmentation is very important.For practical use,we will continue to research an adaptive segmentation algorithm according to the size of image or the frequency distribution of an image in the future.In our experiment,the spatial proximity weight and the number of super-pixels are set to 10 and 300.

    5 Conclusion

    In this paper,we have investigated a new approach for solving the issue of interactive object segmentation in the image.The presented TA was similar to CA.However,the TA could operate super-pixel directly.Based upon TA,a novel growcut strategy was motivated to handle superpixels via interactions with neighbors.Experiments illustrated that our approach achieved superior performance and exceeded other state-of-the-arts.It demonstrated by experiments that the context-based multi-layer TA could effectively enhance any given state-of-the-art methods to obtain more accurate results.

    Fig.9. The process of the convergence and corresponding results.

    Fig.10. The segmentation results with different neighborhood measure.(a),(g)and(b),(h)are the original images and the ground truth.(c),(i)and(d),(j)are the results obtained by using the feature space neighborhood measure.(e),(k)and(f),(l)are our results by using the new neighborhood measure.

    TABLE II COMPARISON OF SEGMENTATION EFFICIENCY

    In the future,we will continue to improve the performance of proposed approach by extracting more effective features and integrating more algorithms.Implementing a high performance version by the graphics processing unit to fully explore the parallel nature of the algorithm is also a promising direction.

    Fig.11. Failure examples.The result demonstrates that our method is a little sensitive to the color.

    Fig.12. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    Fig.13. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    Fig.14. The results compared with different segmentation methods.The fi rst row is the result of the BGPA[17].The second row is the result of the graph-cut[6].The third row is the result of the regioncut[10].The last row is the result of our method.

    1 V.Kolmogorov and R.Zabin,“What energy functions can be minimized via graph cuts,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.26,no.2,pp.147?159,Feb.2004.

    2 M.A.G.Carvalho and A.L.Costa,“Combining hierarchical structures on graphs and normalized cut for image segmentation,”New Frontiers in Graph Theory,Y.G.Zhang,Ed.Rijeka,Yugoslavia:InTech Open Access Publisher,2012.

    3 J.Carreira and C.Sminchisescu,“Constrained parametric min-cuts for automatic object segmentation,”inProc.2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.3241?3248.

    4 D.Kuettel and V.Ferrari,“Figure-ground segmentation by transferring window masks,”inProc.2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2012,pp.558?565.

    5 C.Rother,V.Kolmogorov,and A.Blake, “‘grabcut’:Interactive foreground extraction using iterated graph cuts,”ACM Trans.Graph.,vol.23,no.3,pp.309?314,Aug.2004.

    6 X.Bai and G.Sapiro,“A geodesic framework for fast interactive image and video segmentation and matting,”University of Minnesota,Minnesota,USA,Tech.Rep.2171,2007.

    7 L.Yu and C.S.Li,“Low depth of fi eld image automatic segmentation based on graph cut,”J.Autom.,no.10,pp.1471?1481,2014.

    8 O.Sener,K.Ugur,and A.A.Alatan,“Error-tolerant interactive image segmentation using dynamic and iterated graph-cuts,”inProc.2nd ACM International Workshop on Interactive Multimedia on Mobile and Portable Devices,New York,NY,USA,2012,pp.9?16.

    9 L.Grady, “Random walks for image segmentation,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.28,no.11,pp.1768?1783,Nov.2006.

    10 O.J.Arndt,B.Scheuermann,and B.Rosenhahn,“‘Regioncut’-interactive multi-label segmentation utilizing cellular automaton,”inProc.2013 IEEE Workshop on Applications of Computer Vision(WACV),Tampa,FL,USA,2013,pp.309?316.

    11 V.Vezhnevets and V.Konouchine,“”GrowCut”:Interactive multi-label N-D image segmentation by cellular automata,”inProc.Graphicon,Novosibirsk Akademgorodok,Russia,2005,pp.150?156.

