• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,mechanical,electronic properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure:A first-principles study?

    2021-03-19 03:21:04DiyouJiang姜迪友WenboXiao肖文波andSanqiuLiu劉三秋
    Chinese Physics B 2021年3期
    關(guān)鍵詞:文波

    Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(劉三秋)

    1Key Laboratory of Nondestructive Testing,Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China

    2Fujian Science&Technology Innovation Laboratory for Energy Devices of China(21C-LAB),Ningde 352100,China

    3Department of Physics,Nanchang University,Nanchang 330047,China

    Keywords: quaternary carbide Ti3NiAl2C ceramics, structural properties, mechanical properties, electronic properties,Debye temperature,first-principles

    1. Introduction

    Mn+1AXnphases(M represents the early transition metal of B group, n represents 1/2/3, A stands for an element of A group, and X is C or N) have both metallic and ceramic properties with its hexagonal close-packed structure, which have attracted great interest from researchers due to its excellent performances such as high melting point, high temperature stability,high temperature resistant to oxidation,high corrosion resistance,high elastic modulus,significant machinability, excellent resistant to thermal shock, good thermal and electrical conductivity, low density and micro-ductility at room temperature.[1-10]In addition, Mn+1AXnphases also exhibit good radiation resistance,[11]especially at high temperatures,[12-15]and are considered as a potential structural material for nuclear fission and fusion reactors.[16-18]In the Mn+1AXnphases,many materials have been studied,such as Ti2AlC, [19,20] Ti3AlC2[21,22]and Ti3SiC2[23,24]compounds.

    On the other hand,the composite carbides of Ti2A1C and Ti3A1C formulations have high efficiency when used as abrasives for glass polishing. With nickel proposed as a possible binder, the research on the Ti-Ni-Al-C quaternary system began to arouse the interest of researchers. The quaternary system: titanium-nickel-aluminum-carbon (Ti3NiAl2C)was established for 1100?C (quench), and a quaternary ηcarbide with a lattice parameter of a=11.40-11.463 ?A was found to exist.[25]The H-phase Ti2AlC and the perovskite phase Ti3AlC are no longer stable in the presence of minor amounts of nickel.[25]Cubic Ti3NiAl2C compounds as quaternary carbide ceramics[25]may also have the characteristics of the Mn+1AXnphases. So far,however,this material has not been further investigated,especially in theory.

    In addition,high pressure can cause a material to undergo phase changes that change its chemical and physical properties, such as structural, mechanical, thermodynamic, optical, electronic, and magnetic properties.[26-35]At the same time, computational materials science can be used to investigate the structure performance relationship and design materials since the traditional experimental design is expensive and time-consuming. Computer simulation can improve the chemical and physical properties of specific compounds and greatly reduce the number of components to be prepared and characterized.[36-43]

    In this paper,our purpose is to improve the chemical and physical properties of cubic Ti3NiAl2C compounds through pressurization based on density functional theory. Therefore,we focus on investigating the effect of pressure on the mechanical properties of quaternary carbide Ti3NiAl2C ceramics.

    2. Model and computational details

    Figure 1 shows the crystal structure of cubic Ti3NiAl2C compounds, which belongs to the Fd-3m space group. The model of cubic Ti3NiAl2C compounds consists of 112 atoms,which including 16 C, 32 Al, 16 Ni, and 48 Ti atoms. The valence electron of C, Al, Ni, and Ti atoms is C-2s22p2, Al-3s23p1, Ni-4s23d8, and Ti-4s23d2, respectively. Using VASP software,the first principles method according to density functional theory (DFT) along with the plane-wave pseudopotential is used to complete the current calculations.[44,45]According to the projector augmented wave method(PAW),[46]it can characterize the relationship between core ions and valence electrons. The generalized gradient approximation(GGA)of Perdew and Wang (PW91) is used to calculate the exchangecorrelation potentials.[47]3×3×3 Monkhorst-Pack meshes as sampling k-point in Brillouin-zone.[48]All calculated plane wave cutoff energy is set to 430 eV,and further increasing the cutoff energy has little effect on the energy. Gaussian smearing method is used for all calculations,and its smearing width is 0.05 eV.

    According to the relationship between pressure and volume, the Birch-Murnaghan equation of state (EOS) can be expressed as[28,35,49]

    According to Voigt-Reuss-Hill averaging scheme,[50-53]a series of required mechanical parameters can be obtained by fitting the elastic constants, such as bulk modulus (B),Young’s modulus(E),shear modulus(G),Poisson’s ratio(ν),anisotropy coefficients (A), and Cauchy pressure (C′). The equation constructed can be expressed as

    Debye temperature (ΘD) is an important parameter for studying the thermodynamic properties. Therefore, it is necessary to explore the Debye temperature of quaternary carbide Ti3NiAl2C ceramics at different pressures.Debye temperature can be expressed as[54]

    where kBis the Boltzmann constant,h is the Planck constant,NAis the Avogadro number, ρ is the mass density, m is the molecular weight,n is total number of atoms per formula,and vmis the average sound velocity.

