• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode?

    2021-03-19 03:21:18ZhiweiHuang黃志偉ShaoyingKe柯少穎JinrongZhou周錦榮YimoZhao趙一默WeiHuang黃巍SongyanChen陳松巖andChengLi李成
    Chinese Physics B 2021年3期

    Zhiwei Huang(黃志偉), Shaoying Ke(柯少穎), Jinrong Zhou(周錦榮), Yimo Zhao(趙一默),Wei Huang(黃巍), Songyan Chen(陳松巖), and Cheng Li(李成),?

    1College of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China

    2College of Physics Science and Technology,Xiamen University,Xiamen 361005,China

    Keywords: silicon-based Schottky photodetector,germanium epilayer,indium-doped tin oxide

    1. Introduction

    The tremendous growth in data traffic has now resulted in a great research interest in silicon (Si)-based optical interconnection. In this being, a material with a larger absorption coefficient in near-infrared wavelengths is needed to prepare high-performing photodetectors(PDs).[1-3]Although the high performance compound semiconductors PDs have already been achieved,the stringent packaging requirements of multi-chip implementation lead to a high cost. Germanium(Ge) PDs have many advantages in terms of large optical absorption coefficient at near-infrared wavelengths and fully compatible with the Si-based complementary metal-oxidesemiconductor (CMOS) process. Therefore, Si/Ge PD is regarded as one of the most promising optoelectronic devices for advanced Si photonics.[4-10]

    Among the several types of PDs, Schottky PDs have many advantages in terms of speed, long-wavelength detection, and process simplicity.[11-13]Traditional metal/semiconductor Schottky PDs suffer from low quantum efficiency due to the high reflectivity of metal. Fortunately, this problem can be solved by using a highly conductive and transparent indium doped tin oxide (ITO) layer to replace the metal electrode. Recently, high-performing ITO/semiconductor Schottky PDs, such as ITO/GaN,[14]ITO/ZnO,[15]ITO/Si,[16-18]Schottky PDs have been reported.However, to our knowledge, few researches have been done about ITO/Ge Schottky PDs.[19,20]Furthermore, integrating transparent, conductive ITO electrodes into Si-based Ge epilayer to form Schottky PDs has not yet been reported. Some obstacles need to be addressed before the ITO/Ge construction can become a high-performing PD in near-infrared wavebands. On the one hand,a high dark current issue is observed in ITO/Ge PD due to the low Schottky-barrier height (SBH),resulting in poor sensitivity and large power consumption of detector. On the other hand,the absorption coefficient of bulk Ge is still relatively small at 1550 nm when compared to semiconductors such as InGaAs. As a result,Si-based ITO/Ge PDs would suffer from low responsivity when the Ge active region is thin.

    In this work,we report a Si(or SOI)-based ITO/Ge Schottky PD with a Si interlayer inserted between ITO and Ge epitaxial layer. A quality rectifying junction is formed for ITO/Si cap/Ge contact. Such PDs show good sensitivity, accredited to effective suppression of dark current. Moreover, benefited from the high transmissivity of ITO electrode and high reflectivity of SOI substrate, the ITO/Si cap/Ge PD shows the excellent photoresponse in NIR regions. The responsivity of the ITO/Si cap/Ge Schottky PDs at 1310 nm and 1550 nm is measured.

    2. Experimental details

    The Ge epitaxial layers were grown using an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system at base pressures of 5×10?8Pa. The substrates were highly doped n-type Si (001) wafers with resistivity in the range of 0.002-0.005 Ω·cm, or highly doped n-type SOI wafers with a 1 μm thick top Si and 3 μm thick buried oxide layers. Before epitaxy, the wafers were cleaned by Radio Corporation of America (RCA) method, and the Si surface was baked at 850?C for 30 min to remove the oxides, followed by about 30 nm Si buffer growing at 750?C to obtain a clean epiready surface. Then about 90-nm-thick Ge was grown on Si at 330?C at a growth rate of about 0.50 nm/min. After that,the substrate temperature was raised to 600?C and 340-nmthick Ge was grown at a growth rate of 1.17 nm/min. The total thickness of the Ge epilayer is about 430 nm, and then about 6-nm-thick Si cap was grown on the Ge epilayer at 390?C.The sample without Si cap was also prepared under the same conditions for comparison. For further improving the crystal quality of the Ge epilayers,the wafers were treated by furnace thermal annealing at 700?C or 740?C for 30 min.