    12 J.Von Neumann and A.W.Burks,Theory of Selfreproducing Automata.Champaign,IL,USA:University of Illinois Press,1966.

    13 A.Blake,C.C.E.Rother,and P.Anandan,“Foreground extraction using iterated graph cuts,”U.S.Patent 7 660 463,Feb.9,2010.

    14 R.Dondera,V.Morariu,Y.L.Wang,and L.Davis,“Interactive video segmentation using occlusion boundaries and temporally coherent superpixels,”inProc.2014 IEEE Winter Conference on Applications of Computer Vision(WACV),Steamboat Springs,CO,USA,2014,pp.784?791.

    15 M.Ghafarianzadeh,M.B.Blaschko,and G.Sibley,“Unsupervised spatio-temporal segmentation with sparse spectral clustering,”inProc.British Machine Vision Conference(BMVC),Nottingham,UK,2014.

    16 I.Gallo,A.Zamberletti,and L.Noce,“Interactive object class segmentation for mobile devices,”inProc.27th SIBGRAPI Conference on Graphics,Patterns and Images(SIBGRAPI),Rio de Janeiro,Brazil,2014,pp.73?79.

    17 Z.G.Li,X.M.Wu,and S.F.Chang,“Segmentation using superpixels:A bipartite graph partitioning approach,”inProc.2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Providence,RI,USA,2012,pp.789?796.

    18 R.Achanta,A.Shaji,K.Smith,A.Lucchi,P.Fua,and S.S¨usstrunk,“Slic superpixels compared to state-of-the-art superpixel methods,”IEEE Trans.Patt.Anal.Mach.Intell.,vol.34,no.11,pp.2274?2282,Nov.2012.

    19 C.M.Li,C.Y.Xu,C.F.Gui,and M.D.Fox,“Distance regularized level set evolution and its application to image segmentation,”IEEE Trans.Image Process.,vol.19,no.12,pp.3243?3254,Dec.2010.

    20 P.L.Rosin,“Image processing using 3-state cellular automata,”Comp.Vision Image Understand.,vol.114,no.7,pp.790?802,Jul.2010.

    21 Y.Qin,H.C.Lu,Y.Q.Xu,and H.Wang,“Saliency detection via cellular automata,”inProc.2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Boston,MA,USA,2015,pp.110?119.

    22 M.Everingham,L.Van Gool,C.K.I.Williams,J.Winn,and A.Zisserman,“The Pascal visual object classes challenge 2009(VOC2009),”inSummary Presentation at the 2009 PASCAL VOC Workshop,2009.

    23 V.Gulshan,C.Rother,A.Criminisi,A.Blake,and A.Zisserman,“Geodesic star convexity for interactive image segmentation,”inProc.2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Francisco,CA,USA,2010,pp.3129?3136.

    24 J.Santner,T.Pock,and H.Bischof,“Interactive multi-label segmentation,”inAsian Conference on Computer Vision,R.Kimmel,R.Klette,and A.Sugimoto,Eds.Berlin,Heidelberg,Germany:Springer,2010,pp.397?410.

    25 Y.Y.Boykov and M.P.Jolly,“Interactive graph cuts for optimal boundary®ion segmentation of objects in ND images,”inProc.8th IEEE International Conference on Computer Vision,Vancouver,BC,USA,vol.1,pp.105?112,Jul.2001.

    26 P.A.V.de Miranda,A.X.Falc′ao,and J.K.Udupa,“Synergistic arc-weight estimation for interactive image segmentation using graphs,”Comp.Vision Image Understand.,vol.114,no.1,pp.85?99,Jan.2010.

