• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model predictive inverse method for recovering boundary conditions of two-dimensional ablation?

    2021-03-19 03:19:38GuangJunWang王廣軍ZeHongChen陳澤弘GuangXiangZhang章廣祥andHongChen陳紅
    Chinese Physics B 2021年3期
    關(guān)鍵詞:陳紅

    Guang-Jun Wang(王廣軍), Ze-Hong Chen(陳澤弘), Guang-Xiang Zhang(章廣祥), and Hong Chen(陳紅),?

    1School of Energy and Power Engineering,Chongqing University,Chongqing 400044,China

    2Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Ministry of Education,Chongqing University,Chongqing 400044,China

    Keywords: ablation,heat transfer,model predictive inverse method(MPIM),boundary reconstruction

    1. Introduction

    Measurement of time- and space-dependent heat flux is widely carried out in numerous engineering applications,such as aerospace industry,[1-4]metallurgy industry,[5,6]combustion diagnosis,[7,8]and biomedical engineering.[9,10]Direct measurement of transient heat flux is often difficult in many industry fields,such as the heat flux on thermal protection shield surface of the re-entry vehicle,and the cooling heat flux on the casting surface that determines the casting quality of continuous casting process. For these circumstances, with the idea of inverse analysis,the time-and space-dependent heat flux is able to be indirectly obtained by solving inverse heat transfer problems(IHTPs).

    The core of the above indirect measurement is to solve an inverse problem which is commonly ill-posed.[11-15]Thus, various optimization methods with anti-ill-posedness are developed. Heuristic algorithms[7,16-19]and gradient algorithms,[20-22]as the typical inverse methods, are widely used to solve the inverse problems. For the IHTPs,Vakili and Gadala[23]used particle swarm optimization(PSO)algorithm to estimate the boundary conditions with different dimensions.Sun et al.[24]introduced sequential quadratic programming(SQP) algorithm to retrieve the transient heat flux of participating media. Tapaswini et al.[25]used a variational iteration method(VIM)to reconstruct the boundary heat flux. Sun et al.[26]employed the decentralized fuzzy inference method(DFIM)to estimate the time-and space-dependent heat flux of two-dimensional(2D)participating medium.

    The above researches all focused on estimating the transient heat flux of the systems with fixed boundary. For the IHTPs with the ablation of the thermal protection shield of reentry vehicle, the transient heat flux on the ablated surface is more difficult to reconstruct. The reason is that the boundary of the system will move due to the phase change on the ablation material surface. Several researches have been achieved in the ablation inverse problems. de Oliveira et al.[27]used the conjugate gradient method (CGM) to recover the functional form of the heat flux on the ablated surface of one-dimensional(1D)slab. Molavi et al.[28]developed one CGM with the first order Tikhonov regularization to estimate the surface recession and the time-varying net heat flux on the ablated surface of 1D slab. In the above researches,the conjugate gradient algorithms were used to simultaneously estimate the unknown heat flux on the whole-time domain with the temperature measurements. Therefore, the estimation result could not be obtained in real time. In order to estimate the heat flux online,Mohammadiun et al.[29]and Farzan et al.[30]used the sequential function specification method (SFSM) to sequentially reconstruct the surface heat flux of 1D ablation in time domain.Although the SFSM is able to solve the inverse problem in real time, the accuracy of the solution obtained by the SFSM significantly depends on the number of future time steps. In addition,it is necessary that the specific function of unknown parameter over a period of future time should be assumed in advance.[14]

    Most of previous studies described the ablation process as 1D problem. However, the surface heat flux of the ablation material has obvious unevenness in space, and the ablation velocity obviously presents spatial difference.[31]Therefore, the ablation process is multi-dimensional, in which the surface heat flux is time-and space-dependent and the temperature field is more complex. Considering the characteristics,for the ablation process, multi-dimensional ablation inverse method should be established. Moreover, developing a more efficient method is an urgent requirement for addressing the sort of IHTP.

    Based on the dynamic matrix control (DMC), an inverse method for the unsteady heat conduction problem was established.[32-34]This inverse method can effectively reduce the sensitivity of the estimation result to the temperature measurement errors and the dependence of the accuracy on the number of future time steps.

    In this paper,a model predictive inverse method(MPIM)is presented to estimate the time- and space-dependent heat flux and the ablation velocity on the ablated boundary of a 2D ablation process. In Section 2, a heat transfer model of the 2D ablation process is described and one numerical simulation technique for the ablation process is introduced. In Section 3, the inverse problem of the 2D ablation process is established and the corresponding MPIM is introduced in detail. In Section 4, the transient heat flux distribution on the ablated boundary is estimated. In addition,the effects of temperature measurement errors,the number of future time steps and arrangement of measurement points on the reconstruction results are studied in this section. In Section 5,the main conclusions are drawn.