    The Si-based Ge epilayer sample,Si-based Si cap/Ge epilayer sample (as-grown), Si-based Si cap/Ge epilayer sample(after furnace thermal annealing at 700?C),and Si-based Si cap/Ge epilayer sample (after furnace thermal annealing at 740?C) were used to form contacts with ITO for preliminary evaluating the performance of contact between ITO and Ge epilayer. The schematic diagram of the contacts is shown in Fig.1(a), in which the area of the contacts is about 0.0003 cm2and the thickness of the ITO electrode is about 100 nm.The ITO films were deposited at a DC power of 33 W onto a 60-mm-diameter target (purity: 99.99%, In2O3: SnO2=90:10 wt%)under Ar ambient at 0.3 Pa and room temperature with a deposition rate of 0.08 nm/s.

    Fig.1.(a)The schematic diagram of ITO/Si cap/Ge contact.(b)The schematic diagram and(c)metallographic microscope image of SOI-based ITO/Si cap/Ge PD.

    The samples of Si- and SOI-based Ge epilayers with Si cap layer after furnace thermal annealing at 740?C were used to fabricate ITO/Si cap/Ge PDs. The schematic diagram and metallographic microscope image of the device structure are shown in Figs.1(b)and 1(c),respectively. The mesas with the radius from 12μm to 100μm were fabricated by lithographic process.

    Fig.2. The transmission of ITO film from 900 nm to 1800 nm.

    The samples with ITO film on a quartz substrate were used to characterize the transmission property and electrical properties. Figure 2 shows the transmission of the ITO film from 900 nm to 1800 nm acquired by light spectrophotometer. The ITO film exhibits high transmission of 85%and 79%at 1310 nm and 1550 nm, respectively. Table 1 shows the electrical properties of the ITO film analyzed by the Hall effect testing instrument. As shown in Table 1,the resistivity is 9.5×10?4Ω·cm,the carrier concentration is 4.8×1020cm?3,and the Hall mobility is 14 cm2·V?1·s?1for the ITO film.

    Table 1. The electrical properties of ITO.

    The surface morphology of the Ge epilayer with Si cap layer samples was analyzed by atom force microscopy(AFM,Seiku Instruments,and SPI4000/SPA-400)in a tapping mode.The strain status and crystal quality of the Ge epilayers were evaluated by double-crystal XRD measurement,using Cu Kα(λKα=0.15406 nm)as the x-ray source. The cross-sectional images of the Ge epilayer with Si cap layer samples were acquired by transmission electron microscopy (JEM2100).The current-voltage (I-V) characteristics were acquired by a Keithley 2611B source/meter.

    3. Results and discussion

    The atomic force microscopy (AFM) images with a scanned area of 10×10μm2of the Si-and SOI-based Ge epilayers with Si cap layer before and after annealing are shown in Fig.3. The surfaces of the as-grown Si-based Ge epilayer with Si cap layer [Fig.3(a)] and SOI-based Ge epilayer with Si cap layer [Fig.3(b)] are very smooth and the root-meansquare(RMS)surface roughnesses are just 0.9 nm and 1.1 nm,respectively. After furnace thermal annealing at 740?C for 30 min, the surface morphology of the Si-based Ge epilayer with Si cap layer [Fig.3(c)] and SOI-based Ge epilayer with Si cap layer samples [Fig.3(d)] shows little change and both RMS surface roughnesses are 1.1 nm.

    Figures 4(a) and 4(b) show XRD ω-2θ scans and full width at half maximum (FWHM) of Ge (004) XRD patterns for the Si-based Ge epilayer with Si cap layer with different annealing treatments. The diffraction peak of the Si cap layer does not appear in the XRD curve due to its ultrathin thickness and poor crystallization quality when grown at low temperature of 390?C. The FWHM of the XRD patterns of the annealed Ge epilayers decreases with the increase of the annealing temperature, indicating the improvement of crystallization quality of the Ge epilayer. The strains of the Ge epilayer before and after thermal treatments are obtained using the XRD ω-2θ scans, as shown in Fig.4(c). The biaxial compressive strain in the as-grown Ge epilayer on Si is about 0.1%, while the biaxial tensile strain is increased slightly to 0.11% and 0.12% after furnace thermal annealing at 700?C and 740?C,respectively. Figure 4(d)shows XRD ω-2θ pattern for the SOI-based Ge epilayer with Si cap layer sample after thermal annealing at 740?C for 30 min. The FWHM is measured to be 392 arcsec for the Ge peaks.

    Fig.3. The typical 10×10 μm2 AFM images and corresponding RMS roughness of as-grown (a) Si-based Ge epilayer with Si cap layer and (b)SOI-based Ge epilayer with Si cap layer samples,furnace thermal annealing at 740 ?C(c)Si-based Ge epilayer with Si cap layer and(d)SOI-based Ge epilayer with Si cap layer samples.

    Fig.4. (a)XRD ω-2θ patterns,(b)FWHM,and(c)biaxial tensile strain for Si-based Ge epilayer with Si cap layer samples before and after furnace thermal annealing. (d)XRD ω-2θ pattern for SOI-based Ge epilayer with Si cap layer sample after 740 ?C thermal annealing.

