• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    蝎虎天體能譜曲率與其伽馬射線輻射亮度的關(guān)系

    2021-03-29 15:08:16MuhammadShahzadAnjum顧敏峰
    天文學(xué)進(jìn)展 2021年1期
    關(guān)鍵詞:伽馬射線天文臺星系

    Muhammad Shahzad Anjum,陳 亮,顧敏峰

    (1.中國科學(xué)院 上海天文臺 星系和宇宙學(xué)重點(diǎn)實(shí)驗(yàn)室,上海200030;2.中國科學(xué)院大學(xué),北京100049)

    1 Introduction

    Beginning from the first identification of extragalactic source 3C 273[1],γ-ray astronomy has made great progress due to unprecedented detection capability of the new generation of telescopes[2,3].The large area telescope(LAT)onboard Fermi satellite has detected more than 3 000γ-ray sources after first four years of operation,out of which about half are extragalactic sources[4].The extragalacticγ-ray sky is dominated by emission from blazars(about 98%)[5],which is an extreme subclass of active galactic nuclei(AGN)with relativistic jets pointing close to our line of sight.Blazars have been classified as BL Lac objects(BL Lacs)or FSRQs according to whether the rest-frame equivalent width of their broad emission lines was greater than(for FSRQs)or smaller than(for BL Lacs)5?A.Due to very high luminosity and violent variability,theirγ-ray emission is believed to be produced in the relativistic jets making a small angle to our line of sight.The intensity is significantly boosted by the Doppler beaming effect because of light aberration through transformationswithδ=ν/ν′from intrinsic to observational frames,with the primed quantities referring to values measured in jet co-moving frame,whileδ=1/Γ(1?βcosθ)is the Doppler beaming factor.

    The study ofγ-ray emission of blazars plays an important role in understanding the jet physics(jet launching,energy dissipation and particle acceleration),the cosmic evolution history and the origin of ultra high energy cosmic rays[2,3,6–8].Theγ-rays can be explained as inverse Compton(IC)emission of accelerated electrons in the jet.The IC emission in BL Lacs arises due to internal synchrotron photons and called synchrotron self-Compton(SSC)[9].The multi-wavelength catalog of blazars,Roma-BZCAT①http://www.asdc.asi.it/bzcat/v5.0,is the most comprehensive catalog in the literature,which contains 3 561 confirmed blazars or candidates[10,11].Recently,Fermi Fourth LAT AGN Catalog(4LAC)presented a sample of nearly 3 000 blazars or blazar candidates at high galactic latitude[12].Therefore,there may be>500 blazars having not been detected withγ-ray emission(γ-ray quiet),although they have similar emission properties at lower energy wavelength bands(radio through X-ray)compared toγ-ray detected blazars.The origin of this discrepancy is not yet known.Many studies have focused on this question and found thatγ-ray loud blazars have relatively large jet opening angle,larger apparent superluminal velocity and higher brightness temperature relative toγ-ray quiet blazars[13–17].All these properties are attributed to a relativistic geometric effect-Doppler beaming effect.The smaller viewing angle inγ-ray loud blazars makes apparent larger jet opening angle and larger Doppler beaming factor,which give rise to larger apparent superluminal velocity and higher brightness temperature.In addition to this geometric effect,it is expected that the origin of the discrepancy betweenγ-ray loud versusγ-ray quiet blazars might be intrinsic.However,it is not yet known.

    The spectral energy distribution(SED)of synchrotron emission from blazars is usually curved and presents a significant bump inν?νfνframe,which peaks between infrared to X-ray bands[18–20].The curvature of broadband SED of the synchrotron bump is different among various blazars,which means that some SED bumps are broad while others are narrow[21,22].If the SED(broad band or single band)is fitted by a log-parabolic function,lgνfν=lgνpfνp?b(lgν?lgνp)2,the coefficient of the second order termbcan be considered a“surrogate”to measure the curvature.The curvature is found to be negatively correlated with the SED peak frequency,which offers supporting evidence of a statistical or stochastic particle acceleration at work in blazar jets,through studying the broad band observations[21]or single band(X-ray)observations[23].It should be noted that the broadband curvature of a blazar is not changed with the transformation from observer to AGN frame(Cosmological redshift)and jet co-moving frame(Doppler beaming).However the single band curvature is effected due to Doppler effect causing the spectral shifts.In this work,we investigate the possible relation betweenγ-ray emission and the SED curvature for BL Lacs.The curvature in SED is produced due to an intrinsic curvature in the emitting electron energy distribution(EED)arising due to competition of particle acceleration and cooling[24,25].The Section 2 describes our sample and Section 3 presents the methods and a discussion on our results.We summarize our findings in Section 4.We assume aΛCDM cosmology with values from the Planck results in our calculation;in particular,?m=0.32,?Λ=0.68,and the Hubble constantH0=67 km·s?1·Mpc?1[26].

