• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,mechanical,electronic properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure:A first-principles study?

    2021-03-19 03:21:04DiyouJiang姜迪友WenboXiao肖文波andSanqiuLiu劉三秋
    Chinese Physics B 2021年3期
    關(guān)鍵詞:文波

    Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(劉三秋)

    1Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China

    2Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB),Ningde 352100,China

    3Department of Physics,Nanchang University,Nanchang 330047,China

    Keywords: quaternary carbide Ti3NiAl2C ceramics, structural properties, mechanical properties, electronic properties,Debye temperature,first-principles

    1. Introduction

    Mn+1AXnphases(M represents the early transition metal of B group, n represents 1/2/3, A stands for an element of A group, and X is C or N) have both metallic and ceramic properties with its hexagonal close-packed structure, which have attracted great interest from researchers due to its excellent performances such as high melting point, high temperature stability,high temperature resistant to oxidation,high corrosion resistance,high elastic modulus,significant machinability, excellent resistant to thermal shock, good thermal and electrical conductivity, low density and micro-ductility at room temperature.[1-10]In addition, Mn+1AXnphases also exhibit good radiation resistance,[11]especially at high temperatures,[12-15]and are considered as a potential structural material for nuclear fission and fusion reactors.[16-18]In the Mn+1AXnphases,many materials have been studied,such as Ti2AlC, [19,20] Ti3AlC2[21,22]and Ti3SiC2[23,24]compounds.

    On the other hand,the composite carbides of Ti2A1C and Ti3A1C formulations have high efficiency when used as abrasives for glass polishing. With nickel proposed as a possible binder, the research on the Ti-Ni-Al-C quaternary system began to arouse the interest of researchers. The quaternary system: titanium-nickel-aluminum-carbon (Ti3NiAl2C)was established for 1100?C (quench), and a quaternary ηcarbide with a lattice parameter of a=11.40-11.463 ?A was found to exist.[25]The H-phase Ti2AlC and the perovskite phase Ti3AlC are no longer stable in the presence of minor amounts of nickel.[25]Cubic Ti3NiAl2C compounds as quaternary carbide ceramics[25]may also have the characteristics of the Mn+1AXnphases. So far,however,this material has not been further investigated,especially in theory.

    In addition,high pressure can cause a material to undergo phase changes that change its chemical and physical properties, such as structural, mechanical, thermodynamic, optical, electronic, and magnetic properties.[26-35]At the same time, computational materials science can be used to investigate the structure performance relationship and design materials since the traditional experimental design is expensive and time-consuming. Computer simulation can improve the chemical and physical properties of specific compounds and greatly reduce the number of components to be prepared and characterized.[36-43]

    In this paper,our purpose is to improve the chemical and physical properties of cubic Ti3NiAl2C compounds through pressurization based on density functional theory. Therefore,we focus on investigating the effect of pressure on the mechanical properties of quaternary carbide Ti3NiAl2C ceramics.

    2. Model and computational details

    Figure 1 shows the crystal structure of cubic Ti3NiAl2C compounds, which belongs to the Fd-3m space group. The model of cubic Ti3NiAl2C compounds consists of 112 atoms,which including 16 C, 32 Al, 16 Ni, and 48 Ti atoms. The valence electron of C, Al, Ni, and Ti atoms is C-2s22p2, Al-3s23p1, Ni-4s23d8, and Ti-4s23d2, respectively. Using VASP software,the first principles method according to density functional theory (DFT) along with the plane-wave pseudopotential is used to complete the current calculations.[44,45]According to the projector augmented wave method(PAW),[46]it can characterize the relationship between core ions and valence electrons. The generalized gradient approximation(GGA)of Perdew and Wang (PW91) is used to calculate the exchangecorrelation potentials.[47]3×3×3 Monkhorst-Pack meshes as sampling k-point in Brillouin-zone.[48]All calculated plane wave cutoff energy is set to 430 eV,and further increasing the cutoff energy has little effect on the energy. Gaussian smearing method is used for all calculations,and its smearing width is 0.05 eV.

    According to the relationship between pressure and volume, the Birch-Murnaghan equation of state (EOS) can be expressed as[28,35,49]

    According to Voigt-Reuss-Hill averaging scheme,[50-53]a series of required mechanical parameters can be obtained by fitting the elastic constants, such as bulk modulus (B),Young’s modulus(E),shear modulus(G),Poisson’s ratio(ν),anisotropy coefficients (A), and Cauchy pressure (C′). The equation constructed can be expressed as

    Debye temperature (ΘD) is an important parameter for studying the thermodynamic properties. Therefore, it is necessary to explore the Debye temperature of quaternary carbide Ti3NiAl2C ceramics at different pressures.Debye temperature can be expressed as[54]

    where kBis the Boltzmann constant,h is the Planck constant,NAis the Avogadro number, ρ is the mass density, m is the molecular weight,n is total number of atoms per formula,and vmis the average sound velocity.