    The average sound velocity (vm) can be acquired by the following equation:[54]

    where vlis the longitudinal sound velocity and vsis the shear sound velocity,which can be calculated based on the B and G.The equation constructed is as follows:[55]

    3. Results and discussion

    3.1. Structural properties

    As shown in Fig.1, we pressurized and optimized the crystal structure of quaternary carbide Ti3NiAl2C ceramics with a pressure range of 0-110 GPa and an interval of 10 GPa.At the same time, the optimized atomic positions and crystal configurations are used as the model for the study of mechanical properties.

    cubic lattice at different pressures. The lattice constants of quaternary carbide Ti3NiAl2C ceramics decrease with the increase of pressure due to the shortened bond lengths,as shown in Fig.2.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Table 1. The lattice constants a, b and , volume of cubic Ti3NiAl2C compounds at different pressures, and the bulk modulus B0(GPa)and its pressure derivative at 0 GPa.

    Pressure(GPa) a b c V B0 B′0 (GPa)0 11.454 11.454 11.454 1502.69 164.58 3.47552 10 11.244 11.244 11.244 1421.54 20 11.080 11.080 11.080 1360.35 30 10.939 10.939 10.939 1309.13 40 10.819 10.819 10.819 1266.39 50 10.713 10.713 10.713 1229.41 60 10.617 10.617 10.617 1196.81 70 10.531 10.531 10.531 1167.80 80 10.451 10.451 10.451 1141.42 90 10.380 10.380 10.380 1118.27 100 10.313 10.313 10.313 1096.77 110 10.247 10.247 10.247 1075.79

    Fig.1. Crystal structure model of cubic Ti3NiAl2C compounds. Black,pink,grey,and blue balls are C,Al,Ti,and Ni atoms,respectively.

    Fig.2. The bond lengths of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    The bond lengths of quaternary carbide Ti3NiAl2C ceramics decrease with the increasing pressure. At zero pressure,there are three kinds of bonds,namely Ti-Al,Ni-Al,and Ti-C bonds.At pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,the new bond lengths of Ti-Ni,Ti-Ti,Al-Al,Ti-Al, and Ti-Ti are produced, respectively. At the same time,we can see that the Ti-Ti and Ti-Al bonds appear twice in the process of pressurization. It indicates that pressurization can lead to the diversity of the bonding of quaternary carbide Ti3NiAl2C ceramics.

    Based on Eqs. (1) and (2), the relationship between volume and pressure can be expressed by the pressure-volume curve. At the same time, we can get these results by fitting the Birch-Murnaghan equation of state. Figure 3 plotted the pressure-volume curve of quaternary carbide Ti3NiAl2C ceramics,and the volume decreases with the increasing pressure.

    Fig.3.Birch-Murnaghan fitting curve of quaternary carbide Ti3NiAl2C ceramics based on volume(?A3)and pressure(GPa).

    As shown in Fig.4,we can normalize the lattice constant and volume of quaternary carbide Ti3NiAl2C ceramics to investigate the effect of pressure on the cell structure. We can see that the normalization constants of the lattice constant and volume decrease with the increase of pressure. Obviously,the normalization constant of the volume decreases faster. However, we can also see that quaternary carbide Ti3NiAl2C ceramics cannot be compressed endlessly. The reason is that as the pressure increases, the volume is continuously compressed, and the bond length between atoms is shortened,which leads to the increase of repulsive force between atoms and makes the crystal difficult to be compressed. We can see from Fig.4 that the volume of quaternary carbide Ti3NiAl2C ceramics is compressed to about 72%.

    Fig.4. The normalization parameter of the volumes and lattice constants of cubic Ti3NiAl2C compounds at different pressures.

    Table 2. Elastic constants(Cij,in GPa),Young’s modulus(E,in GPa),shear modulus(G,in GPa),bulk modulus(B,in GPa),B/G ratio,Poisson’s ratio(ν),Cauchy pressure(C′,in GPa)and anisotropic coefficients(A)of cubic Ti3NiAl2C compound at different pressures(GPa).

    3.2. Charge transfer

    The charge transfer between atoms can reduce the energy of the compounds to achieve a stable structure. Based on electronegativity analysis, the Ni and C atoms of quaternary carbide Ti3NiAl2C ceramics can gain charge, while the Ti and Al atoms can lose charge. Therefore, Ti and Al can produce positive charges, and C and Ni can produce negative charges.