    猜你喜歡
    安樂死蘇丹雄性
    麥穗魚(雄性)
    垂釣(2023年11期)2024-01-21 16:07:04
    大鰭鱊(雄性)
    垂釣(2023年9期)2023-12-10 19:39:30
    再見,蘇丹
    趣味(語文)(2019年10期)2020-01-14 03:26:02
    蘇丹總統(tǒng)被推翻驚世界
    “蘇丹”之死
    萌物
    飛碟探索(2016年5期)2016-05-10 23:44:30
    法律形式和道德判斷:安樂死與協(xié)助自殺
    飼料無酶褐變對雄性虹鱒魚胃蛋白酶活性的影響
    飼料博覽(2016年7期)2016-04-05 14:20:34
    病理解剖醫(yī)生理解的“安樂死
    安樂死的立法困境及其破解
    啦啦啦观看免费观看视频高清| 欧美在线黄色| 国产aⅴ精品一区二区三区波| 久久中文字幕一级| 老熟妇仑乱视频hdxx| 国产1区2区3区精品| 亚洲免费av在线视频| 丝袜美腿诱惑在线| 一级a爱片免费观看的视频| 黑人操中国人逼视频| 久久久国产成人精品二区| 日日干狠狠操夜夜爽| 日韩成人在线观看一区二区三区| 又黄又爽又免费观看的视频| 精品久久久久久成人av| 精品久久久久久久末码| 1024香蕉在线观看| 三级国产精品欧美在线观看 | 精品久久蜜臀av无| 好男人在线观看高清免费视频| cao死你这个sao货| 黄色视频,在线免费观看| 国产精品久久久久久精品电影| 精华霜和精华液先用哪个| 我的老师免费观看完整版| 国产精品99久久99久久久不卡| 日日摸夜夜添夜夜添小说| svipshipincom国产片| 黄色片一级片一级黄色片| 99久久无色码亚洲精品果冻| 亚洲18禁久久av| 在线观看一区二区三区| 成人av一区二区三区在线看| 老司机深夜福利视频在线观看| netflix在线观看网站| 欧美另类亚洲清纯唯美| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 亚洲人成电影免费在线| 欧美日韩亚洲综合一区二区三区_| 巨乳人妻的诱惑在线观看| 午夜日韩欧美国产| 国产成人影院久久av| 欧美黑人精品巨大| 亚洲国产欧美网| 99久久国产精品久久久| 国产av不卡久久| 99久久精品热视频| 免费看十八禁软件| 精品少妇一区二区三区视频日本电影| 老司机午夜福利在线观看视频| 丝袜美腿诱惑在线| 97碰自拍视频| 日韩欧美在线乱码| 久久香蕉激情| 亚洲中文av在线| 此物有八面人人有两片| 麻豆一二三区av精品| 丝袜美腿诱惑在线| 手机成人av网站| 成人三级做爰电影| 亚洲av第一区精品v没综合| 色在线成人网| 久久久久国产精品人妻aⅴ院| 欧美成人免费av一区二区三区| 香蕉丝袜av| 美女大奶头视频| 757午夜福利合集在线观看| 91国产中文字幕| 大型黄色视频在线免费观看| 一本精品99久久精品77| 夜夜爽天天搞| 午夜免费观看网址| 老司机在亚洲福利影院| 成人午夜高清在线视频| 久久香蕉精品热| 欧美成人免费av一区二区三区| 精品国产乱码久久久久久男人| 不卡一级毛片| 亚洲av片天天在线观看| 两人在一起打扑克的视频| 18禁美女被吸乳视频| 午夜a级毛片| 三级男女做爰猛烈吃奶摸视频| 日日爽夜夜爽网站| 18禁黄网站禁片午夜丰满| 九九热线精品视视频播放| avwww免费| 亚洲av成人一区二区三| 一级作爱视频免费观看| 国产精品一区二区三区四区久久| 人妻夜夜爽99麻豆av| 欧美久久黑人一区二区| 舔av片在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟女毛片儿| 男女那种视频在线观看| aaaaa片日本免费| 亚洲精华国产精华精| 九色成人免费人妻av| 久久久久久人人人人人| 黄色毛片三级朝国网站| 成人三级做爰电影| 51午夜福利影视在线观看| 久久中文看片网| 香蕉久久夜色| 