    The average sound velocity (vm) can be acquired by the following equation:[54]

    where vlis the longitudinal sound velocity and vsis the shear sound velocity,which can be calculated based on the B and G.The equation constructed is as follows:[55]

    3. Results and discussion

    3.1. Structural properties

    As shown in Fig.1, we pressurized and optimized the crystal structure of quaternary carbide Ti3NiAl2C ceramics with a pressure range of 0-110 GPa and an interval of 10 GPa.At the same time, the optimized atomic positions and crystal configurations are used as the model for the study of mechanical properties.

    cubic lattice at different pressures. The lattice constants of quaternary carbide Ti3NiAl2C ceramics decrease with the increase of pressure due to the shortened bond lengths,as shown in Fig.2.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Pressure(GPa) a b c V B0 B′0 (GPa)0 11.454 11.454 11.454 1502.69 164.58 3.47552 10 11.244 11.244 11.244 1421.54 20 11.080 11.080 11.080 1360.35 30 10.939 10.939 10.939 1309.13 40 10.819 10.819 10.819 1266.39 50 10.713 10.713 10.713 1229.41 60 10.617 10.617 10.617 1196.81 70 10.531 10.531 10.531 1167.80 80 10.451 10.451 10.451 1141.42 90 10.380 10.380 10.380 1118.27 100 10.313 10.313 10.313 1096.77 110 10.247 10.247 10.247 1075.79

    Fig.1. Crystal structure model of cubic Ti3NiAl2C compounds. Black,pink,grey,and blue balls are C,Al,Ti,and Ni atoms,respectively.

    Fig.2. The bond lengths of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    The bond lengths of quaternary carbide Ti3NiAl2C ceramics decrease with the increasing pressure. At zero pressure,there are three kinds of bonds,namely Ti-Al,Ni-Al,and Ti-C bonds.At pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,the new bond lengths of Ti-Ni,Ti-Ti,Al-Al,Ti-Al, and Ti-Ti are produced, respectively. At the same time,we can see that the Ti-Ti and Ti-Al bonds appear twice in the process of pressurization. It indicates that pressurization can lead to the diversity of the bonding of quaternary carbide Ti3NiAl2C ceramics.

    Based on Eqs. (1) and (2), the relationship between volume and pressure can be expressed by the pressure-volume curve. At the same time, we can get these results by fitting the Birch-Murnaghan equation of state. Figure 3 plotted the pressure-volume curve of quaternary carbide Ti3NiAl2C ceramics,and the volume decreases with the increasing pressure.

    Fig.3.Birch-Murnaghan fitting curve of quaternary carbide Ti3NiAl2C ceramics based on volume(?A3)and pressure(GPa).

    As shown in Fig.4,we can normalize the lattice constant and volume of quaternary carbide Ti3NiAl2C ceramics to investigate the effect of pressure on the cell structure. We can see that the normalization constants of the lattice constant and volume decrease with the increase of pressure. Obviously,the normalization constant of the volume decreases faster. However, we can also see that quaternary carbide Ti3NiAl2C ceramics cannot be compressed endlessly. The reason is that as the pressure increases, the volume is continuously compressed, and the bond length between atoms is shortened,which leads to the increase of repulsive force between atoms and makes the crystal difficult to be compressed. We can see from Fig.4 that the volume of quaternary carbide Ti3NiAl2C ceramics is compressed to about 72%.

    Fig.4. The normalization parameter of the volumes and lattice constants of cubic Ti3NiAl2C compounds at different pressures.

    Table 2. Elastic constants(Cij,in GPa),Young’s modulus(E,in GPa),shear modulus(G,in GPa),bulk modulus(B,in GPa),B/G ratio,Poisson’s ratio(ν),Cauchy pressure(C′,in GPa)and anisotropic coefficients(A)of cubic Ti3NiAl2C compound at different pressures(GPa).

    3.2. Charge transfer

    The charge transfer between atoms can reduce the energy of the compounds to achieve a stable structure. Based on electronegativity analysis, the Ni and C atoms of quaternary carbide Ti3NiAl2C ceramics can gain charge, while the Ti and Al atoms can lose charge. Therefore, Ti and Al can produce positive charges, and C and Ni can produce negative charges.