    Fig.5. The transfer charges of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    As shown in Fig.5,we investigated the effect of pressure on the charge transfer of quaternary carbide Ti3NiAl2C ceramics.According to the Bader charge calculation,we can see that the charge gained by the C atom decreases with the increasing pressure,but the change is not obvious,and the charge transfer is relatively stable. The charge gained by Ni atoms obviously increases with the increasing pressure. Similarly,we can also clearly know that the charge loss of Ti atom decreases with the increase of pressure, but the charge loss is not obvious,and the charge transfer is also relatively stable. However,the charge loss of Al atom obviously increases with the pressure.These results show that pressure has a greater effect on the charge transfer of Ni and Al atoms in cubic Ti3NiAl2C compounds,but it has a smaller effect on the charge transfer of C and Ti atoms. How much is the charge transfer? According to Marcus’s charge transfer theory,it may be caused by orbital interaction.

    3.3. Mechanical properties

    Firstly, we fitted the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures, and then exported the mechanical parameters such as Poisson’s ratio,Cauchy pressure, elastic modulus, and anisotropic factors based on the Eqs.(3)-(10),as shown in Table 2.

    The elastic constant C11is often used to characterize the stiffness of compounds. It can be seen from Table 2 that the C11increases with the pressure,indicating that the stiffness of quaternary carbide Ti3NiAl2C ceramics can be enhanced by pressurization.C12is generally used to characterize resistance to lateral deformation. Similarly, it can also be seen that the C12increases with the pressure,indicating that pressurization can also increase resistance to lateral deformation. The reason is that pressure makes the bond length shorter,the interaction between atoms is strengthened, and the bond energy also increases,leading to an improvement of the mechanical properties of quaternary carbide Ti3NiAl2C ceramics. At the same time,as shown in Table 2,we can also see that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at 50-60 GPa are equivalent to that of pure tungsten(Tungsten is considered the most promising first wall material).[56-66]

    In addition,the relations(C11?C12)>0,C11>0,C44>0, (C11+2C12)>0[67]serves as the criterion for determining the mechanical stability of cubic systems. We can deduce that the elastic constants of quaternary carbide Ti3NiAl2C ceramics at different pressures obviously meet the stability criteria. It indicates that these structures are mechanically stable.Meanwhile,the phonon dispersion of cubic Ti3NiAl2C ceramics(the primitive cell with 28 atoms)at zero pressure is calculated based on density functional perturbation theory(DFPT),as shown in Fig.6. It is obvious that cubic Ti3NiAl2C ceramics is dynamically stable.

    Bulk modulus is generally used to evaluate the material’s resistance to deformation under external forces.[68,69]We can see from Table 2 that the bulk modulus of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure,indicating that pressurization can improve the ability to resist deformation. At the same time, it is found that the bulk modulus (163.3 GPa) at zero pressure is higher than Ti2AlC(135.8 GPa)[62]and Ti3AlC2(156.2 GPa)[62]ceramics but lower than Ti3SiC2(185.3 GPa)[63]ceramics, which means that cubic Ti3NiAl2C ceramics has certain advanced properties. Shear modulus is generally used to characterize the material’s resistance to shear deformation.[68,69]We can also see from Table 2 that the shear modulus increases with the pressure, indicating that pressurization can improve the ability of quaternary carbide Ti3NiAl2C ceramics to resist shear deformation. Young’s modulus corresponds to that of C11, which also characterizes the stiffness of materials. Similarly,we can also see from Table 2 that Young’s modulus increases with the pressure,which is equivalent to the conclusion of C11.

    Fig.6. The phonon dispersion curves of cubic Ti3NiAl2C ceramics at zero pressure is calculated based on DFPT.

    According to the Pugh theory,[69]the (B/G) ratio can characterize the ductile and brittle behavior of solid materials. 1.75 is usually used to determine whether a material is ductile or brittle. We can see from Table 2 that the B/G value increases with the increase of pressure, indicating that pressurization can improve the ductility of quaternary carbide Ti3NiAl2C ceramics. At the same time, we can also see that the B/G values are all lower than 1.75 when the pressure is below 40 GPa, indicating that quaternary carbide Ti3NiAl2C ceramics has a brittle phase. However, the brittle phase of the cubic Ti3NiAl2C compound changes from brittle to ductile when the pressure reaches 40 GPa. This excellent performance is not available in Mn+1AXnphases, such as Ti2AlC,[70]Ti3AlC2,[70,71]and Ti3SiC2[71]compounds at different pressures, which fully reflects the advanced nature of quaternary carbide Ti3NiAl2C ceramics. Poisson’s ratio is generally used to evaluate the plasticity of solid materials.The quality of plasticity is proportional to Poisson’s ratio.[72]Obviously, pressurization can improve the plasticity of quaternary carbide Ti3NiAl2C ceramics.