丰满人妻熟妇乱又伦精品不卡| 人成视频在线观看免费观看| 免费高清视频大片| 宅男免费午夜| 日韩成人在线观看一区二区三区| 午夜福利18| 亚洲国产欧洲综合997久久,| 99久久精品热视频| 不卡一级毛片| 精品不卡国产一区二区三区| 欧美黄色淫秽网站| 黄色视频,在线免费观看| 两个人的视频大全免费| 国产99久久九九免费精品| tocl精华| 国产午夜精品久久久久久| 欧美日本亚洲视频在线播放| 国产精品乱码一区二三区的特点| 欧美丝袜亚洲另类 | 亚洲电影在线观看av| 精品久久久久久成人av| 黄片大片在线免费观看| 波多野结衣高清作品| 久久精品人妻少妇| 韩国av一区二区三区四区| www国产在线视频色| 免费观看人在逋| 少妇被粗大的猛进出69影院| 国产精品1区2区在线观看.| 淫妇啪啪啪对白视频| 非洲黑人性xxxx精品又粗又长| 久久久国产欧美日韩av| 夜夜爽天天搞| 精品一区二区三区视频在线观看免费| 成年人黄色毛片网站| 国产精品综合久久久久久久免费| 精品熟女少妇八av免费久了| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 国产三级中文精品| 99热这里只有精品一区 | 亚洲人与动物交配视频| 制服丝袜大香蕉在线| 久久精品国产亚洲av香蕉五月| 午夜福利高清视频| 少妇熟女aⅴ在线视频| 日日夜夜操网爽| 久久国产精品人妻蜜桃| 无人区码免费观看不卡| 99国产精品一区二区蜜桃av| 日韩欧美免费精品| 18禁国产床啪视频网站| 伊人久久大香线蕉亚洲五| 欧美不卡视频在线免费观看 | 久久久久亚洲av毛片大全| 国产精品99久久99久久久不卡| 啦啦啦韩国在线观看视频| 成年女人毛片免费观看观看9| 男人的好看免费观看在线视频 | e午夜精品久久久久久久| 大型av网站在线播放| 久久久久久久午夜电影| 黄色女人牲交| 午夜免费成人在线视频| 777久久人妻少妇嫩草av网站| 高潮久久久久久久久久久不卡| 桃色一区二区三区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 成在线人永久免费视频| 欧美黑人精品巨大| 伊人久久大香线蕉亚洲五| 国产精品98久久久久久宅男小说| 亚洲 欧美一区二区三区| 精品日产1卡2卡| 国产熟女午夜一区二区三区| 狠狠狠狠99中文字幕| 99在线人妻在线中文字幕| 久久人人精品亚洲av| 亚洲精品在线美女| 一本综合久久免费| 精品第一国产精品| aaaaa片日本免费| www.www免费av| 老司机靠b影院| 激情在线观看视频在线高清| 丁香六月欧美| 国产精品亚洲av一区麻豆| 老鸭窝网址在线观看| 日韩三级视频一区二区三区| 丁香欧美五月| 日韩精品青青久久久久久| 欧美成人午夜精品| 亚洲中文日韩欧美视频| 国产又黄又爽又无遮挡在线| 性欧美人与动物交配| 两性夫妻黄色片| 狠狠狠狠99中文字幕| videosex国产| 国产精品久久久人人做人人爽| 国产三级在线视频| 12—13女人毛片做爰片一| 亚洲国产高清在线一区二区三| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲美女黄片视频| 精品国产亚洲在线| 少妇熟女aⅴ在线视频| 天堂av国产一区二区熟女人妻 | 一二三四社区在线视频社区8| 久久婷婷人人爽人人干人人爱| 亚洲国产精品sss在线观看| 欧美一区二区精品小视频在线| 亚洲自偷自拍图片 自拍| 亚洲色图av天堂| 好看av亚洲va欧美ⅴa在| 脱女人内裤的视频| 午夜成年电影在线免费观看| 可以免费在线观看a视频的电影网站| 久99久视频精品免费| 亚洲精华国产精华精| 亚洲国产欧美人成| 男女做爰动态图高潮gif福利片| 色哟哟哟哟哟哟| 国产精品98久久久久久宅男小说| 搡老熟女国产l中国老女人| 窝窝影院91人妻| 国内久久婷婷六月综合欲色啪| 国产成人欧美在线观看| 日韩有码中文字幕| 久久午夜亚洲精品久久| 