    The typical cross-sectional TEM images for the SOIbased ITO/Si cap/Ge structure is shown in Fig.5, in which the SOI-based Ge epilayer with Si cap layer sample has been thermally annealed at 740?C before depositing ITO electrode.Figure 5(a)reveals that the ITO and Si cap/Ge layers are uniform,and the film thicknesses of the ITO and Si cap/Ge layers are estimated to be about 100 nm and 430 nm, respectively.Besides,the obvious threading dislocations can be seen in the Ge epilayer as shown in Fig.5(a). The film thickness of the Si cap layer is estimated to be about 6 nm,as shown in Fig.5(b).Figure 5(c)reveals that the interface between the Ge epilayer and top-Si is clear, without apparent Ge-Si intermixing phenomenon.

    Fig.5. (a)Cross-sectional TEM image of SOI-based Ge epilayer with Si cap layer sample,(b)HRTEM image of ITO/Si cap/Ge interface,(c)HRTEM image of Ge/top-Si interface.

    Room temperature dark current voltage characteristics in a semi-log plot for the Si-based ITO/Ge, ITO/Si cap/Ge,ITO/Si cap/Ge (700?C), and ITO/Si cap/Ge (740?C) contacts were characterized as shown in Fig.6(a). It is shown that the ITO/Ge contact is quasi ohmic, and the reverse current is slightly greater than the forward current. It is reported that the electron affinity(χ)of ITO is effected by the preparation technology, but overall, the χ of ITO is closed to that of Ge.[19]Therefore,there could be a positive low conduction band offset(ΔEc)between ITO and Ge. In this case,carriers from the Ge will have to surmount a barrier to enter the ITO, which should be responsible for the lower current at forward bias for the Si-based ITO/Ge contact.

    By inserting a Si cap layer, the reverse dark current of the ITO/Ge contact significantly decreases, whereas the rectifying ratio increases. This result suggests that the Si interlayer can increase the SBH of the ITO/Ge contact. In addition, figure 6(a) reveals that the reverse dark current of the ITO/Si cap/Ge contacts can be further decreased by adopting Si cap/Ge (700?C) and Si cap/Ge (740?C) samples to prepare the contacts. Specially, a well-behaved ITO/Si cap/Ge(740?C)Schottky contact with a high rectification ratio(about 1120 at ±1 V) and low dark current (1.5×10?5A at ?1 V)is achieved. Such dark current is 610 times lower than that of the Si-based ITO/Ge contact at ?1 V bias voltage. The Schottky barrier height(ΦSBH)of the ITO/Si cap/Ge(740?C)contacts could be extracted from temperature dependent IV characteristics using the activation energy method.[21]Figure 6(b) shows the I-V characteristics of the ITO/Si cap/Ge(740?C) contact. Figure 6(c) shows extracted lnJ/T2vs.1000/T Richardson plot for the ITO/Si cap/Ge(740?C)contact. The effective ΦSBHfor the ITO/Si cap/Ge(740?C)contact is 0.42 eV.

    The introduction of Si interlayer and annealing treatment for the Si-based Ge epilayer with Si cap layer have been demonstrated to effectively decrease the dark current of the ITO/Ge contact. The Si- and SOI-based Ge epilayer with Si cap layer samples(after furnace thermal annealing at 740?C)were used to fabricate vertical structure ITO/Si cap/Ge Schottky PDs. Figures 7(a) and 7(b) show the dark current of the Si-based ITO/Si cap/Ge PDs and SOI-based ITO/Si cap/Ge PDs with different mesa radius. Benefiting from the Schottky contact between ITO and Si cap/Ge, each device clearly establishes rectifying current flows. Overall, the reverse dark current of the SOI-based ITO/Si cap/Ge PDs is higher than that of the Si-based ITO/Si cap/Ge PDs with the same mesa radius.This result could be attributed to the better crystalline quality of the Si-based Si cap/Ge epilayer (740?C) than that of the SOI-based Si cap/Ge epilayer(740?C).Specifically,the minimum dark currents of 1.5×10?7A(corresponding to a dark current density of 33 mA/cm2)and 2.0×10?7A(corresponding to a dark current density of 44 mA/cm2)were measured for the Si-based and SOI-based ITO/Ge Schottky PDs with mesa radius of 12μm,respectively.

    It is also worthy of noting that a jumping phenomenon of current occurs when the forward current of the Si (or SOI)-based ITO/Si cap/Ge PD reaches about 1×10?7A,as shown in Figs. 7(a) and 7(b). In this paper, a 6 nm Si interlayer is inserted between ITO and Ge. Under forward bias, carriers from the Ge have to surmount a low barrier at the Ge/Si interface to enter the ITO. Since the thickness of the Si cap is only 6 nm,tunneling transport of electrons may occur with the increases of the forward bias,which should be responsible for the jumping phenomenon of the forward current.