    2 The Sample

    Starting from Mrk 421[23],Massaro et al.[27]found that curvature is an important feature of BL Lacs in X-rays.Even the Fermi-LATγ-ray spectra of bright blazars show curvature[5].The high energy photon spectra can be fitted by a log-parabolic law[23,28],

    with spectral indexαat reference energyE0andβis the curvature of bump.The corresponding peak energy of the spectral bump becomes

    Ackermann et al.[5]found that the LAT spectra of about 160 blazars show deviation from a power-lawF(E)=KE?pand fitted with log-parabolic law.This suggests that the curvature is a common feature of blazar SED in any energy band.

    The Fermi-LAT detected 1 591 blazars at high galactic latitude in its Third LAT AGN Catalog(3LAC)based on first 4 years of operations[5].Based on 3LAC,Fan et al.[29]collected available spectral data of 1 392 blazars from NED①http://ned.ipac.caltech.edu/to build broadband SEDs of synchrotron bump and fitted them by a log-parabolic function.We compile the synchrotron spectral curvature(b),synchrotron peak flux(Fs=νpfνp),and integratedγ-ray fluxFγin 0.1~100 GeV band for confirmed 620 BL Lacs in 3LAC[29].Wu et al.[30]presented the Doppler factors of a BL Lacs.Cross matching two catalogs,we compile the spectral parameters and Doppler factors for a sample of total 170 BL Lacs.

    3 Methods and Results

    A curved SED necessary suggests that the underlying emitting EED may be curved.A log-parabolic EED can arise due to stochastic nature of acceleration gain.Anjum et al.[31]found that only BL Lacs show the signature of stochastic acceleration,whereas FSRQs do not show any signature of such acceleration mechanism.The broadband SED in the log-parabolic model can be described as

    wherebmeasures the width(curvature)of the SED bump.The synchrotron bump is particularly important and reveals the intrinsic curvature of EED.Since the accretion disk continuum emission in FSRQs are usually presented as a big blue bump at ultraviolet wavelength band,affecting accurate measurement of the curvature parameter,we only selected BL Lacs for purpose of our study.The selection of BL Lacs is further motivated by the fact that the high energy bump in FSRQs arises due to external Compton(EC)emission,therefore,their curvature of IC bump may be related to the complex seed photon distribution and any absorption[21].Although the curvature of high energy bump in BL Lacs mimics the synchrotron curvature as it arises due to internal synchrotron seed photons[32],it is hard to constrain the intrinsic of the EED from the IC bump,since the observed SED curvature of IC bump may also depend on the IC cooling regime.Paggi et al.[33]found that the IC curvature in Thomson regime is smaller than in Klein-Nishina regime.Therefore,we constrain the intrinsic curvature of EEDrfrom synchrotron spectral curvaturebratherγ-ray curvatureβ.The intrinsic curvature of EEDr?5b[32]andγ-ray emission in BL Lacs is expected to be intrinsically related and can be used to investigate the origin of discrepancy between Fermi detected BL Lacs(FBLs)and non-detected ones(NFBLs).