69av精品久久久久久| 19禁男女啪啪无遮挡网站| 88av欧美| 丰满的人妻完整版| 国产野战对白在线观看| 悠悠久久av| 国产一区二区三区视频了| 成人国产综合亚洲| 两个人看的免费小视频| 亚洲精品国产一区二区精华液| 久久久久九九精品影院| 日韩高清综合在线| 男女视频在线观看网站免费 | 久久久久性生活片| 亚洲色图 男人天堂 中文字幕| www.www免费av| 色精品久久人妻99蜜桃| 一级片免费观看大全| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 国产精品久久久久久人妻精品电影| 一个人免费在线观看电影 | av片东京热男人的天堂| 国产av又大| tocl精华| 午夜精品在线福利| 亚洲五月天丁香| 99国产精品一区二区蜜桃av| 国模一区二区三区四区视频 | 亚洲人成网站在线播放欧美日韩| 亚洲一区中文字幕在线| 在线a可以看的网站| 99久久久亚洲精品蜜臀av| 老汉色∧v一级毛片| 人人妻人人澡欧美一区二区| 国产成人系列免费观看| 免费在线观看完整版高清| 亚洲,欧美精品.| 亚洲国产欧美人成| 欧美日韩乱码在线| 久久中文字幕一级| 欧美黑人巨大hd| 给我免费播放毛片高清在线观看| 国产精品日韩av在线免费观看| 色噜噜av男人的天堂激情| 国产精品一区二区三区四区久久| 一二三四社区在线视频社区8| 国产高清视频在线观看网站| 舔av片在线| 中文字幕熟女人妻在线| 一夜夜www| 欧美zozozo另类| 久久精品91无色码中文字幕| 国产成人精品无人区| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 在线观看免费午夜福利视频| 免费在线观看亚洲国产| 久久久久国产一级毛片高清牌| 特大巨黑吊av在线直播| 欧美丝袜亚洲另类 | 18禁国产床啪视频网站| АⅤ资源中文在线天堂| 亚洲国产欧美人成| 久久天堂一区二区三区四区| 久久中文看片网| 宅男免费午夜| 听说在线观看完整版免费高清| 国产一区二区在线av高清观看| 国产精品一区二区三区四区久久| 一个人免费在线观看的高清视频| 免费看美女性在线毛片视频| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区黑人| 精品第一国产精品| 国产在线精品亚洲第一网站| 怎么达到女性高潮| 日韩国内少妇激情av| 国产午夜福利久久久久久| 老汉色∧v一级毛片| 男人舔女人的私密视频| 波多野结衣高清无吗| 午夜福利18| 久久精品aⅴ一区二区三区四区| 亚洲,欧美精品.| 亚洲男人天堂网一区| 久久久久久久午夜电影| 精品免费久久久久久久清纯| 岛国在线免费视频观看| 欧美成人性av电影在线观看| 性色av乱码一区二区三区2| 99久久无色码亚洲精品果冻| 国产精品久久视频播放| 亚洲欧美日韩高清专用| 国产真实乱freesex| 欧美中文日本在线观看视频| 夜夜躁狠狠躁天天躁| 中文字幕高清在线视频| 亚洲av中文字字幕乱码综合| 久久国产精品人妻蜜桃| 中文字幕av在线有码专区| 少妇熟女aⅴ在线视频| 国产午夜福利久久久久久| 大型黄色视频在线免费观看| 亚洲自拍偷在线| 国内揄拍国产精品人妻在线| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 亚洲国产欧美一区二区综合| 精品欧美国产一区二区三| 欧美丝袜亚洲另类 | 国产高清有码在线观看视频 | avwww免费| www.999成人在线观看| 国产精品自产拍在线观看55亚洲| 中文字幕熟女人妻在线| 亚洲精品久久国产高清桃花| 日韩有码中文字幕| 老司机午夜福利在线观看视频| 久久久久久久久免费视频了| 国产1区2区3区精品| 黄色成人免费大全| 少妇粗大呻吟视频| 亚洲真实伦在线观看| 国产精品香港三级国产av潘金莲| av国产免费在线观看| 精品国产乱码久久久久久男人| 亚洲五月天丁香| 最近在线观看免费完整版| 