    Fig.6. (a)Room temperature dark I-V characteristics in a semi-log plot for different contacts,(b)temperature dependent I-V characteristics,and(c)ln(J/T2)vs. 1000/T for Si-based ITO/Si cap/Ge(740 ?C)contact.

    Fig.7. The dark current of (a) Si-based ITO/Si cap/Ge PD and (b) SOI-based ITO/Si cap/Ge with different mesa radius, extracted Jbulk and Jsurf for(c)Si-based ITO/Si cap/Ge PD and(d)SOI-based ITO/Si cap/Ge PD.

    The dark current of PDs is related to the bulk dark current density(Jbulk)and the peripheral surface leakage density(Jsurf)through[22,23]

    where r is the device mesa radius. As shown in Fig.7(c),the extracted Jbulkand Jsurfof the Si-based ITO/Si cap/Ge PD at ?1 V are 97.59 mA/cm2and 6.58 μA/cm, respectively. By contrast, the reverse Jbulkand Jsurfof the SOIbased ITO/Si cap/Ge PDs are higher than those of the Si-based ITO/Si cap/Ge PD.As shown in Fig.7(d), the extracted Jbulkand Jsurfof the SOI-based ITO/Si cap/Ge PD at ?1 V are 143.3 mA/cm2and 31.39 μA/cm, respectively. Additionally,it is worthy of mentioning that the dark current densities of the Si-based and SOI-based ITO/Si cap/Ge PDs are larger than those of the reported bulk Ge PDs in literature.[24]For a Ge PD, Jbulkis increased linearly relative to the threading dislocation density in the Ge epilayer.[25,26]Obvious threading dislocations can be seen in the SOI-based Ge epilayer as shown in Fig.5(a), suggesting that there are high density threading dislocations in the Ge epilayer, which should be responsible for the higher dark current density of Ge PDs in this work.

    The photocurrents of the Si-based ITO/Si cap/Ge PD(with mesa radius of 100 μm) measured under illumination by 1310 nm and 1550 nm laser light at various powers are shown in Figs. 8(a) and 8(b), respectively. The good distinguishability between the photocurrent and dark current of the Si-based ITO/Si cap/Ge PD can be attributed to its low dark current and excellent light reaction. Besides, it is shown that the photocurrents of the Si-based ITO/Si cap/Ge PD increase with laser power increasing. The responsivity in a Ge PD is related to the optical absorption coefficient(α)and thickness of the active layer(d)of the Ge epilayer through[27]

    where λ is the vacuum wavelength,θRis the reflectivity at the input interface,ηinis the internal quantum efficiency,and d is the thickness of the active layer(the thickness of Ge epilayer in this work is 430 nm).

    The theoretically calculated external quantum efficiency for the Ge PD at 1310 nm(α=10000 cm?1[28])and 1550 nm(α = 3485 cm?1[25]) are 34.6% and 13.7%, corresponding to the responsivity of 0.37 A/W and 0.17 A/W, respectively.Given the actual value of ηinis lower than 100% and the existence of reflectivity could cause negative effect on responsivity, the experimental values of responsivity would be less than the theoretical ones. Figures 8(c) and 8(d) show the responsivity of the Si-based ITO/Si cap/Ge PD measured under illumination by a 1310 nm and 1550 nm laser,respectively,at different optical powers and a ?1 V bias voltage. The experimental optical responsivity is about 0.21 A/W and 0.07 A/W at 1310 nm and 1550 nm, respectively. The decrease of optical absorption coefficient in long wavelength bands should be responsible for the decrease of responsivity at 1550 nm.

    Fig.8.(a)Photocurrent of Si-based ITO/Si cap/Ge PD measured under illumination by a(a)1310 nm and(b)1550 nm laser at different powers.Responsivity of Si-based ITO/Si cap/Ge PD measured under illumination by a(c)1310 nm and(d)1550 nm laser at different powers.

    Fig.9. (a) Photocurrent of SOI-based ITO/Si cap/Ge PD measured under illumination by a (a) 1310 nm and (b) 1550 nm laser at different powers.Responsivity of SOI-based ITO/Si cap/Ge PD measured under illumination by a(c)1310 nm and(d)1550 nm laser at different powers.

    Figure 8(d)shows that the responsivity of the Ge PD decreases with increasing 1550 nm laser power. Germanium is an indirect bandgap semiconductor, whose direct band gap is about 0.8 eV.In this case,the direct band gap of Si-based Ge should be slightly smaller than 0.8 eV,due to the 0.1%biaxial tensile strain.[29]Under illumination by a 1550 nm (0.8 eV)laser,the photogenerated electrons can just jump to the energy state near the conduction band bottom of the direct band. As the laser power increases, the photogenerated electrons and holes increase sharply, resulting in the increase of recombination probability between the photogenerated electrons and holes, which should be responsible for lowering responsivity with 1550 nm laser power. Under illumination by a 1310 nm(>0.8 eV) laser, the photogenerated electrons can jump to higher upper energy states. In this case, the recombination probability between the photogenerated electrons and holes is relatively small. Thus, as shown in Fig.8(c), with increasing illumination power,the responsivity does not decrease.