    Fig.5. The transfer charges of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    As shown in Fig.5,we investigated the effect of pressure on the charge transfer of quaternary carbide Ti3NiAl2C ceramics.According to the Bader charge calculation,we can see that the charge gained by the C atom decreases with the increasing pressure,but the change is not obvious,and the charge transfer is relatively stable. The charge gained by Ni atoms obviously increases with the increasing pressure. Similarly,we can also clearly know that the charge loss of Ti atom decreases with the increase of pressure, but the charge loss is not obvious,and the charge transfer is also relatively stable. However,the charge loss of Al atom obviously increases with the pressure.These results show that pressure has a greater effect on the charge transfer of Ni and Al atoms in cubic Ti3NiAl2C compounds,but it has a smaller effect on the charge transfer of C and Ti atoms. How much is the charge transfer? According to Marcus’s charge transfer theory,it may be caused by orbital interaction.

    3.3. Mechanical properties

    Firstly, we fitted the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures, and then exported the mechanical parameters such as Poisson’s ratio,Cauchy pressure, elastic modulus, and anisotropic factors based on the Eqs.(3)-(10),as shown in Table 2.

    The elastic constant C11is often used to characterize the stiffness of compounds. It can be seen from Table 2 that the C11increases with the pressure,indicating that the stiffness of quaternary carbide Ti3NiAl2C ceramics can be enhanced by pressurization.C12is generally used to characterize resistance to lateral deformation. Similarly, it can also be seen that the C12increases with the pressure,indicating that pressurization can also increase resistance to lateral deformation. The reason is that pressure makes the bond length shorter,the interaction between atoms is strengthened, and the bond energy also increases,leading to an improvement of the mechanical properties of quaternary carbide Ti3NiAl2C ceramics. At the same time,as shown in Table 2,we can also see that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at 50-60 GPa are equivalent to that of pure tungsten(Tungsten is considered the most promising first wall material).[56-66]

    In addition,the relations(C11?C12)>0,C11>0,C44>0, (C11+2C12)>0[67]serves as the criterion for determining the mechanical stability of cubic systems. We can deduce that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures obviously meet the stability criteria. It indicates that these structures are mechanically stable.Meanwhile,the phonon dispersion of cubic Ti3NiAl2C ceramics(the primitive cell with 28 atoms)at zero pressure is calculated based on density functional perturbation theory(DFPT),as shown in Fig.6. It is obvious that cubic Ti3NiAl2C ceramics is dynamically stable.

    Bulk modulus is generally used to evaluate the material’s resistance to deformation under external forces.[68,69]We can see from Table 2 that the bulk modulus of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure,indicating that pressurization can improve the ability to resist deformation. At the same time, it is found that the bulk modulus (163.3 GPa) at zero pressure is higher than Ti2AlC(135.8 GPa)[62]and Ti3AlC2(156.2 GPa)[62]ceramics but lower than Ti3SiC2(185.3 GPa)[63]ceramics, which means that cubic Ti3NiAl2C ceramics has certain advanced properties. Shear modulus is generally used to characterize the material’s resistance to shear deformation.[68,69]We can also see from Table 2 that the shear modulus increases with the pressure, indicating that pressurization can improve the ability of quaternary carbide Ti3NiAl2C ceramics to resist shear deformation. Young’s modulus corresponds to that of C11, which also characterizes the stiffness of materials. Similarly,we can also see from Table 2 that Young’s modulus increases with the pressure,which is equivalent to the conclusion of C11.

    Fig.6. The phonon dispersion curves of cubic Ti3NiAl2C ceramics at zero pressure is calculated based on DFPT.

    According to the Pugh theory,[69]the (B/G) ratio can characterize the ductile and brittle behavior of solid materials. 1.75 is usually used to determine whether a material is ductile or brittle. We can see from Table 2 that the B/G value increases with the increase of pressure, indicating that pressurization can improve the ductility of quaternary carbide Ti3NiAl2C ceramics. At the same time, we can also see that the B/G values are all lower than 1.75 when the pressure is below 40 GPa, indicating that quaternary carbide Ti3NiAl2C ceramics has a brittle phase. However, the brittle phase of the cubic Ti3NiAl2C compound changes from brittle to ductile when the pressure reaches 40 GPa. This excellent performance is not available in Mn+1AXnphases, such as Ti2AlC,[70]Ti3AlC2,[70,71]and Ti3SiC2[71]compounds at different pressures, which fully reflects the advanced nature of quaternary carbide Ti3NiAl2C ceramics. Poisson’s ratio is generally used to evaluate the plasticity of solid materials.The quality of plasticity is proportional to Poisson’s ratio.[72]Obviously, pressurization can improve the plasticity of quaternary carbide Ti3NiAl2C ceramics.