    3.1 FBLs versus NFBLs

    A large amount of multi-wavelength data for the objects in the Mets¨ahovi radio observatory BL Lac sample was collected by Nieppola et al.[34],which is supposed to have no selection criteria(other than declination)in addition to the ones in the original surveys[34].The Mets¨ahovi radio observatory BL Lac sample includes 381 objects selected from the Veron-Cetty & Veron BL Lac Catalog[35],and 17 objects from the literature,of which many sources are from the well-known BL Lac samples like 1Jy,S4,S5,Einstein Medium Sensitivity Survey(EMSS),Einstein Slew Survey,and ROSAT Deep X-ray Radio Blazar Survey(DXRBS).Based on the multi-wavelength data,the SED of each source were constructed in the lgν?lgνFνrepresentation[34],of which the synchrotron bump was fitted with a logparabolic function.Based on this sample,Wu et al.[30]collected the available data at 330 MHz,360 MHz,408 MHz,and 1.4 GHz from the Astrophysical Catalogues Support System(CATs)maintained by the Special Astrophysical Observatory,Russia,and also the available VLA or MERLIN core and extended flux,resulting in a sample of 170 BL Lacs.The low frequency radio power can be a reliable indicator of the intrinsic radio power,while the Doppler beaming can affect the observed radio power of the core[36,37].Therefore,with the VLA or MERLIN core and the 408 MHz luminosity and assuming a jet speedΓ=5,consistent with Mets¨ahovi radio monitoring studies[38],the Doppler beaming factors have been estimated[30].We compiled the Doppler factors and curvature parameters of these 170 BL Lacs.By cross correlating this sample with 3 LAC[5],34 out of these 170 BL Lacs are not found to haveγ-ray emission(NFBL).These NFBLs are:NRAO 5,NPM1G+41.0022,1ES 0145+138,MS 0158.5+0019,MS 0257.9+3429,RXS J0314.0+2445,S5 0454+84,MS 0607.9+7108,B3 0651+428,4C 22.21,RXS J0916.8+5238,B2 0927+35,RGB J0952+656,1ES 1044+549,1ES 1212+078,1ES 1255+244,1ES 1320+084N,MC 1400+162,MS 1407.9+5954,RGB J1427+541,MS 1443.5+6349,RXS J1516.7+2918,MS 1534.2+0148,RXS J1602.2+3050,RXS J1644.2+4546,RGB J1652+403,B3 1746+470,RXS J1750.0+4700,RGB J1811+442,PKS 2254+074,Q J2319+161,1ES 2326+174,MS 2336.5+0517 and MS 2347.4+1924.The remaining 136 BL Lacs are,therefore,considered FBLs.Although many of these NFBLs might be detected in the 4LAC,however theirγ-ray flux must be lower than the FBLs.

    The SED of blazars is usually curved even in a single energy band.The Doppler factor changes cause the peakνp=ν′pδshifts in the SED(νIν=δ4ν′I′ν)which affects the spectral curvature of blazars in Fermi-LATγ-ray band.Other than the peak shifts,the intrinsic difference of curvature may account for discrepancy between FBLs and NFBLs.We reduce the effect of the relativistic Doppler beaming and directly compare FBLs and NFBLs.We searched the literature for published and archival observations that allow us obtain both curvature parameters and Doppler beaming factors of our Fermi BL Lacs.We plot curvature parameter(in 1/b)againstδfor FBLs and NFBLs in Figure 3.1,which shows that both FBLs and NFBLs overlap but the curvature of FBLs would be on average smaller than that of NFBLs.We binned the data in lg(δ)and the find the average value of curvature in each bin,represented by big circles in Figure 3.1.Due to only one NFBL in the last bin,we consider it as the average curvature value.FBLs,on average,seem to have smaller curvature(higher value of 1/b)and,thus,broader SED than NFBLs.

    Fig.1 The curvature and Doppler beaming effect in BL Lacs

    In order to eliminate effect of Doppler beaming as much as possible,we artificially defined a new parameter,b?lgδ,which roughly measures the curvature given the same beaming factor.Figure 3.1 shows the distributions ofb?lgδand cumulative fraction of FBLs and NFBLs.It can be seen that statistically FBLs have relative smaller values ofb?lgδthan that of NFBLs,which confirm the above finding that smaller curvature of synchrotron SED bump is attributed to largerγ-ray power.The Kolmogorov-Smirnov(KS)test yields the significance level probability for the null hypothesis that FBLs and NFBLs are drawn from the same distributionP=5.87×10?5,and the maximum separation of the two cumulative fractions isDKS=0.43.The TeV BL Lacs(TBLs)with synchrotron peak frequencyνp>1015Hz showed a similar behaviour[39].Massalo et al.[39,40]found Xray band curvature of TBLs to be systematically smaller than that of non-detected at TeV energies.They suggested that X-ray flux can be used as a predictor for TeVγ-ray detection of BL Lacs.However the TeV spectral curvature may not correspond to X-ray curvature,as the TeV emission is significantly attenuated by extraglactic background light(EBL).Since GeVγ-ray emission is not absorbed,we argue that it can provide better constraint on TeV detection as compared to X-rays.

    3.2 SED Curvature andγ-ray Dominance

    Fig.2 The distribution and the cumulative fractions of FBLs versus NFBLs

    The fact that synchrotron SED is significantly curved inevitably implies a curvature in the steady electron energy distributionN(γ).This curvature may be a result of particle cooling and acceleration which might be relevant on different times.Based on scenario of re-acceleration rather than continuous injection,the curvature can be related to stochastic acceleration term in the Fokker-Planck kinetic equation[23,24].A more efficient acceleration of stochastic type makes energy distribution electrons relatively broader,manifested by a smaller curvature[25].A higher acceleration efficiency implies a lesser time(t=R/c)spent in acceleration region by the particles and large number of acceleration steps,which corresponds to a smaller size of the acceleration/emission region[41].Therefore,the spectral curvature of EED is expected to be proportional to the size of blazar region.As theγ-rays from BL Lacs are believed to be SSC emission of the same non-thermal electron population emitting low energy synchrotron emission,a smaller size would enhance the synchrotron seed photons energy densityus=Ls/4πR2cδ4in the jet,that would lead to higher Compton dominanceCD=us/uB,i.e,a higher relativeγ-ray power.This implies that among the BL Lacs with the same synchrotron luminosityLs,the source with relatively highγ-ray dominance may have relatively compact emission region.