    The photocurrents of the SOI-based ITO/Si cap/Ge PD(with mesa radius of 100μm)measured under illumination by 1310 and 1550 nm laser light at different powers are shown in Figs.9(a)and 9(b),respectively. Overall,the variation tendency of the photocurrents and responsivities of the SOI-based ITO/Si cap/Ge PDs is similar to that of the Si-based ITO/Si cap/Ge PD.The experimental optical responsivity of the SOIbased ITO/Si cap/Ge PD is about 0.26 A/W and 0.19 A/W at 1310 nm and 1550 nm, as shown in Figs. 9(c) and 9(d), respectively. Compared with the Si-based ITO/Si cap/Ge PD,the responsivity of the SOI-based ITO/Si cap/Ge PD becomes larger by about 2.7 times at 1550 nm. The existence of highly reflective between Ge epilayer and SOI substrate can increase the valid optical path of the incident light,which should be responsible for the larger responsivities of the SOI-based ITO/Si cap/Ge PD.

    4. Conclusion

    In summary, Si (or SOI)-based ITO/Ge near-infrared Schottky PDs were fabricated by inserting a Si layer in the ITO/Ge epilayer contact, in which a junction was formed between ITO and Ge without any intentional doping process for the Ge epilayer. It was demonstrated that the introduction of a Si interlayer and thermal treatment of the Si-based Si cap/Ge epilayer can effectively suppress the reverse dark current for the ITO/Ge epilayer diode. Besides, an excellent photoresponse for long wavelength was achieved by the SOI-based ITO/Si cap/Ge PD, benefited from the high transmissivity of ITO electrode and high reflectivity of SOI substrate. With 430 nm thick Ge epilayer, a minimum dark current of 2.0×10?7A and an optical responsivity of 0.19 A/W at 1550 nm wavelength were obtained for the SOI-based ITO/Ge Schottky PD.These results are quite useful for the integration of transparent,conductive ITO electrodes into Si(SOI)-based Ge epilayer Schottky PDs that are suitable for detecting the near-infrared wavelength with low cost and high efficiency.