    According to the characteristic parameter of Cauchy pressure, it can be determined whether the material has metallic or covalent bond behavior. The positive/negative values of Cauchy pressure indicate that the material has metallic/covalent bond behavior, respectively, as well as ductility/brittleness.[28,73]As shown in Table 2,we can see that Cauchy pressure increases with the pressure, indicating that pressurization can improve the metallic bond behavior of quaternary carbide Ti3NiAl2C ceramics.At the same time,we can also see that quaternary carbide Ti3NiAl2C ceramics changes from covalent bond to metallic bond at pressure to 20 GPa.Eventually,metallic bonds dominate in the quaternary carbide Ti3NiAl2C ceramics.

    The material’s anisotropy is quantitatively characterized by the anisotropy factor (A). The values of A generally have three types: A >1,A <1,and A=1. A >1 or A <1 indicates that the material has anisotropy, and the greater the deviation from 1, the more severe the anisotropy, and A=1 indicates that the material is isotropic. We can see from Table 2 that the A values increase with the pressure, which indicates that pressurization may aggravate the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics.

    3.4. Electronic properties

    To further understand the bonding characteristics of quaternary carbide Ti3NiAl2C ceramics at different pressures and investigate the mechanical properties and structural stability mechanisms,the total density of states(TDOS)of quaternary carbide Ti3NiAl2C ceramics at different pressures (0 GPa,50 GPa, 80 GPa, 110 GPa) is plotted in Fig.7. We can see from Fig.7(a) that the TDOS at the Fermi level has no gap,indicating that quaternary carbide Ti3NiAl2C ceramics at different pressures exhibits metallic characteristics. We can also see from Fig.7(a)that the shape of the TDOS curve changed slightly,which indicates that the structures of quaternary carbide Ti3NiAl2C ceramics at different pressures did not change drastically,nor did the structural phase change.

    However,as the pressure increases,the TDOS of quaternary carbide Ti3NiAl2C ceramics shows a downward trend,which indicates a decreased inter-atomic hybridization energy and weaker inter-atomic hybridization. At the same time, we found that the distance between the valence band and conduction band of the TDOS widens with the pressure, indicating that the delocalization of quaternary carbide Ti3NiAl2C ceramics is enhanced.

    In general, the TDOS value at the Fermi level (Df) can indirectly reflect the hardness of the intermetallic,because the hardness is inversely proportional to Df.[74,75]As shown in Fig.7(b), The Dfvalue of quaternary carbide Ti3NiAl2C ceramics at the Fermi level decreases with the increasing pressure,which indicates that the hardness increases with the pressure. It is consistent with the trend of elastic constants in Table 2.

    Fig.7. The total density of states of quaternary carbide Ti3NiAl2C ceramics at different pressures(0 GPa,50 GPa,80 GPa,110 GPa).The energy is with respect to the Fermi level.

    Table 3. Mass density (ρ, in g·cm?3), Debye temperatures (ΘD, in K), average wave velocity (vm), longitudinal sound velocity (vl), shear sound velocity(vs),melting point(Tm,in K),and hardness(H,in GPa)of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    3.5. Debye temperature,melting point,and hardness

    Debye temperature(ΘD)comes from the atomic thermal vibration theory of solids, which corresponds to the highest frequency of lattice vibration.ΘDis often used to describe the interatomic bond strength of solid materials.[35,76,77]It is related to many physical quantities of solids, such as hardness,melting point, elasticity, and specific heat. In general, high Debye temperature indicates that solids have high modulus,high melting points and high hardness,and vice versa.

    As shown in Table 3, we can see that the ΘDvalues increase with the increase of pressure,indicating that pressurization can enhance the Debye temperature of quaternary carbide Ti3NiAl2C ceramics. It also indicates that pressurization can increase the strength of the interatomic bonding force.

    Melting point (Tm) and hardness (H) are also two critical characteristic parameters of solids. At the same time,H is usually used as an important index to evaluate the wear properties of solids.[78]Herein, it is necessary to investigate the two parameters. Based on the elastic constant C11,shear modulus G,and bulk modulus B,the melting point[79]and Vickers hardness[80]formulas are as follows:

    As shown in Table 3, the melting point and hardness increase with the increase of pressure,indicating that pressurization can enhance the melting point and hardness of quaternary carbide Ti3NiAl2C ceramics. In addition, the elastic strain failure(H/E)[19]and the plastic strain failure(H3/E2)[19]are usually used to evaluate the wear and resistance to plastic deformation of solids, respectively. It can be seen from Table 3 that the H/E and H3/E2values decrease with the increasing pressure,which indicates that the wear and resistance to plastic deformation of quaternary carbide Ti3NiAl2C ceramics may be weakened under pressure.