欧美色欧美亚洲另类二区| 蜜桃久久精品国产亚洲av| 丁香六月欧美| 国产精品99久久99久久久不卡| 久久久久久人人人人人| 久久亚洲精品不卡| 中文字幕熟女人妻在线| 1024视频免费在线观看| 性欧美人与动物交配| 精品高清国产在线一区| 婷婷精品国产亚洲av| 免费看a级黄色片| 国产高清视频在线观看网站| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 亚洲欧美精品综合久久99| 午夜精品一区二区三区免费看| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| 国产亚洲欧美在线一区二区| 1024视频免费在线观看| 在线观看免费午夜福利视频| 国产成人啪精品午夜网站| 精品高清国产在线一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人一区二区三| 一级黄色大片毛片| 国产男靠女视频免费网站| 亚洲精品色激情综合| 亚洲人成77777在线视频| 久久精品91无色码中文字幕| e午夜精品久久久久久久| 久久午夜综合久久蜜桃| 亚洲国产欧美网| 在线观看www视频免费| 美女大奶头视频| 黄色视频不卡| 亚洲av熟女| 亚洲欧美日韩高清专用| 狂野欧美激情性xxxx| 亚洲av片天天在线观看| 亚洲真实伦在线观看| 久久精品影院6| 两个人视频免费观看高清| 成人手机av| 国产精品美女特级片免费视频播放器 | 黄色毛片三级朝国网站| 亚洲成人免费电影在线观看| 亚洲国产精品999在线| 变态另类丝袜制服| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 在线观看日韩欧美| 精品第一国产精品| 国产成+人综合+亚洲专区| 国产99白浆流出| 久久婷婷人人爽人人干人人爱| 丝袜美腿诱惑在线| 久久九九热精品免费| 精品第一国产精品| 999久久久精品免费观看国产| 色噜噜av男人的天堂激情| 久久久精品欧美日韩精品| 两个人视频免费观看高清| 一本一本综合久久| 日韩欧美国产在线观看| 成人精品一区二区免费| 身体一侧抽搐| 精品乱码久久久久久99久播| 两个人视频免费观看高清| 亚洲免费av在线视频| 成熟少妇高潮喷水视频| 亚洲国产日韩欧美精品在线观看 | 亚洲在线自拍视频| 欧美不卡视频在线免费观看 | 男人舔女人的私密视频| 婷婷六月久久综合丁香| 亚洲精品国产精品久久久不卡| 亚洲精华国产精华精| 亚洲一区高清亚洲精品| 一区二区三区国产精品乱码| 成人特级黄色片久久久久久久| 亚洲精品久久成人aⅴ小说| 99国产极品粉嫩在线观看| 国产高清有码在线观看视频 | 人人妻人人看人人澡| 日韩中文字幕欧美一区二区| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 国模一区二区三区四区视频 | 日韩欧美国产一区二区入口| 深夜精品福利| 一级片免费观看大全| 人妻久久中文字幕网| 亚洲专区字幕在线| 久久欧美精品欧美久久欧美| 色噜噜av男人的天堂激情| а√天堂www在线а√下载| 成人18禁高潮啪啪吃奶动态图| av免费在线观看网站| 啦啦啦免费观看视频1| 中国美女看黄片| 级片在线观看| 伊人久久大香线蕉亚洲五| 国产一区二区在线av高清观看| 久久这里只有精品19| 欧美一级a爱片免费观看看 | 黄色成人免费大全| 精华霜和精华液先用哪个| 男女之事视频高清在线观看| 国产日本99.