    According to the characteristic parameter of Cauchy pressure, it can be determined whether the material has metallic or covalent bond behavior. The positive/negative values of Cauchy pressure indicate that the material has metallic/covalent bond behavior, respectively, as well as ductility/brittleness.[28,73]As shown in Table 2,we can see that Cauchy pressure increases with the pressure, indicating that pressurization can improve the metallic bond behavior of quaternary carbide Ti3NiAl2C ceramics.At the same time,we can also see that quaternary carbide Ti3NiAl2C ceramics changes from covalent bond to metallic bond at pressure to 20 GPa.Eventually,metallic bonds dominate in the quaternary carbide Ti3NiAl2C ceramics.

    The material’s anisotropy is quantitatively characterized by the anisotropy factor (A). The values of A generally have three types: A >1,A <1,and A=1. A >1 or A <1 indicates that the material has anisotropy, and the greater the deviation from 1, the more severe the anisotropy, and A=1 indicates that the material is isotropic. We can see from Table 2 that the A values increase with the pressure, which indicates that pressurization may aggravate the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics.

    3.4. Electronic properties

    To further understand the bonding characteristics of quaternary carbide Ti3NiAl2C ceramics at different pressures and investigate the mechanical properties and structural stability mechanisms,the total density of states(TDOS)of quaternary carbide Ti3NiAl2C ceramics at different pressures (0 GPa,50 GPa, 80 GPa, 110 GPa) is plotted in Fig.7. We can see from Fig.7(a) that the TDOS at the Fermi level has no gap,indicating that quaternary carbide Ti3NiAl2C ceramics at different pressures exhibits metallic characteristics. We can also see from Fig.7(a)that the shape of the TDOS curve changed slightly,which indicates that the structures of quaternary carbide Ti3NiAl2C ceramics at different pressures did not change drastically,nor did the structural phase change.

    However,as the pressure increases,the TDOS of quaternary carbide Ti3NiAl2C ceramics shows a downward trend,which indicates a decreased inter-atomic hybridization energy and weaker inter-atomic hybridization. At the same time, we found that the distance between the valence band and conduction band of the TDOS widens with the pressure, indicating that the delocalization of quaternary carbide Ti3NiAl2C ceramics is enhanced.

    In general, the TDOS value at the Fermi level (Df) can indirectly reflect the hardness of the intermetallic,because the hardness is inversely proportional to Df.[74,75]As shown in Fig.7(b), The Dfvalue of quaternary carbide Ti3NiAl2C ceramics at the Fermi level decreases with the increasing pressure,which indicates that the hardness increases with the pressure. It is consistent with the trend of elastic constants in Table 2.

    Fig.7. The total density of states of quaternary carbide Ti3NiAl2C ceramics at different pressures(0 GPa,50 GPa,80 GPa,110 GPa).The energy is with respect to the Fermi level.

    Table 3. Mass density (ρ, in g·cm?3), Debye temperatures (ΘD, in K), average wave velocity (vm), longitudinal sound velocity (vl), shear sound velocity(vs),melting point(Tm,in K),and hardness(H,in GPa)of quaternary carbide Ti3NiAl2C ceramics at different pressures.

    3.5. Debye temperature,melting point,and hardness

    Debye temperature(ΘD)comes from the atomic thermal vibration theory of solids, which corresponds to the highest frequency of lattice vibration.ΘDis often used to describe the interatomic bond strength of solid materials.[35,76,77]It is related to many physical quantities of solids, such as hardness,melting point, elasticity, and specific heat. In general, high Debye temperature indicates that solids have high modulus,high melting points and high hardness,and vice versa.

    As shown in Table 3, we can see that the ΘDvalues increase with the increase of pressure,indicating that pressurization can enhance the Debye temperature of quaternary carbide Ti3NiAl2C ceramics. It also indicates that pressurization can increase the strength of the interatomic bonding force.

    Melting point (Tm) and hardness (H) are also two critical characteristic parameters of solids. At the same time,H is usually used as an important index to evaluate the wear properties of solids.[78]Herein, it is necessary to investigate the two parameters. Based on the elastic constant C11,shear modulus G,and bulk modulus B,the melting point[79]and Vickers hardness[80]formulas are as follows:

    As shown in Table 3, the melting point and hardness increase with the increase of pressure,indicating that pressurization can enhance the melting point and hardness of quaternary carbide Ti3NiAl2C ceramics. In addition, the elastic strain failure(H/E)[19]and the plastic strain failure(H3/E2)[19]are usually used to evaluate the wear and resistance to plastic deformation of solids, respectively. It can be seen from Table 3 that the H/E and H3/E2values decrease with the increasing pressure,which indicates that the wear and resistance to plastic deformation of quaternary carbide Ti3NiAl2C ceramics may be weakened under pressure.