    4. Summary and conclusion

    In this paper,we investigate the structural,electronic,mechanical properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure according to the first-principles method.The quaternary carbide Ti3NiAl2C ceramics still has a cubic structure under pressure(0-110 GPa).At zero pressure,there are only three kinds of covalent bonds in Ti3NiAl2C:Ti-Al,Ni-Al,and Ti-C.However,at the pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds are formed, respectively. The results show that pressurization may result in the bond diversity of quaternary carbide Ti3NiAl2C ceramics. When the pressure reaches 20 GPa, the covalent bonds turn into metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be reduced to 72% of the original volume. The effect of pressure on the charge transfer of Ni and Al atoms in quaternary carbide Ti3NiAl2C ceramics is greater than that of C and Ti atoms. The mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics can be improved by pressure treatment. At 50-60 GPa, its mechanical strength is comparable to that of pure tungsten, and the material changes from brittleness to ductility. However,the anisotropy of quaternary carbide Ti3NiAl2C ceramics becomes more serious with the increasing pressure. In addition,pressurization can also improve the Debye temperature,melting point, and hardness of quaternary carbide Ti3NiAl2C ceramics,but the wear resistance is decreased.

    猜你喜歡
    文波
    一群“蟑螂”
    蛙聲
    揚子江(2022年3期)2022-05-07 01:00:01
    武術(shù)研究是什么
    GROUND STATES FOR FRACTIONAL SCHR¨ODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH?
    世界上榮譽的桂冠都是用荊棘編制而成
    中國商人(2019年11期)2019-12-10 05:58:15
    基于組合特征的航母目標識別方法
    Numerical analysis of shell-side flow-induced vibration of elastic tube bundle in heat exchanger *
    Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes*
    陳文波作品
    中國篆刻(2016年3期)2016-09-26 12:19:32
    歡歡的游樂場
    日本撒尿小便嘘嘘汇集6| 精品欧美一区二区三区在线| av国产精品久久久久影院| 男女高潮啪啪啪动态图| 欧美乱妇无乱码| 午夜免费男女啪啪视频观看 | 桃红色精品国产亚洲av| 99国产精品一区二区蜜桃av| 日韩欧美免费精品| 一个人免费在线观看电影| 国产亚洲欧美在线一区二区| 亚洲av日韩精品久久久久久密| 国产一区二区三区在线臀色熟女| 国产精品自产拍在线观看55亚洲| 欧美日韩中文字幕国产精品一区二区三区| 听说在线观看完整版免费高清| 国产一区二区三区在线臀色熟女| 少妇的丰满在线观看| 免费搜索国产男女视频| 亚洲精品影视一区二区三区av| 久久精品91无色码中文字幕| 18美女黄网站色大片免费观看| 两个人视频免费观看高清| 香蕉丝袜av| 欧美日韩乱码在线| 色播亚洲综合网| 久久性视频一级片| 免费观看的影片在线观看| 欧美乱妇无乱码| 很黄的视频免费| 精品久久久久久成人av| 国产成人av激情在线播放| 老司机深夜福利视频在线观看| 全区人妻精品视频| 精品人妻1区二区| 男女做爰动态图高潮gif福利片| 在线观看一区二区三区| 九九久久精品国产亚洲av麻豆| 99精品欧美一区二区三区四区| 国产欧美日韩精品亚洲av| 国产一区二区激情短视频| 精品久久久久久,| ponron亚洲| 国产精品综合久久久久久久免费| 精品人妻1区二区| 亚洲美女视频黄频| 美女高潮喷水抽搐中文字幕| 麻豆国产97在线/欧美| 日韩欧美免费精品| а√天堂www在线а√下载| 欧美xxxx黑人xx丫x性爽| 毛片女人毛片| 