    Abdo et al[42]provided broadband simultaneous or quasi-simultaneous spectral data from radio throughγ-rays,of 48 LAT Bright AGNs,within the first 3 months operation of Fermi-LAT,from 2008 August 4 to October 31.The broadband spectral data are derived from many ground-based and space-based observatories,including Swift(UVOT,XRT,BAT),Effelsberg,OVRO,RATAN,GASPWEBT,Spitzer-MIPS and AGILE.We show an example of SEDs of two BL Lacs(PKS 0048-09 and S5 0716+714),which are presented in Figure 3.2.These sources have similar synchrotron luminosity and peak frequency but differentγ-ray power,i.e.,the Compton dominance.Their quasi-simultaneous broadband SEDs are compiled from reference[42]shown as large and small black squares and magenta circles for PKS 0048-09 and S5 0716+714,respectively.The S5 0716+714 included 3 observations at optical and X-ray bands during those three months[42].We use the average value of fluxes for this BL Lac object.

    Fig.3 Broadband SEDs of PKS 0048-09 and S5 0716+714

    We use standard one-zone SSC model[19,43–46]to fit their SEDs.One-zone model is widely used in blazar SED modeling[19,46].Since the coordinated variability in different wavelength bands is often seen(although not always)in blazars,a one-zone model assumes that bulk of the non-thermal emission are produced from a“one-zone”region,mostly assumed to be a spherical blob with radiusRembedded in a homogeneous but tangled magnetic fieldBand filled with emitting electron population.Since the considered emitting region is always compact,its synchrotron self-absorption frequency is always large,therefore the model cannot account for the radio flux at observed frequencies smaller than a few hundreds GHz,which are produced by the superposition of several larger components[47,48].The emitting relativistic blob moves with angleθwith the line of sight,yielding a Doppler beaming factorδ.In order to keep accordance with log-parabolic shape of synchrotron SED bump,the emitting particles are assumed to be leptons with energy distribution following a logparabolic function,

    wherermeasures the curvature of number distribution of electron energy[46].As discussed above,the curvature may be proportional to the size of emission region in the SSC model.Therefore,in our calculation,the curvature parameter(β)is assumed to be proportional to the radius of the emission sphere,i.e.,r∝R.The calculated SEDs are also presented in the Figure 3.2.It seems that both SEDs can be well fitted with same jet parameters except for the radii of emission sphereR0048=2.8×1016cm andR0716=5.0×1016cm for PKS 0048-09 and S5 0716+714(and therefore the curvaturer0048=0.5 andr0716=(R0716/R0048)r0048=0.89)respectively.The other constant jet parameters are the magnetic field strengthB=0.15 G,the Doppler factorδ=24,the peak electron energyγ0=8 660 and the normalized total electron numbersN0=6.8×1045.This modeling example illustrates that a higherγray luminosity intrinsically accompanies a smaller curvature,which may be related to a smaller size of emission region and the processes governing the jet micro-physics,i.e.,particle acceleration and cooling.This is further consistent with the fact that brightγ-ray blazars are more(rapidly)variable thanγ-ray weak blazars from studyingγ-ray and optical variability of a sample blazars[49–51],possibly due to smaller size of emission region and/or larger Doppler beaming factor in bright sources.Figure 3.2 shows that among the BL Lacs with a given synchrotron peak luminosity and frequency,the object with the highest CD might have smaller curvature(i.e.,hard spectrum).A high CD coupled with a lower curvature favor the detection of a blazar by Fermi.Therefore,we argue that CD and curvature both are important parameters for Fermi detection.