    亚洲五月色婷婷综合| 午夜福利乱码中文字幕| 国产精品九九99| a在线观看视频网站| 菩萨蛮人人尽说江南好唐韦庄| 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 考比视频在线观看| 免费看十八禁软件| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 韩国精品一区二区三区| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 亚洲国产成人一精品久久久| 国产午夜精品久久久久久| 国产黄频视频在线观看| 怎么达到女性高潮| 在线观看www视频免费| av视频免费观看在线观看| 亚洲一码二码三码区别大吗| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 自线自在国产av| 国产欧美日韩精品亚洲av| 成人手机av| 成人影院久久| 999久久久精品免费观看国产| av欧美777| 18禁美女被吸乳视频| 日韩一卡2卡3卡4卡2021年| 免费一级毛片在线播放高清视频 | 男女免费视频国产| 十分钟在线观看高清视频www| 国产精品一区二区免费欧美| 妹子高潮喷水视频| 啦啦啦 在线观看视频| 免费人妻精品一区二区三区视频| 精品国产乱子伦一区二区三区| 久久久久网色| 国产精品麻豆人妻色哟哟久久| 国产精品自产拍在线观看55亚洲 | 热re99久久国产66热| 悠悠久久av| 一二三四社区在线视频社区8| 大香蕉久久成人网| 丁香六月欧美| 丁香六月天网| 亚洲黑人精品在线| 人妻久久中文字幕网| 国产精品熟女久久久久浪| 亚洲美女黄片视频| 老鸭窝网址在线观看| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 午夜福利乱码中文字幕| 久久午夜亚洲精品久久| 亚洲色图av天堂| 12—13女人毛片做爰片一| www.999成人在线观看| 久久性视频一级片| 日本av手机在线免费观看| 麻豆成人av在线观看| 久久天堂一区二区三区四区| 亚洲熟女精品中文字幕| 久久ye,这里只有精品| 久热爱精品视频在线9| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 国产精品电影一区二区三区 | 深夜精品福利| 亚洲天堂av无毛| 高潮久久久久久久久久久不卡| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 别揉我奶头~嗯~啊~动态视频| 青青草视频在线视频观看| 激情视频va一区二区三区| 男女无遮挡免费网站观看| cao死你这个sao货| 黄色a级毛片大全视频| 999久久久精品免费观看国产| 日本精品一区二区三区蜜桃| 精品国产一区二区久久| 欧美人与性动交α欧美软件| 午夜福利欧美成人| 欧美日韩成人在线一区二区| 国产精品电影一区二区三区 | 亚洲性夜色夜夜综合| 极品人妻少妇av视频| 9191精品国产免费久久| 午夜福利欧美成人| 亚洲五月婷婷丁香| 窝窝影院91人妻| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 午夜激情久久久久久久| 手机成人av网站| 巨乳人妻的诱惑在线观看| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 一级黄色大片毛片| 亚洲精品美女久久久久99蜜臀| 男人操女人黄网站| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 中亚洲国语对白在线视频| 亚洲精品国产色婷婷电影| 黄网站色视频无遮挡免费观看| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 99re在线观看精品视频| 国产精品成人在线| 成人永久免费在线观看视频 | 国产在线精品亚洲第一网站| 老熟女久久久| 91av网站免费观看| 国产人伦9x9x在线观看| 乱人伦中国视频| 丝袜美腿诱惑在线| 国产高清videossex| 久久久精品区二区三区| 国产一区二区三区在线臀色熟女 | 国产麻豆69| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 亚洲精品自拍成人| 免费一级毛片在线播放高清视频 | 国产高清videossex| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女 | aaaaa片日本免费| 超碰成人久久| 十八禁网站网址无遮挡| 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看| 国产免费视频播放在线视频| 精品国产一区二区三区四区第35| 如日韩欧美国产精品一区二区三区| 国产1区2区3区精品| 国产男靠女视频免费网站| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 亚洲欧美激情在线| 99国产综合亚洲精品| 大片电影免费在线观看免费| 天堂俺去俺来也www色官网| 欧美日本中文国产一区发布| av网站在线播放免费| 日韩一区二区三区影片| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 国产精品影院久久| 大型av网站在线播放| av天堂久久9| 成人国产一区最新在线观看| 久久免费观看电影| 精品卡一卡二卡四卡免费| 免费少妇av软件| 中国美女看黄片| 窝窝影院91人妻| 国产在线观看jvid| 免费在线观看黄色视频的| 一本大道久久a久久精品| 考比视频在线观看| 国产97色在线日韩免费| 日韩一区二区三区影片| 国产亚洲精品久久久久5区| 成人18禁在线播放| 精品人妻1区二区| 国产精品久久久久久人妻精品电影 | 国产亚洲精品一区二区www | 久久久国产成人免费| 成人永久免费在线观看视频 | 亚洲中文日韩欧美视频| 在线永久观看黄色视频| 在线av久久热| 999精品在线视频| 极品教师在线免费播放| 亚洲情色 制服丝袜| 乱人伦中国视频| 久久免费观看电影| 成人精品一区二区免费| 久久精品熟女亚洲av麻豆精品| 成人手机av| 美国免费a级毛片| 国产精品久久久人人做人人爽| 久9热在线精品视频| 国产在视频线精品| 亚洲精品国产精品久久久不卡| 亚洲精品乱久久久久久| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区精品91| 男男h啪啪无遮挡| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 在线 av 中文字幕| 久久精品人人爽人人爽视色| 人人澡人人妻人| 