午夜激情欧美在线| av片东京热男人的天堂| 亚洲精品456在线播放app | 亚洲av成人不卡在线观看播放网| 91字幕亚洲| 中文字幕av成人在线电影| 亚洲精品亚洲一区二区| 午夜影院日韩av| 香蕉av资源在线| 波多野结衣高清作品| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 欧美黑人巨大hd| 亚洲国产精品成人综合色| 真人一进一出gif抽搐免费| av片东京热男人的天堂| 中文在线观看免费www的网站| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 高清日韩中文字幕在线| 国产亚洲精品久久久com| 观看免费一级毛片| 日本免费一区二区三区高清不卡| 99国产综合亚洲精品| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 日本五十路高清| 最近视频中文字幕2019在线8| 最近在线观看免费完整版| 怎么达到女性高潮| 伊人久久大香线蕉亚洲五| 变态另类丝袜制服| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 午夜a级毛片| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色| 久久精品亚洲精品国产色婷小说| 欧美bdsm另类| 中亚洲国语对白在线视频| 日本在线视频免费播放| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 91av网一区二区| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 热99在线观看视频| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 嫩草影视91久久| 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 一区二区三区国产精品乱码| 久久国产乱子伦精品免费另类| 在线观看美女被高潮喷水网站 | av黄色大香蕉| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| 99热这里只有精品一区| 精品国产亚洲在线| 有码 亚洲区| 少妇人妻精品综合一区二区 | 麻豆成人av在线观看| 久久99热这里只有精品18| a在线观看视频网站| 黑人欧美特级aaaaaa片| 婷婷精品国产亚洲av在线| 天天添夜夜摸| 亚洲成av人片在线播放无| 在线观看av片永久免费下载| 99国产综合亚洲精品| 少妇的丰满在线观看| 午夜免费男女啪啪视频观看 | 男女之事视频高清在线观看| 国产精品女同一区二区软件 | 亚洲精品456在线播放app | 精品国产亚洲在线| 亚洲精品在线观看二区| 国产精品,欧美在线| 亚洲精品国产精品久久久不卡| 久久天躁狠狠躁夜夜2o2o| 日韩有码中文字幕| 内地一区二区视频在线| 欧美高清成人免费视频www| 99久久九九国产精品国产免费| 成人av一区二区三区在线看| 日本黄大片高清| 日韩欧美精品v在线| 69人妻影院| 法律面前人人平等表现在哪些方面| 波多野结衣巨乳人妻| 岛国在线观看网站| 日本黄大片高清| 日韩欧美精品v在线| 五月伊人婷婷丁香| 国产高清视频在线观看网站| 免费看美女性在线毛片视频| 国模一区二区三区四区视频| 日本撒尿小便嘘嘘汇集6| 制服人妻中文乱码| 香蕉久久夜色| 色哟哟哟哟哟哟| av欧美777| 丰满人妻一区二区三区视频av | 桃色一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 国产毛片a区久久久久| 国产三级在线视频| 久久久久久国产a免费观看| 午夜激情欧美在线| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 在线国产一区二区在线| 亚洲精品成人久久久久久| 欧美成人一区二区免费高清观看| 国产激情偷乱视频一区二区| 欧美在线黄色| 在线观看免费午夜福利视频| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 国产成人欧美在线观看| 熟女电影av网| 亚洲性夜色夜夜综合| 亚洲av不卡在线观看| 日本黄色视频三级网站网址| 超碰av人人做人人爽久久 | 女人高潮潮喷娇喘18禁视频| 午夜免费激情av| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 中文字幕精品亚洲无线码一区| 国产精品乱码一区二三区的特点| 99在线人妻在线中文字幕| av片东京热男人的天堂| 欧美日韩黄片免| 久久久精品欧美日韩精品| 内地一区二区视频在线| 成人国产一区最新在线观看| 十八禁人妻一区二区| 可以在线观看毛片的网站| 亚洲自拍偷在线| 国产精品 国内视频| 一级毛片女人18水好多| 国产不卡一卡二| 男人和女人高潮做爰伦理| 91九色精品人成在线观看| 搡女人真爽免费视频火全软件 | 欧美三级亚洲精品| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 99久久精品热视频| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 听说在线观看完整版免费高清| 午夜久久久久精精品| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 高清日韩中文字幕在线| 欧美3d第一页| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 日本熟妇午夜| 久久久久久久午夜电影| 国产精品一区二区免费欧美| 丁香欧美五月| 老司机午夜十八禁免费视频| 日韩欧美 国产精品| 