    4. Summary and conclusion

    In this paper,we investigate the structural,electronic,mechanical properties,and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure according to the first-principles method.The quaternary carbide Ti3NiAl2C ceramics still has a cubic structure under pressure(0-110 GPa).At zero pressure,there are only three kinds of covalent bonds in Ti3NiAl2C:Ti-Al,Ni-Al,and Ti-C.However,at the pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds are formed, respectively. The results show that pressurization may result in the bond diversity of quaternary carbide Ti3NiAl2C ceramics. When the pressure reaches 20 GPa, the covalent bonds turn into metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be reduced to 72% of the original volume. The effect of pressure on the charge transfer of Ni and Al atoms in quaternary carbide Ti3NiAl2C ceramics is greater than that of C and Ti atoms. The mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics can be improved by pressure treatment. At 50-60 GPa, its mechanical strength is comparable to that of pure tungsten, and the material changes from brittleness to ductility. However,the anisotropy of quaternary carbide Ti3NiAl2C ceramics becomes more serious with the increasing pressure. In addition,pressurization can also improve the Debye temperature,melting point, and hardness of quaternary carbide Ti3NiAl2C ceramics,but the wear resistance is decreased.

    猜你喜歡
    文波
    一群“蟑螂”
    蛙聲
    揚子江(2022年3期)2022-05-07 01:00:01
    武術(shù)研究是什么
    GROUND STATES FOR FRACTIONAL SCHR¨ODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH?
    世界上榮譽的桂冠都是用荊棘編制而成
    中國商人(2019年11期)2019-12-10 05:58:15
    基于組合特征的航母目標識別方法
    Numerical analysis of shell-side flow-induced vibration of elastic tube bundle in heat exchanger *
    Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes*
    陳文波作品
    中國篆刻(2016年3期)2016-09-26 12:19:32
    歡歡的游樂場
    亚洲精品影视一区二区三区av| 在线看三级毛片| 精品日产1卡2卡| 午夜视频国产福利| 亚洲中文字幕日韩| 99热只有精品国产| 性色avwww在线观看| 老司机福利观看| 国产亚洲精品综合一区在线观看| 久久久久久九九精品二区国产| 免费av毛片视频| 欧美激情在线99| 三级毛片av免费| 久久人妻av系列| 老熟妇乱子伦视频在线观看| 五月伊人婷婷丁香| 最近视频中文字幕2019在线8| 真人一进一出gif抽搐免费| 精品久久久久久久久久久久久| 欧美+日韩+精品| 波多野结衣高清无吗| 国产欧美日韩精品亚洲av| 中国美女看黄片| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲男人的天堂狠狠| 国产精品野战在线观看| 波多野结衣高清无吗| 色哟哟·www| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久,| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 一夜夜www| 亚洲欧美激情综合另类| 欧美+日韩+精品| 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| 三级毛片av免费| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线| 精品久久国产蜜桃| 国产日本99.