姜蓮霞,傅 湧
*姜蓮霞1,傅 湧2
(1.喀什大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,新疆,喀什 844008;2. 宜春學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院江西,宜春 336000)
令()為Smarandache函數(shù),()為Smarandache LCM函數(shù),2()為廣義歐拉函數(shù)。討論方程((14))=2()和((36))=2()可解性,利用初等方法并結(jié)合函數(shù)2()與函數(shù)()的性質(zhì),給出了這兩個(gè)方程的所有正整數(shù)解。
廣義歐拉函數(shù);Smarandache函數(shù);Smarandache LCM函數(shù);正整數(shù)解
定理1方程
又因
定理2方程
又因
綜上所述,可得方程(5)的正整數(shù)解為=15987,21316,31974,1920。定理2證畢。
[1] Smarandache F. Only Problems ,Not Solutions[M]. Chicago: Xiquan Publishing House,1992.
[2] Sandor J.On a dual of the Pseudo Smarandache Function[J].Smarandache Notion Journal,2002,13:18-23.
[3] Richard P.Some properties of the Psedo Smarandache function[J].Scientia Magna,2005,1(2): 167- 172.
[4] Kenneth Ireland,Michael Rosen.A classical introduction to Modern Number Theory[M].New York:Springer- Verlag,1990.
*JIANG Lian-xia1, FU Yong2
(1. College of Mathematics and Statistics, Kashi University, Kashi, Xinjang 844006, China; 2. School of Mathematical and Computer Science, Yichun University, Yichun, Jiangxi 336000, China)
Generalized Euler function; Smarandache function; Smarandache LCM function; positive integer solutions
O156
A
10.3969/j.issn.1674-8085.2021.02.001
1674-8085(2021)02-0001-06
2020-10-20;
2020-11-23
喀什大學(xué)校內(nèi)一般課題項(xiàng)目((19)2652)
*姜蓮霞(1987-),女,河南駐馬店人,講師,碩士,主要從事代數(shù)與數(shù)論研究(E-mail:1210981614@qq.com);
傅湧(1963-),男,江西新干人,副教授,主要從事非線性泛函分析研究(E-mail:1010064326@qq.com).