久久久久久久精品吃奶| av专区在线播放| av欧美777| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久毛片微露脸| 高清在线国产一区| 欧美av亚洲av综合av国产av| 久久久久性生活片| 我的老师免费观看完整版| 免费大片18禁| av专区在线播放| 国产蜜桃级精品一区二区三区| 桃色一区二区三区在线观看| 嫩草影视91久久| www.www免费av| 国产亚洲精品一区二区www| 亚洲av美国av| 尤物成人国产欧美一区二区三区| www日本黄色视频网| 狂野欧美白嫩少妇大欣赏| 国产视频一区二区在线看| 免费看美女性在线毛片视频| 在线国产一区二区在线| 国产精品三级大全| 久久久精品大字幕| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 日韩成人在线观看一区二区三区| 亚洲人成伊人成综合网2020| 最新美女视频免费是黄的| 国产真实伦视频高清在线观看 | 一边摸一边抽搐一进一小说| 成人国产综合亚洲| 国产精品精品国产色婷婷| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女那种视频在线观看| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 久久伊人香网站| 亚洲美女黄片视频| x7x7x7水蜜桃| 中文字幕av成人在线电影| 桃红色精品国产亚洲av| 精品不卡国产一区二区三区| 男女之事视频高清在线观看| 欧美乱码精品一区二区三区| 午夜福利免费观看在线| 亚洲av中文字字幕乱码综合| 哪里可以看免费的av片| 欧美国产日韩亚洲一区| 最新中文字幕久久久久| 免费在线观看亚洲国产| 波多野结衣高清无吗| 久久九九热精品免费| 国产黄片美女视频| 国产精品久久久久久人妻精品电影| 国产熟女xx| 九色成人免费人妻av| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久久久电影| 一区二区三区高清视频在线| 精品一区二区三区视频在线 | bbb黄色大片| 亚洲人成网站在线播放欧美日韩| 日本 欧美在线| 国产探花极品一区二区| 99国产综合亚洲精品| 国产激情偷乱视频一区二区| 国产成人福利小说| 亚洲在线观看片| 久久久成人免费电影| 成年女人毛片免费观看观看9| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 97碰自拍视频| 一级黄片播放器| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久| 丝袜美腿在线中文| 亚洲色图av天堂| 性色av乱码一区二区三区2| 在线观看舔阴道视频| 久久香蕉国产精品| 麻豆一二三区av精品| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 久久久久久久久大av| 日韩欧美在线二视频| www日本黄色视频网| 色视频www国产| 此物有八面人人有两片| 精品无人区乱码1区二区| ponron亚洲| 欧美色视频一区免费| 精品一区二区三区视频在线观看免费| 桃红色精品国产亚洲av| 99视频精品全部免费 在线| 亚洲av熟女| 成人永久免费在线观看视频| 18禁在线播放成人免费| 在线播放无遮挡| 琪琪午夜伦伦电影理论片6080| 夜夜躁狠狠躁天天躁| 亚洲av美国av| 免费观看精品视频网站| 国产黄a三级三级三级人| 国产色婷婷99| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 深夜精品福利| 啦啦啦韩国在线观看视频| www.999成人在线观看| 中文在线观看免费www的网站| 国产蜜桃级精品一区二区三区| 蜜桃久久精品国产亚洲av| 午夜福利欧美成人| 99热这里只有精品一区| www.色视频.com| 欧美国产日韩亚洲一区| 色吧在线观看| 国产色婷婷99| 欧美一区二区国产精品久久精品| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区免费欧美| АⅤ资源中文在线天堂| 看片在线看免费视频| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 真人做人爱边吃奶动态| 国产精品自产拍在线观看55亚洲| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| 免费看光身美女| 国产高清有码在线观看视频| 亚洲国产精品合色在线| 久久天躁狠狠躁夜夜2o2o| 黄色成人免费大全| www.www免费av| 亚洲成人免费电影在线观看| 最近在线观看免费完整版| 1000部很黄的大片| 无人区码免费观看不卡| 色在线成人网| 99久久综合精品五月天人人| 男人舔女人下体高潮全视频| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 国产精品香港三级国产av潘金莲| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 尤物成人国产欧美一区二区三区| 88av欧美| 窝窝影院91人妻| 亚洲av日韩精品久久久久久密| 18+在线观看网站| 黄色视频,在线免费观看| 91在线观看av| 欧美激情在线99| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 日韩免费av在线播放| 中文字幕精品亚洲无线码一区| 国产av在哪里看| 国产成人欧美在线观看| 国产精品av视频在线免费观看| 级片在线观看| 国产高清视频在线观看网站| 看黄色毛片网站| 天天添夜夜摸| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 女警被强在线播放| 日韩欧美精品v在线| 欧美极品一区二区三区四区| 色吧在线观看| 免费一级毛片在线播放高清视频| 