免费观看| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 国产精品女同一区二区软件 | 亚洲av成人精品一区久久| av福利片在线观看| 亚洲自偷自拍三级| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲狠狠婷婷综合久久图片| 亚洲第一欧美日韩一区二区三区| 欧美激情久久久久久爽电影| www.色视频.com| 丝袜美腿在线中文| 乱码一卡2卡4卡精品| 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 国产高清有码在线观看视频| 内地一区二区视频在线| 久久精品91蜜桃| 国产91精品成人一区二区三区| 国产精品久久视频播放| 怎么达到女性高潮| 人人妻,人人澡人人爽秒播| a级毛片免费高清观看在线播放| 成人性生交大片免费视频hd| 成人精品一区二区免费| 无遮挡黄片免费观看| 中文字幕熟女人妻在线| 亚洲av不卡在线观看| 黄色配什么色好看| 国产精品,欧美在线| 俺也久久电影网| 观看免费一级毛片| 三级国产精品欧美在线观看| 亚洲国产欧美人成| 极品教师在线视频| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 精品欧美国产一区二区三| 天堂网av新在线| 人妻夜夜爽99麻豆av| 国产成人福利小说| 首页视频小说图片口味搜索| 国产精品98久久久久久宅男小说| 亚洲熟妇中文字幕五十中出| 很黄的视频免费| 91九色精品人成在线观看| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 午夜福利成人在线免费观看| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 国产真实乱freesex| 美女被艹到高潮喷水动态| 中文字幕av成人在线电影| a级毛片a级免费在线| 国产视频内射| 网址你懂的国产日韩在线| 黄色女人牲交| 99在线视频只有这里精品首页| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 岛国在线免费视频观看| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 超碰av人人做人人爽久久| 婷婷丁香在线五月| 久久精品91蜜桃| 床上黄色一级片| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 久久国产乱子伦精品免费另类| av视频在线观看入口| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 欧美日韩乱码在线| 欧美高清性xxxxhd video| 欧美日韩综合久久久久久 | 九色成人免费人妻av| 国产真实乱freesex| 亚洲成av人片在线播放无| 国产三级在线视频| 俄罗斯特黄特色一大片| 简卡轻食公司| 看片在线看免费视频| 此物有八面人人有两片| 日韩av在线大香蕉| 很黄的视频免费| 国内精品久久久久精免费| 久久国产精品影院| 国产一区二区在线观看日韩| 午夜老司机福利剧场| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 两个人视频免费观看高清| 精品日产1卡2卡| 国产亚洲精品久久久久久毛片| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 国产亚洲精品综合一区在线观看| 国产主播在线观看一区二区| 一进一出抽搐动态| 9191精品国产免费久久| 国产伦精品一区二区三区视频9| 国产成人影院久久av| 可以在线观看毛片的网站| 99国产极品粉嫩在线观看| 一个人免费在线观看电影| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 亚洲狠狠婷婷综合久久图片| 天堂影院成人在线观看| 国产爱豆传媒在线观看| 欧美在线一区亚洲| 国产av麻豆久久久久久久| 免费看a级黄色片| 色噜噜av男人的天堂激情| 美女cb高潮喷水在线观看| 免费观看精品视频网站| 一级a爱片免费观看的视频| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 亚洲 国产 在线| 一个人免费在线观看电影| 色综合欧美亚洲国产小说| 人人妻人人看人人澡| 中出人妻视频一区二区| 很黄的视频免费| 免费观看精品视频网站| 老司机深夜福利视频在线观看| 91字幕亚洲| 欧美精品国产亚洲| 麻豆国产av国片精品| 日韩欧美国产在线观看| 国产精品国产高清国产av| 国产精品久久久久久亚洲av鲁大| 国产私拍福利视频在线观看| 免费观看人在逋| 国产人妻一区二区三区在| 国产av一区在线观看免费| 国产精品99久久久久久久久| 精品一区二区三区人妻视频| 宅男免费午夜| 色播亚洲综合网| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 欧美日韩国产亚洲二区| 欧美又色又爽又黄视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品嫩草影院av在线观看 | 18禁黄网站禁片午夜丰满| 国产综合懂色| 精品福利观看| 国产高清激情床上av| 国产精品久久久久久人妻精品电影| av在线老鸭窝| 18禁黄网站禁片免费观看直播| 亚洲欧美清纯卡通| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 午夜福利在线在线| 午夜免费激情av| 亚洲午夜理论影院| 五月玫瑰六月丁香| 中文字幕免费在线视频6| 999久久久精品免费观看国产| 一级毛片久久久久久久久女| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站| 国产成人啪精品午夜网站| 日韩欧美 国产精品| 男女之事视频高清在线观看| 看黄色毛片网站| 在线观看一区二区三区| 精品人妻熟女av久视频| 国产老妇女一区| 亚洲无线在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 