    4 Summary

    We investigate why are some BL Lacs detected havingγ-ray emission by Fermi but others not.We find that the SED curvature andγ-ray dominance of BL Lacs might be intrinsically related.We select 170 BL Lacs with synchrotron SED curvatureband Doppler factorδreported in literature,and divide them into FBLs and NFBLs.We find that FBLs have smaller curvature than that of NFBLs even after getting rid of the beaming effect.We show an example that two Fermi BL Lac objects PKS 0048-09 and S5 0716+714 have similar synchrotron peak frequency and luminosity but different Compton dominance.The PKS 0048-09 shows relatively highγ-ray dominance as compared to S5 0716+714.Within a one-zone SSC model,we find their quasi-simultaneous SEDs can be well fitted by same physical jet parameters except for the size of emission region and EED curvature(assuming curvature being proportional to the size).The PKS 0048-09 manifest relatively smaller source size and a smaller curvature as compared to S5 0716+714.These results imply that the difference in curvature might be related toγ-ray dominance and may account for the intrinsic discrepancy between FBLs and NFBLs.A broader SED with compact jet size demands an efficient stochastic acceleration.As the emitting particles have less time to spend in a compact jet,the acceleration gain or number of acceleration steps should be large.Thus,a more efficient stochastic acceleration in compact jets of FBLs makes the EED relatively broad,yielding a smaller value of curvature parameter.However,a smaller source size,in turn,implies a higher synchrotron photon energy density in the jet,producing powerfulγ-ray emission through SSC process.Therefore at a given synchrotron luminosity,the FBLs may have intrinsically smaller curvature and higher Compton dominance as compared to NFBLs.A study of large sample in future may be necessary to further investigate the relationship of curvature andγ-ray dominance of blazars.