女人高潮潮喷娇喘18禁视频| 午夜精品久久久久久毛片777| 我要看黄色一级片免费的| 考比视频在线观看| av又黄又爽大尺度在线免费看| 另类精品久久| 啪啪无遮挡十八禁网站| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区 | 日韩欧美一区二区三区在线观看 | 亚洲成a人片在线一区二区| 黄色成人免费大全| videosex国产| 国产一区二区 视频在线| 国产男靠女视频免费网站| 亚洲人成电影观看| 757午夜福利合集在线观看| 欧美日本中文国产一区发布| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 久9热在线精品视频| a级毛片黄视频| 亚洲熟妇熟女久久| 多毛熟女@视频| 91字幕亚洲| a级毛片在线看网站| 91精品国产国语对白视频| 一区福利在线观看| 桃花免费在线播放| 久久婷婷成人综合色麻豆| 18禁美女被吸乳视频| 窝窝影院91人妻| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频 | 中亚洲国语对白在线视频| 亚洲午夜理论影院| 欧美日本中文国产一区发布| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 超色免费av| 国产一区二区 视频在线| 国产高清视频在线播放一区| 亚洲av日韩在线播放| 国产单亲对白刺激| 午夜两性在线视频| 最近最新免费中文字幕在线| 在线 av 中文字幕| 老司机影院毛片| 91老司机精品| av视频免费观看在线观看| 女人精品久久久久毛片| 日韩免费av在线播放| 视频在线观看一区二区三区| 久久久久网色| 18禁美女被吸乳视频| 国产1区2区3区精品| 1024香蕉在线观看| 一级毛片电影观看| 欧美在线黄色| 女人精品久久久久毛片| av线在线观看网站| 99香蕉大伊视频| 一二三四在线观看免费中文在| 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 久久精品人人爽人人爽视色| 窝窝影院91人妻| 国产不卡av网站在线观看| 成人国产av品久久久| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 99精品在免费线老司机午夜| 99国产精品免费福利视频| 午夜久久久在线观看| 国产在线一区二区三区精| 国产精品偷伦视频观看了| a级毛片黄视频| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| kizo精华| 一级毛片电影观看| 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 黄色 视频免费看| 电影成人av| 国产精品久久久久成人av| 久久精品人人爽人人爽视色| 免费一级毛片在线播放高清视频 | 一区二区三区乱码不卡18| 十八禁网站网址无遮挡| 青青草视频在线视频观看| 久热这里只有精品99| 狂野欧美激情性xxxx| 99久久人妻综合| 麻豆国产av国片精品| 午夜两性在线视频| 国产精品久久久久久人妻精品电影 | 91精品三级在线观看| 欧美国产精品一级二级三级| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 成人国产一区最新在线观看| 国产国语露脸激情在线看| 久久久精品区二区三区| 国产精品成人在线| 久久久久久免费高清国产稀缺| 亚洲黑人精品在线| 午夜激情av网站| 肉色欧美久久久久久久蜜桃| 一区二区三区乱码不卡18| 五月开心婷婷网| 一级毛片电影观看| 国产精品久久久人人做人人爽| 老司机福利观看| 一个人免费看片子| 可以免费在线观看a视频的电影网站| 久久精品国产a三级三级三级| 久久午夜亚洲精品久久| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲精品在线美女| 欧美日韩视频精品一区| 亚洲精品在线美女| 超色免费av| 侵犯人妻中文字幕一二三四区| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 青青草视频在线视频观看| 亚洲精品一二三| √禁漫天堂资源中文www| 天天影视国产精品| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 久久久久久久国产电影| 精品国产一区二区久久| 十八禁高潮呻吟视频| 国产精品美女特级片免费视频播放器 | 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 亚洲熟妇熟女久久| 99国产精品99久久久久| 老司机影院毛片| 精品少妇内射三级| 亚洲人成77777在线视频| 美女福利国产在线| 国产成人精品在线电影| 天天躁日日躁夜夜躁夜夜| 久久国产精品大桥未久av| 男男h啪啪无遮挡| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| videosex国产| 天天躁日日躁夜夜躁夜夜| 免费高清在线观看日韩| 夜夜骑夜夜射夜夜干| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 亚洲性夜色夜夜综合| 久久精品国产综合久久久| 亚洲精品一二三| 多毛熟女@视频| 人妻 亚洲 视频| 午夜成年电影在线免费观看| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 美女午夜性视频免费| av网站在线播放免费| 国产淫语在线视频| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 一本色道久久久久久精品综合| 精品亚洲成a人片在线观看| 99热国产这里只有精品6| 飞空精品影院首页| 国产成人一区二区三区免费视频网站| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 一个人免费看片子| 人妻久久中文字幕网| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频| 他把我摸到了高潮在线观看 | 女性生殖器流出的白浆| 亚洲av片天天在线观看| 中文字幕另类日韩欧美亚洲嫩草| 天天操日日干夜夜撸| 正在播放国产对白刺激| 在线亚洲精品国产二区图片欧美| 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| 日本欧美视频一区| 热99re8久久精品国产| 亚洲成人免费电影在线观看| 国产av又大| 丝袜在线中文字幕| 极品人妻少妇av视频| 在线观看人妻少妇| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 91老司机精品| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美软件| 一级片免费观看大全| 国产精品亚洲一级av第二区| 香蕉国产在线看| 中文字幕制服av| 亚洲人成伊人成综合网2020| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 亚洲成av片中文字幕在线观看| 国产99久久九九免费精品| 亚洲精品粉嫩美女一区| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 在线观看舔阴道视频| 欧美激情高清一区二区三区| 97人妻天天添夜夜摸| 欧美日韩成人在线一区二区| 999久久久国产精品视频| 精品国产一区二区久久| 国产又爽黄色视频| 黄色丝袜av网址大全| 亚洲,欧美精品.