亚洲av不卡在线观看| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 国产欧美日韩精品一区二区| 热99在线观看视频| 男人狂女人下面高潮的视频| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 国产探花极品一区二区| 久久久久久大精品| 免费观看精品视频网站| 国产精品,欧美在线| 欧美丝袜亚洲另类 | 我的女老师完整版在线观看| 婷婷丁香在线五月| 91字幕亚洲| 久久久久国内视频| 欧美不卡视频在线免费观看| 色哟哟·www| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 亚洲av免费高清在线观看| 怎么达到女性高潮| 久久久久久九九精品二区国产| 最近最新免费中文字幕在线| 国产毛片a区久久久久| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 欧美日本亚洲视频在线播放| 琪琪午夜伦伦电影理论片6080| 国产精品美女特级片免费视频播放器| 免费一级毛片在线播放高清视频| 成人国产一区最新在线观看| 久久久精品欧美日韩精品| 亚洲欧美激情综合另类| 久久精品国产亚洲av涩爱 | 国产精品伦人一区二区| 欧美日韩瑟瑟在线播放| 亚洲综合色惰| 性欧美人与动物交配| av在线蜜桃| 亚洲精华国产精华精| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 久久草成人影院| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 国产伦精品一区二区三区四那| 国产欧美日韩一区二区三| 亚洲精品456在线播放app | a级毛片免费高清观看在线播放| 国产aⅴ精品一区二区三区波| eeuss影院久久| 免费在线观看成人毛片| 老熟妇仑乱视频hdxx| 中国美女看黄片| 国产精品乱码一区二三区的特点| 乱人视频在线观看| 国产精品人妻久久久久久| 波多野结衣高清作品| 丰满人妻熟妇乱又伦精品不卡| 91av网一区二区| x7x7x7水蜜桃| 神马国产精品三级电影在线观看| 国产成人aa在线观看| 亚洲成人免费电影在线观看| 久久久久国内视频| 一级黄色大片毛片| 天天一区二区日本电影三级| 18禁在线播放成人免费| 国产亚洲精品综合一区在线观看| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 国产高清三级在线| 久久久久久久久大av| 如何舔出高潮| eeuss影院久久| 美女高潮的动态| 老熟妇仑乱视频hdxx| 久久性视频一级片| 一区二区三区激情视频| 天天躁日日操中文字幕| 伦理电影大哥的女人| 国产精品女同一区二区软件 | 波多野结衣高清无吗| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 亚洲欧美日韩高清专用| 亚洲成人久久性| 美女cb高潮喷水在线观看| av天堂中文字幕网| 97热精品久久久久久| 欧美日韩瑟瑟在线播放| 免费观看人在逋| 赤兔流量卡办理| 精品午夜福利在线看| 精品人妻一区二区三区麻豆 | 国产乱人伦免费视频| 国产黄色小视频在线观看| 午夜免费男女啪啪视频观看 | 国产欧美日韩一区二区三| 精品99又大又爽又粗少妇毛片 | 久久6这里有精品| 久久久久久久久久成人| 少妇裸体淫交视频免费看高清| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 我的女老师完整版在线观看| 国产精品一区二区免费欧美| 亚洲国产欧洲综合997久久,| 免费人成在线观看视频色| 精品午夜福利在线看| 国产色爽女视频免费观看| 国产精品久久久久久精品电影| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 男人舔奶头视频| 日韩有码中文字幕| 国产精品久久久久久亚洲av鲁大| 亚洲成a人片在线一区二区| 亚洲精品亚洲一区二区| 两人在一起打扑克的视频| 久久欧美精品欧美久久欧美| 欧美色欧美亚洲另类二区| 91午夜精品亚洲一区二区三区 | 赤兔流量卡办理| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 亚洲精品粉嫩美女一区| 国产在线男女| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影| 亚洲精华国产精华精| .国产精品久久| 天天躁日日操中文字幕| 九九在线视频观看精品| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 精品一区二区三区视频在线| 亚洲专区中文字幕在线| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 美女 人体艺术 gogo| 亚洲精品在线观看二区| 免费看日本二区| 亚洲精品成人久久久久久| 成年女人毛片免费观看观看9| 久久国产乱子免费精品| 亚洲美女搞黄在线观看 | 午夜影院日韩av| 国产精品亚洲av一区麻豆| 日本与韩国留学比较| 欧美黄色淫秽网站| 午夜福利欧美成人| 精品人妻一区二区三区麻豆 | 国产午夜福利久久久久久| 亚洲av免费高清在线观看| 亚洲成人久久性| 日韩 亚洲 欧美在线| 亚洲精品亚洲一区二区| 国产成人欧美在线观看| 一a级毛片在线观看| 欧美高清性xxxxhd video| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 国产国拍精品亚洲av在线观看| av专区在线播放| 成人特级av手机在线观看| 日韩欧美在线乱码| 日本a在线网址| 一个人看视频在线观看www免费| 岛国在线免费视频观看| 国产精品亚洲一级av第二区| 男人和女人高潮做爰伦理| 老熟妇仑乱视频hdxx| 少妇人妻精品综合一区二区 | 