    猜你喜歡
    伽馬射線天文臺星系
    我國觀測到迄今最亮伽馬射線暴
    跟著星系深呼吸
    迄今發(fā)現(xiàn)的最大星系
    軍事文摘(2022年10期)2022-06-15 02:29:38
    天文臺就該這么看
    海爾與望遠(yuǎn)鏡和天文臺的故事
    軍事文摘(2020年24期)2020-02-06 05:57:02
    星系大碰撞
    天文臺
    7個有關(guān)伽馬射線的驚人事實(shí)
    地外星系
    太空探索(2016年1期)2016-07-12 09:55:58
    歐米茄超霸系列月相至臻天文臺表
    空中之家(2016年5期)2016-02-04 01:28:35
    tocl精华| 国产在线一区二区三区精| 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 国产精品国产高清国产av | 亚洲午夜精品一区,二区,三区| 97人妻天天添夜夜摸| 国产日韩欧美视频二区| 丝袜在线中文字幕| 91字幕亚洲| 亚洲美女黄片视频| 久久中文看片网| 国产精品一区二区在线观看99| 嫁个100分男人电影在线观看| 日韩视频在线欧美| 久久婷婷成人综合色麻豆| 美女午夜性视频免费| 国产欧美亚洲国产| 人人妻人人澡人人看| 国产成人av激情在线播放| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 黑丝袜美女国产一区| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 老司机在亚洲福利影院| 亚洲视频免费观看视频| 国产精品久久久久久人妻精品电影 | 国产免费视频播放在线视频| 十八禁高潮呻吟视频| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| www.999成人在线观看| 18在线观看网站| 国产高清videossex| 在线 av 中文字幕| 99re在线观看精品视频| 最近最新免费中文字幕在线| 黄片播放在线免费| 三上悠亚av全集在线观看| 91精品三级在线观看| 超色免费av| 国产人伦9x9x在线观看| 超碰97精品在线观看| 宅男免费午夜| 国产熟女午夜一区二区三区| 亚洲成人手机| 日韩成人在线观看一区二区三区| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 一级a爱视频在线免费观看| 成年动漫av网址| av网站免费在线观看视频| 色综合欧美亚洲国产小说| 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 91av网站免费观看| 国产男女内射视频| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 久久精品91无色码中文字幕| 国产日韩一区二区三区精品不卡| 欧美日韩黄片免| 免费在线观看完整版高清| 丝袜人妻中文字幕| 久久青草综合色| 免费在线观看影片大全网站| 亚洲九九香蕉| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 国产伦理片在线播放av一区| 中文字幕人妻熟女乱码| 咕卡用的链子| 久久狼人影院| 一区二区三区精品91| 久久人妻av系列| 天堂俺去俺来也www色官网| 亚洲第一青青草原| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 少妇精品久久久久久久| 亚洲av欧美aⅴ国产| 欧美中文综合在线视频| 亚洲精品在线美女| 色94色欧美一区二区| 亚洲国产av影院在线观看| 亚洲av成人一区二区三| 天天影视国产精品| 高清毛片免费观看视频网站 | 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 久久精品国产a三级三级三级| 露出奶头的视频| 成人国语在线视频| 女性被躁到高潮视频| 精品视频人人做人人爽| 18在线观看网站| 国产成人av激情在线播放| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 免费日韩欧美在线观看| avwww免费| 久久精品成人免费网站| 久久久久久久久免费视频了| 老司机靠b影院| 大香蕉久久网| 亚洲第一欧美日韩一区二区三区 | 叶爱在线成人免费视频播放| 欧美国产精品一级二级三级| 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 菩萨蛮人人尽说江南好唐韦庄| 欧美乱码精品一区二区三区| 久热这里只有精品99| 国产黄色免费在线视频| 91大片在线观看| 真人做人爱边吃奶动态| 啦啦啦视频在线资源免费观看| 亚洲欧洲日产国产| 久久久久视频综合| 亚洲精品国产一区二区精华液| 亚洲精品久久午夜乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜在线中文字幕| 亚洲色图av天堂| 老司机靠b影院| 女同久久另类99精品国产91| 99久久人妻综合| 欧美黄色片欧美黄色片| 欧美精品一区二区大全| 无人区码免费观看不卡 | 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 黑人操中国人逼视频| 69精品国产乱码久久久| 女人久久www免费人成看片| 久久毛片免费看一区二区三区| 大香蕉久久网| 麻豆av在线久日| 亚洲精品粉嫩美女一区| 国产一区二区三区在线臀色熟女 | 色综合婷婷激情| 亚洲中文字幕日韩| 久久国产亚洲av麻豆专区| 啦啦啦在线免费观看视频4| 亚洲欧美精品综合一区二区三区| 亚洲美女黄片视频| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆| 久久久久久亚洲精品国产蜜桃av| 精品第一国产精品| 不卡一级毛片| 国产精品一区二区在线观看99| 亚洲综合色网址| 在线观看免费视频日本深夜| 久久精品人人爽人人爽视色| 777米奇影视久久| 国产精品免费视频内射| www.999成人在线观看| av片东京热男人的天堂| 成人特级黄色片久久久久久久 | 搡老乐熟女国产| 午夜视频精品福利| 交换朋友夫妻互换小说| 色综合婷婷激情| 成年动漫av网址| 欧美日韩视频精品一区| 午夜日韩欧美国产| 国产精品国产av在线观看| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频| www.999成人在线观看| e午夜精品久久久久久久| 曰老女人黄片| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 国产免费福利视频在线观看| 久久 成人 亚洲| 国产日韩欧美在线精品| 久久香蕉激情| 久久精品亚洲熟妇少妇任你| 国产精品.