| 我的亚洲天堂| 国产精品自产拍在线观看55亚洲 | 巨乳人妻的诱惑在线观看| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 在线十欧美十亚洲十日本专区| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 一区二区av电影网| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 国产91精品成人一区二区三区 | 51午夜福利影视在线观看| 国产精品国产高清国产av | 久久久久久久久免费视频了| 国产一区二区激情短视频| 久久精品国产综合久久久| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成a人片在线观看| 777米奇影视久久| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 露出奶头的视频| 一本大道久久a久久精品| 电影成人av| 天堂俺去俺来也www色官网| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看| 女性生殖器流出的白浆| 欧美激情久久久久久爽电影 | 极品少妇高潮喷水抽搐| 高清av免费在线| 精品乱码久久久久久99久播| 色综合婷婷激情| 久久人妻熟女aⅴ| 又紧又爽又黄一区二区| 操出白浆在线播放| 国产真人三级小视频在线观看| 欧美精品av麻豆av| 国产在线免费精品| 我要看黄色一级片免费的| 久久天躁狠狠躁夜夜2o2o| 妹子高潮喷水视频| 女人精品久久久久毛片| 他把我摸到了高潮在线观看 | 久久99一区二区三区| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| 国产欧美日韩精品亚洲av| 国产亚洲精品一区二区www | 国产aⅴ精品一区二区三区波| 女人久久www免费人成看片| 久久精品亚洲精品国产色婷小说| 亚洲一区二区三区欧美精品| 国产欧美日韩一区二区三区在线| 久久久久视频综合| kizo精华| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 国产日韩欧美视频二区| 欧美日韩一级在线毛片| 色在线成人网| 国产精品 欧美亚洲| 十八禁网站网址无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | 宅男免费午夜| 欧美日韩国产mv在线观看视频| cao死你这个sao货| 亚洲国产成人一精品久久久| 亚洲综合色网址| 欧美黄色片欧美黄色片| 丰满少妇做爰视频| 男女边摸边吃奶| 久久人人97超碰香蕉20202| 欧美日韩亚洲国产一区二区在线观看 | 日韩视频在线欧美| 国产成人av激情在线播放| 黄色视频,在线免费观看| 久热爱精品视频在线9| 一进一出抽搐动态| 精品人妻在线不人妻| 国产1区2区3区精品| 亚洲黑人精品在线| 午夜精品国产一区二区电影| 老司机福利观看| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 日本av免费视频播放| 国产野战对白在线观看| 9色porny在线观看| 欧美日韩亚洲综合一区二区三区_| 国产亚洲av高清不卡| 性少妇av在线| 亚洲成人国产一区在线观看| av电影中文网址| 丝袜人妻中文字幕| 国产野战对白在线观看| 黄片播放在线免费| 精品国产乱码久久久久久男人| 亚洲三区欧美一区| 日本wwww免费看| 他把我摸到了高潮在线观看 | 中亚洲国语对白在线视频| 自线自在国产av| 久久久精品94久久精品| 国产免费现黄频在线看| 欧美精品亚洲一区二区| 精品久久久久久电影网| 国产精品国产av在线观看| netflix在线观看网站| 汤姆久久久久久久影院中文字幕| 成人国产一区最新在线观看| 黄色丝袜av网址大全| 国产精品自产拍在线观看55亚洲 | 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 中文欧美无线码| 久久久国产欧美日韩av| 午夜免费鲁丝| 交换朋友夫妻互换小说| 亚洲av成人不卡在线观看播放网| 男女高潮啪啪啪动态图| 99国产综合亚洲精品| 久久久精品区二区三区| av又黄又爽大尺度在线免费看| 国产一区二区三区综合在线观看| 五月天丁香电影| 一进一出抽搐动态| kizo精华| 日韩中文字幕视频在线看片| 久久久水蜜桃国产精品网| 757午夜福利合集在线观看| 亚洲人成电影免费在线| 国产精品香港三级国产av潘金莲| 成人精品一区二区免费| 欧美在线一区亚洲| 老熟女久久久| 丰满迷人的少妇在线观看| 日本a在线网址| 黄色 视频免费看| 国产成人啪精品午夜网站| 国产男女超爽视频在线观看| 精品国产亚洲在线| 91麻豆av在线| 久久久国产精品麻豆| 中文亚洲av片在线观看爽 | 亚洲专区字幕在线| 亚洲一区二区三区欧美精品| www.自偷自拍.com| 国产高清国产精品国产三级| 一夜夜www| 少妇粗大呻吟视频| 高清在线国产一区| 免费观看av网站的网址| 亚洲国产成人一精品久久久| 亚洲精品国产色婷婷电影| 精品国产一区二区三区久久久樱花| 欧美日韩黄片免| 亚洲国产中文字幕在线视频| 99精国产麻豆久久婷婷| 曰老女人黄片| 日韩一卡2卡3卡4卡2021年| 99精品欧美一区二区三区四区| 欧美精品啪啪一区二区三区| 麻豆国产av国片精品| 国产在线观看jvid| 99国产精品99久久久久| 亚洲五月婷婷丁香| 国产又爽黄色视频| 亚洲av片天天在线观看| 一区二区三区精品91| 日韩精品免费视频一区二区三区| 热re99久久国产66热| a在线观看视频网站| 精品一区二区三卡| 热re99久久国产66热| 香蕉国产在线看| 午夜福利一区二区在线看| 一本综合久久免费|