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 亚洲第一欧美日韩一区二区三区| 久久婷婷人人爽人人干人人爱| 乱码一卡2卡4卡精品| 亚洲18禁久久av| 国产欧美日韩精品一区二区| 美女xxoo啪啪120秒动态图 | 麻豆成人午夜福利视频| 久久久久亚洲av毛片大全| 桃色一区二区三区在线观看| 欧美bdsm另类| 亚洲天堂国产精品一区在线| 国产黄a三级三级三级人| 午夜视频国产福利| 精品免费久久久久久久清纯| av天堂中文字幕网| 免费观看的影片在线观看| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看 | 一a级毛片在线观看| 在线播放国产精品三级| 亚洲18禁久久av| 午夜视频国产福利| 最近中文字幕高清免费大全6 | 欧美一区二区精品小视频在线| 老司机午夜十八禁免费视频| 最新中文字幕久久久久| av在线老鸭窝| 噜噜噜噜噜久久久久久91| 国产精品乱码一区二三区的特点| 精品久久久久久久末码| 午夜两性在线视频| 日韩有码中文字幕| 亚洲国产精品sss在线观看| 欧洲精品卡2卡3卡4卡5卡区| 十八禁网站免费在线| 国产精品人妻久久久久久| 最近中文字幕高清免费大全6 | 日韩免费av在线播放| 99久久精品国产亚洲精品| 久久精品国产自在天天线| 亚洲第一电影网av| 精品久久国产蜜桃| 日本熟妇午夜| 久久性视频一级片| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 精品人妻熟女av久视频| 悠悠久久av| 日韩亚洲欧美综合| 麻豆成人av在线观看| 女人被狂操c到高潮| 亚洲成人久久性| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 午夜福利视频1000在线观看| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 天堂网av新在线| 美女黄网站色视频| 高清在线国产一区| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 亚洲乱码一区二区免费版| 一级黄片播放器| 亚洲精品亚洲一区二区| 一进一出抽搐动态| 久久久久久九九精品二区国产| 麻豆国产av国片精品| 身体一侧抽搐| 久久午夜亚洲精品久久| 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 亚洲专区国产一区二区| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 日韩中字成人| 国产av不卡久久| 成人美女网站在线观看视频| 黄色女人牲交| 别揉我奶头 嗯啊视频| 国产精品av视频在线免费观看| 欧美色欧美亚洲另类二区| 91字幕亚洲| 三级毛片av免费| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 久久热精品热| 日韩 亚洲 欧美在线| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 亚洲av成人不卡在线观看播放网| 欧美xxxx性猛交bbbb| 国产精品久久久久久亚洲av鲁大| 首页视频小说图片口味搜索| 香蕉av资源在线| 18+在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国内少妇人妻偷人精品xxx网站| 精品日产1卡2卡| 免费高清视频大片| 在线十欧美十亚洲十日本专区| 成年人黄色毛片网站| 日韩欧美精品v在线| 精品久久久久久久久久久久久| 亚洲无线在线观看| 亚洲色图av天堂| 成人av在线播放网站| 国产不卡一卡二| 中文字幕久久专区| 亚洲欧美日韩卡通动漫| 悠悠久久av| 精品午夜福利视频在线观看一区| 久久人人爽人人爽人人片va | 9191精品国产免费久久| 午夜老司机福利剧场| 国产精品久久久久久亚洲av鲁大| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 小说图片视频综合网站| 免费在线观看亚洲国产| 丰满的人妻完整版| 91九色精品人成在线观看| www.www免费av| 久久久久亚洲av毛片大全| 国内久久婷婷六月综合欲色啪| 国产一区二区亚洲精品在线观看| 成人国产综合亚洲| 真人一进一出gif抽搐免费| 五月伊人婷婷丁香| 中文字幕久久专区| 丝袜美腿在线中文| 嫩草影视91久久| av黄色大香蕉| 欧美一区二区亚洲| 一区二区三区激情视频| 欧美中文日本在线观看视频| 国产成年人精品一区二区| 国产精品乱码一区二三区的特点| av女优亚洲男人天堂| 午夜福利欧美成人| 成人精品一区二区免费| 日韩欧美精品免费久久 | 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | 美女黄网站色视频| 中文字幕高清在线视频| 欧美性猛交黑人性爽| 麻豆av噜噜一区二区三区| 丁香欧美五月| 欧美高清性xxxxhd video| 国产高清视频在线观看网站| 9191精品国产免费久久| 俺也久久电影网| av中文乱码字幕在线| 99久久成人亚洲精品观看| 亚洲片人在线观看| 日韩大尺度精品在线看网址| 国产一区二区三区在线臀色熟女| 久久香蕉精品热| 美女 人体艺术 gogo| 久久精品国产自在天天线| 99热精品在线国产| 日本a在线网址| 一进一出抽搐gif免费好疼| 亚洲男人的天堂狠狠| 国产一区二区在线av高清观看| 老司机深夜福利视频在线观看| 久久九九热精品免费| www日本黄色视频网| av专区在线播放| 精品久久久久久久末码| 波多野结衣高清无吗| 黄色丝袜av网址大全| 国内毛片毛片毛片毛片毛片| 国产一区二区三区视频了| 色av中文字幕| 国产成人福利小说| 99久久九九国产精品国产免费| 日韩有码中文字幕| 五月伊人婷婷丁香| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站| 亚洲中文字幕日韩| 99久国产av精品|