久久久| 成人国产av品久久久| 国产免费福利视频在线观看| 丁香六月欧美| 欧美老熟妇乱子伦牲交| 狂野欧美激情性xxxx| 又紧又爽又黄一区二区| 亚洲九九香蕉| 国精品久久久久久国模美| 丁香欧美五月| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 亚洲国产精品一区二区三区在线| 黄色毛片三级朝国网站| 亚洲国产看品久久| 一区二区av电影网| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 丰满人妻熟妇乱又伦精品不卡| 丝袜在线中文字幕| 1024视频免费在线观看| 日韩免费高清中文字幕av| kizo精华| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 国产成人影院久久av| 亚洲国产欧美网| 日韩欧美一区视频在线观看| 亚洲成a人片在线一区二区| 亚洲欧美激情在线| 精品福利永久在线观看| 午夜福利影视在线免费观看| 久久久水蜜桃国产精品网| 亚洲第一欧美日韩一区二区三区 | 中国美女看黄片| 9191精品国产免费久久| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 日韩免费av在线播放| av超薄肉色丝袜交足视频| 淫妇啪啪啪对白视频| 巨乳人妻的诱惑在线观看| 精品熟女少妇八av免费久了| 久久久精品区二区三区| 最近最新中文字幕大全免费视频| 精品少妇内射三级| 男女床上黄色一级片免费看| 国产片内射在线| 乱人伦中国视频| 久久精品成人免费网站| 五月天丁香电影| 国产亚洲欧美在线一区二区| 久久热在线av| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 成人手机av| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 久久久精品94久久精品| 涩涩av久久男人的天堂| 操出白浆在线播放| 欧美亚洲日本最大视频资源| 超色免费av| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 脱女人内裤的视频| 亚洲精品一二三| 大码成人一级视频| 老熟女久久久| 99香蕉大伊视频| 国产精品1区2区在线观看. | 成人黄色视频免费在线看| 亚洲午夜精品一区,二区,三区| 午夜福利免费观看在线| 久久人人爽av亚洲精品天堂| av在线播放免费不卡| 国产欧美日韩综合在线一区二区| 亚洲色图av天堂| 久久中文字幕人妻熟女| 亚洲欧美日韩高清在线视频 | av国产精品久久久久影院| 精品人妻在线不人妻| 欧美黄色淫秽网站| 自线自在国产av| 亚洲人成电影观看| 成年版毛片免费区| 免费观看人在逋| 成人精品一区二区免费| 国产伦理片在线播放av一区| 国产极品粉嫩免费观看在线| 成人永久免费在线观看视频 | 美国免费a级毛片| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 国产在线一区二区三区精| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 久久久久久久精品吃奶| 香蕉久久夜色| 久久久国产精品麻豆| 高清在线国产一区| 国产免费av片在线观看野外av| 狂野欧美激情性xxxx| 丝瓜视频免费看黄片| 久久精品成人免费网站| av国产精品久久久久影院| 久久久精品区二区三区| 一区福利在线观看| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产一区二区精华液| 岛国在线观看网站| 国产深夜福利视频在线观看| 久久精品人人爽人人爽视色| 免费不卡黄色视频| 中文字幕高清在线视频| 波多野结衣av一区二区av| 狠狠婷婷综合久久久久久88av| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 国产在线视频一区二区| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说| 久久狼人影院| 青草久久国产| 男男h啪啪无遮挡| 美女午夜性视频免费| 久久午夜亚洲精品久久| 亚洲自偷自拍图片 自拍| 80岁老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 丝袜美足系列| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 黄色视频,在线免费观看| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 最近最新中文字幕大全电影3 | 精品人妻熟女毛片av久久网站| 黄色丝袜av网址大全| 午夜福利乱码中文字幕| av又黄又爽大尺度在线免费看| 亚洲成人免费av在线播放| 精品国产一区二区久久| 成人国产一区最新在线观看| aaaaa片日本免费| 午夜精品国产一区二区电影| 99香蕉大伊视频| 老司机靠b影院| 久久午夜亚洲精品久久| 热re99久久精品国产66热6| 桃红色精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 欧美亚洲 丝袜 人妻 在线| 又紧又爽又黄一区二区| 大香蕉久久成人网| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 水蜜桃什么品种好| 母亲3免费完整高清在线观看| av不卡在线播放| 久久中文字幕一级| 99国产精品99久久久久| 国产精品自产拍在线观看55亚洲 | 色在线成人网| 国产单亲对白刺激| 天天影视国产精品| www.精华液| 精品国产一区二区三区四区第35| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看人妻少妇| 首页视频小说图片口味搜索| tube8黄色片| 夜夜夜夜夜久久久久| 91成人精品电影| 国产成人免费观看mmmm| 国产又爽黄色视频| 亚洲avbb在线观看| 男女无遮挡免费网站观看| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 国产成人啪精品午夜网站| 精品一品国产午夜福利视频| 色尼玛亚洲综合影院| 久久精品熟女亚洲av麻豆精品| 亚洲成国产人片在线观看| 丝袜喷水一区| 首页视频小说图片口味搜索| 丁香欧美五月| 免费av中文字幕在线| 亚洲视频免费观看视频| 久久人人爽av亚洲精品天堂| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 老司机影院毛片| 亚洲中文日韩欧美视频| 老司机影院毛片| 一本久久精品| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| 香蕉国产在线看| 午夜视频精品福利| 老司机午夜十八禁免费视频| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 国产精品一区二区免费欧美| 国产三级黄色录像| 99久久99久久久精品蜜桃| 