免费观看| 成人一区二区视频在线观看| av国产免费在线观看| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看 | 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 国产精品 国内视频| 日本在线视频免费播放| 国产乱人伦免费视频| 日韩精品免费视频一区二区三区| 国产高清有码在线观看视频 | 久久久久国内视频| 级片在线观看| 久久香蕉精品热| 日韩欧美一区二区三区在线观看| a级毛片在线看网站| 色尼玛亚洲综合影院| av福利片在线观看| 草草在线视频免费看| 大型av网站在线播放| 成人国语在线视频| 91九色精品人成在线观看| 亚洲国产精品sss在线观看| 亚洲av第一区精品v没综合| 美女扒开内裤让男人捅视频| 不卡av一区二区三区| 国产成人精品无人区| 国产av麻豆久久久久久久| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 成人永久免费在线观看视频| 一a级毛片在线观看| 国产午夜精品久久久久久| 99精品久久久久人妻精品| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 一a级毛片在线观看| 嫩草影院精品99| 精品久久蜜臀av无| 亚洲免费av在线视频| 天天一区二区日本电影三级| 成年版毛片免费区| 国产高清视频在线观看网站| www国产在线视频色| 国产一区二区三区视频了| 亚洲成人精品中文字幕电影| 久久久久国内视频| 熟妇人妻久久中文字幕3abv| avwww免费| 最近最新免费中文字幕在线| 亚洲第一电影网av| 久久香蕉精品热| 国产精品,欧美在线| 久久香蕉激情| 黑人操中国人逼视频| 久久99热这里只有精品18| 可以在线观看的亚洲视频| 国产成人精品久久二区二区免费| 好男人电影高清在线观看| 九九热线精品视视频播放| www国产在线视频色| 757午夜福利合集在线观看| 国产av在哪里看| 一个人观看的视频www高清免费观看 | 久9热在线精品视频| 黑人操中国人逼视频| 波多野结衣高清无吗| 两个人视频免费观看高清| 色尼玛亚洲综合影院| 欧美日韩精品网址| www.999成人在线观看| 精品无人区乱码1区二区| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 国产精品久久视频播放| 久久 成人 亚洲| 中文字幕人成人乱码亚洲影| 俺也久久电影网| 最近最新中文字幕大全电影3| 亚洲专区中文字幕在线| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 久久久久久九九精品二区国产 | 国产精品av久久久久免费| 老司机福利观看| 成人国产一区最新在线观看| 欧美在线一区亚洲| 亚洲人成网站高清观看| 亚洲乱码一区二区免费版| 免费搜索国产男女视频| 国产成人av激情在线播放| 国产爱豆传媒在线观看 | 亚洲精品中文字幕一二三四区| 级片在线观看| 又粗又爽又猛毛片免费看| 国产成人精品久久二区二区91| 两个人看的免费小视频| 日本五十路高清| 久久久久国内视频| 国产1区2区3区精品| 草草在线视频免费看| 大型av网站在线播放| 日韩欧美在线二视频| 男人舔女人的私密视频| av视频在线观看入口| 久久久精品大字幕| 欧美又色又爽又黄视频| cao死你这个sao货| 亚洲国产欧美网| 变态另类丝袜制服| 99热这里只有精品一区 | 成人午夜高清在线视频| 黄色a级毛片大全视频| 村上凉子中文字幕在线| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 后天国语完整版免费观看| 亚洲在线自拍视频| 国产高清视频在线播放一区| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 国产99白浆流出| 国产高清有码在线观看视频 | 1024视频免费在线观看| 在线国产一区二区在线| 午夜a级毛片| 欧美丝袜亚洲另类 | 嫩草影院精品99| 精品第一国产精品| 国产三级中文精品| 国产亚洲av嫩草精品影院| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 免费看a级黄色片| 一进一出好大好爽视频| 观看免费一级毛片| 久久精品国产清高在天天线| 欧美久久黑人一区二区|