亚洲av一区综合| 欧美绝顶高潮抽搐喷水| 男女视频在线观看网站免费| 亚洲中文字幕日韩| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| 国产精品 欧美亚洲| 久久中文看片网| 怎么达到女性高潮| 嫩草影院精品99| 日本熟妇午夜| 日韩高清综合在线| 91久久精品电影网| 首页视频小说图片口味搜索| 久久亚洲精品不卡| 两个人看的免费小视频| 制服人妻中文乱码| 国产91精品成人一区二区三区| 制服人妻中文乱码| 久久精品综合一区二区三区| 伊人久久精品亚洲午夜| 99riav亚洲国产免费| 国内精品美女久久久久久| 狂野欧美白嫩少妇大欣赏| 无遮挡黄片免费观看| 亚洲人成网站在线播| 久久精品国产清高在天天线| 在线观看美女被高潮喷水网站 | 国产免费一级a男人的天堂| 操出白浆在线播放| 亚洲成人中文字幕在线播放| 国产又黄又爽又无遮挡在线| 黄片小视频在线播放| 国产av麻豆久久久久久久| 极品教师在线免费播放| 网址你懂的国产日韩在线| 日本一二三区视频观看| 日韩人妻高清精品专区| 欧美一级毛片孕妇| 午夜免费观看网址| 天堂av国产一区二区熟女人妻| 欧美日韩乱码在线| 九九在线视频观看精品| 51国产日韩欧美| 日韩欧美精品v在线| 色尼玛亚洲综合影院| 中文字幕人妻丝袜一区二区| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 国产黄片美女视频| av女优亚洲男人天堂| 最好的美女福利视频网| 国产成人啪精品午夜网站| 国产高清视频在线观看网站| 国产伦一二天堂av在线观看| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 亚洲久久久久久中文字幕| 99精品欧美一区二区三区四区| 日韩欧美在线乱码| 免费搜索国产男女视频| 国产高潮美女av| 99久久精品国产亚洲精品| 在线观看一区二区三区| 免费观看精品视频网站| 性色av乱码一区二区三区2| 国产精品亚洲一级av第二区| 51国产日韩欧美| 午夜福利欧美成人| 中文字幕久久专区| 亚洲av一区综合| 欧美区成人在线视频| 黄色片一级片一级黄色片| 丁香欧美五月| 国产成人av激情在线播放| 极品教师在线免费播放| 欧美区成人在线视频| 热99re8久久精品国产| 91av网一区二区| 黑人欧美特级aaaaaa片| 欧美一区二区亚洲| 三级男女做爰猛烈吃奶摸视频| 操出白浆在线播放| 一a级毛片在线观看| 高潮久久久久久久久久久不卡| 香蕉丝袜av| 国产亚洲精品久久久久久毛片| 国产美女午夜福利| 国产主播在线观看一区二区| 99久久精品一区二区三区| 女人十人毛片免费观看3o分钟| 欧美日韩黄片免| 又爽又黄无遮挡网站| 久久中文看片网| 在线观看舔阴道视频| 久久久久国内视频| av天堂在线播放| 国产av一区在线观看免费| 有码 亚洲区| 国产精品国产高清国产av| 真人一进一出gif抽搐免费| 国产真实伦视频高清在线观看 | 亚洲精品乱码久久久v下载方式 | 婷婷亚洲欧美| 99精品久久久久人妻精品| 3wmmmm亚洲av在线观看| 高潮久久久久久久久久久不卡| 国产伦人伦偷精品视频| 午夜福利在线观看免费完整高清在 | 成人无遮挡网站| 波多野结衣高清无吗| 国内久久婷婷六月综合欲色啪| 亚洲无线在线观看| 久久国产精品影院| 欧美色欧美亚洲另类二区| 国产精品一及| 亚洲无线观看免费| 毛片女人毛片| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 欧美成人性av电影在线观看| 我的老师免费观看完整版| 婷婷丁香在线五月| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 日韩欧美在线乱码| 俺也久久电影网| 亚洲自拍偷在线| 亚洲在线观看片| 亚洲av熟女| 精品人妻偷拍中文字幕| 欧美极品一区二区三区四区| 国产亚洲欧美在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片午夜丰满| 国产蜜桃级精品一区二区三区| 免费av观看视频| 男插女下体视频免费在线播放| 2021天堂中文幕一二区在线观| 制服人妻中文乱码| 性色av乱码一区二区三区2| 两个人的视频大全免费| 人妻久久中文字幕网| 久久久久久国产a免费观看| 欧美最新免费一区二区三区 | www.熟女人妻精品国产| 久久久精品欧美日韩精品| 日韩中文字幕欧美一区二区| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 网址你懂的国产日韩在线| 国内精品久久久久久久电影| 在线免费观看的www视频| 国产免费男女视频| 1024手机看黄色片| 日本 av在线| netflix在线观看网站| 国产精华一区二区三区| 3wmmmm亚洲av在线观看| 成人精品一区二区免费| 一本久久中文字幕| av国产免费在线观看| 亚洲av中文字字幕乱码综合| 国产成人影院久久av| 搡老岳熟女国产| 日日摸夜夜添夜夜添小说| 成人无遮挡网站| 国产真实伦视频高清在线观看 | 国产高清三级在线| 亚洲欧美日韩卡通动漫| 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频| 嫩草影视91久久| 黑人欧美特级aaaaaa片| 亚洲国产精品成人综合色| 精品人妻1区二区| 人妻丰满熟妇av一区二区三区| 亚洲黑人精品在线| 女人高潮潮喷娇喘18禁视频| 国产色婷婷99| 午夜福利在线观看吧| 久久国产乱子伦精品免费另类| 国产精品电影一区二区三区| 日韩欧美精品免费久久 | av视频在线观看入口| 国产精品久久久久久亚洲av鲁大| 国产成人a区在线观看| 老鸭窝网址在线观看| 亚洲成人精品中文字幕电影| 国产欧美日韩精品一区二区| 俺也久久电影网| 在线观看一区二区三区| 好看av亚洲va欧美ⅴa在| 在线观看日韩欧美|