国产有黄有色有爽视频| 欧美日韩av久久| 亚洲av第一区精品v没综合| 不卡av一区二区三区| 日本a在线网址| 精品福利观看| 高清毛片免费观看视频网站 | 啦啦啦在线免费观看视频4| 成人免费观看视频高清| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜制服| a级毛片黄视频| 视频在线观看一区二区三区| 蜜桃国产av成人99| 日韩一卡2卡3卡4卡2021年| tube8黄色片| 美女扒开内裤让男人捅视频| 国产伦理片在线播放av一区| 91精品国产国语对白视频| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 久久久久网色| a级毛片在线看网站| 日本黄色视频三级网站网址 | 亚洲中文日韩欧美视频| 国产免费福利视频在线观看| 女同久久另类99精品国产91| av福利片在线| 国产精品麻豆人妻色哟哟久久| 国产男女内射视频| 天堂动漫精品| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| 成人18禁高潮啪啪吃奶动态图| 久久av网站| 亚洲色图综合在线观看| 日韩欧美免费精品| 久久国产精品影院| 18在线观看网站| 国产精品熟女久久久久浪| 黄频高清免费视频| 咕卡用的链子| av在线播放免费不卡| 久久久久久久久久久久大奶| 亚洲国产精品一区二区三区在线| 国产亚洲精品一区二区www | 亚洲一区二区三区欧美精品| 午夜91福利影院| 午夜福利在线免费观看网站| 脱女人内裤的视频| 久久中文看片网| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 欧美精品一区二区免费开放| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区| 久久精品国产99精品国产亚洲性色 | 一级片'在线观看视频| 国产男靠女视频免费网站| 波多野结衣一区麻豆| 国产精品一区二区精品视频观看| 另类亚洲欧美激情| 日韩有码中文字幕| 日韩一区二区三区影片| 色精品久久人妻99蜜桃| 久久精品亚洲熟妇少妇任你| 免费观看av网站的网址| 色综合婷婷激情| 视频区欧美日本亚洲| xxxhd国产人妻xxx| 亚洲久久久国产精品| 欧美久久黑人一区二区| 欧美黑人精品巨大| av网站在线播放免费| 搡老岳熟女国产| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 免费少妇av软件| 伦理电影免费视频| 大香蕉久久网| 我要看黄色一级片免费的| 国产成人精品久久二区二区91| 亚洲专区国产一区二区| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 亚洲国产中文字幕在线视频| 国产欧美亚洲国产| 女性被躁到高潮视频| 两性夫妻黄色片| 午夜免费成人在线视频| 午夜成年电影在线免费观看| 国产三级黄色录像| 下体分泌物呈黄色| 精品国产乱码久久久久久小说| 色在线成人网| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 在线观看66精品国产| 在线观看免费午夜福利视频| 国产又色又爽无遮挡免费看| 国产精品电影一区二区三区 | 午夜福利在线观看吧| 蜜桃国产av成人99| 大码成人一级视频| 十八禁网站网址无遮挡| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 日韩成人在线观看一区二区三区| 国产在线精品亚洲第一网站| 99精国产麻豆久久婷婷| 亚洲欧美激情在线| 十分钟在线观看高清视频www| 18禁国产床啪视频网站| 大片免费播放器 马上看| 国产精品 国内视频| 男人舔女人的私密视频| 欧美国产精品一级二级三级| 90打野战视频偷拍视频| 一级黄色大片毛片| 免费不卡黄色视频| 精品乱码久久久久久99久播| 亚洲专区字幕在线| 如日韩欧美国产精品一区二区三区| 亚洲专区中文字幕在线| svipshipincom国产片| 国产免费现黄频在线看| 欧美日韩av久久| bbb黄色大片| 人妻 亚洲 视频| 日日爽夜夜爽网站| 国产成人精品久久二区二区91| 12—13女人毛片做爰片一| 中文字幕色久视频| 欧美日本中文国产一区发布| 老司机亚洲免费影院| 高清毛片免费观看视频网站 | 免费日韩欧美在线观看| 美女主播在线视频| 欧美黑人精品巨大| 精品卡一卡二卡四卡免费| av超薄肉色丝袜交足视频| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 成人亚洲精品一区在线观看| 国产精品亚洲一级av第二区| 首页视频小说图片口味搜索| 精品少妇黑人巨大在线播放| 色老头精品视频在线观看| 99热国产这里只有精品6| 午夜福利欧美成人| 青青草视频在线视频观看| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美在线一区| 十八禁网站网址无遮挡| 老熟妇乱子伦视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品一二三| 我要看黄色一级片免费的| 国产熟女午夜一区二区三区| 午夜福利乱码中文字幕| 99九九在线精品视频| 91国产中文字幕| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 一级片免费观看大全| 嫩草影视91久久| av天堂久久9| 一夜夜www| 狠狠精品人妻久久久久久综合| 色尼玛亚洲综合影院| 国产精品av久久久久免费| 日本黄色视频三级网站网址 | 777久久人妻少妇嫩草av网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,欧美精品.| 高清欧美精品videossex| 99精品久久久久人妻精品| av视频免费观看在线观看| 精品卡一卡二卡四卡免费| 久久性视频一级片| 久久狼人影院| 9191精品国产免费久久| 香蕉国产在线看| av欧美777| 亚洲成人手机| 欧美精品一区二区免费开放| 国产精品香港三级国产av潘金莲| 丝袜美足系列| 成年人黄色毛片网站| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区免费| 久久精品亚洲av国产电影网| 国产精品香港三级国产av潘金莲| 99久久99久久久精品蜜桃| 香蕉国产在线看| 人妻 亚洲 视频| 久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 欧美av亚洲av综合av国产av| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 人人妻,人人澡人人爽秒播| 国产aⅴ精品一区二区三区波| 最近最新中文字幕大全免费视频| 日韩欧美国产一区二区入口| 国产成人av激情在线播放| 69av精品久久久久久 | 伦理电影免费视频| 亚洲av第一区精品v没综合| 丝瓜视频免费看黄片|