    2. Ablation model and numerical method

    2.1. Ablation model

    For a 2D ablation system shown in Fig.1, the ablation material is heated by the time-and space-dependent heat flux on a boundary.In the figure,q(x,t)is the total heat flux,which brings about the complex thermal action on the heated boundary. The thermal action contains the conduction heat,radiative heat transfer, the heat fluxes generated by complex physical and chemical processes, etc.[35,36]Complete ablation process goes through a heat conduction stage and an ablation stage.At the beginning,the temperature of the heated boundary does not reach the phase transition temperature TABof the ablation material,so that the total heat flux q(x,t)exerted on the boundary only enters into the interior of the material through heat conduction. As the heating continues, temperatures of some locations on the heated boundary reach TAB,which causes the boundary recession.During the ablation stage,part of q(x,t)is converted into the heat flux of material vaporization qdthat is dissipated into the environment and the remaining heat flux qcenters into the interior of the material through heat conduction.

    For studying the ablation heat transfer process, the following simplifications are considered, as suggested in Ref. [37]: (i) during the ablation stage, the ablation material gasifies directly without going through the liquefaction process; (ii) the heat absorbed by the complex physicochemical reactions on the ablated boundary is equivalent to the latent heat HABin the ablation stage;(iii)the temperature of the ablated boundary maintains the phase transition temperature TABof the material in the ablation stage.

    Fig.1. 2D ablation heat transfer system.

    The transient temperature field T(x,y,t) of the ablation material is described by the following equation:

    with the initial condition

    and boundary conditions

    Energy balance equation of the ablated boundary is where a,λ,and ρ are respectively the thermal diffusivity,the thermal conductivity,and the density of the ablation material;T0(x,y)is the initial temperature field; Lxand Ly0are respectively the width and the initial thickness of the material;v(x,t)is the ablation velocity; TABand HABare the phase transition temperature and the latent heat of vaporization of the ablation material,respectively.

    2.2. Numerical method of ablation heat transfer

    In the numerical simulation process,the heat transfer region is discretized by the quadrilateral mesh.The discrete heat transfer region at the initial moment is shown in Fig.2. The solution domain and mesh division need to be adjusted continuously because the ablated boundary Γ1constantly moves in the ablation process.

    Fig.2. Initial mesh of material.

    For the mesh division of the solution domain, the temperature governing equations are divided by the finite element method.In the whole solution domain,the discrete form of the above governing equations is composed of the discrete equations of all finite elements.For each element e,the matrix form of the discrete equation is as follows:

    where {Te} is the temperature vector of element; [Ke] is the thermal conductivity matrix of element; [Ce] is the specific heat matrix of element; {Pe} is the heat flux vector of the element. The above compositions of the e-th discrete equation will vary with the geometry of element.

    In this paper, the locations of the mesh nodes are online adjusted by the spring analogy method (SAM)[38,39]which can ensure that the topology (number of cells and number of nodes)of the mesh division does not change.

    According to the equivalent spring system shown in Fig.3, the static balance is described by the following governing equation:

    Fig.3. Spring analogy of variable mesh.

    (i) When the i-th node is on the boundary Γ4, the node position is fixed by

    (iv)The instantaneous position vectors of the internal grid nodes after deformation are iteratively calculated by the following equation:

    with(i=1,2,...,G).In Eqs.(12)and(13), p(p=0,1,2,...)is the number of iterations; I is the number of the nodes on the boundary Γ2and Γ3;G is the number of the internal mesh nodes.

    Fig.4. Algorithm flowchart of ablation process simulation.

    The numerical simulation of the ablation process is realized by solving the algebraic equations of the heat transfer(i.e.Eq. (8)) and the node position equations (i.e. Eqs. (10)-(13))simultaneously. The above algebraic equations are nonlinear due to the coupling relationship between the heat transfer process and the variable solution domain. When simulating the ablation process,in order to conveniently obtain the solution,the adjustment of the solution domain lags behind the heat transfer process. Setting the number of simulation time steps to be P, the flowchart for numerical simulation procedure of the ablation process is drawn in Fig.4.

    2.3. Validation

    In order to validate the model and the numerical method,a numerical experiment is carried out. According to Ref.[36],for the system with the width Lx=50 mm and the initial thickness Ly0= 5 mm, thermophysical properties are described by the thermal conductivity λ = 0.2 W/(m·K), the density ρ=2000 kg/m3,the specific heat capacity cp=1000 J/(kg·K),the ablation temperature TAB= 800 K, and the latent heat HAB=2 MJ/kg. Besides, the initial temperature distribution and the total heat flux are respectively T0(x,y)=300 K and q(x,t)=2 MW/m2. The ablation velocity of the simulation is compared with the value of Ref.[36]as shown in Fig.5.

    It can be seen that although at the beginning the difference between the two sets of data is larger,with time going by,the simulation result is gradually close to the value of Ref. [36].It is worth noting that the difference at the beginning is due to the switch from conduction simulation to ablation simulation.On a whole,the simulation result is similar to the result in the literature. Therefore,the model and the numerical method are both effective.

    Fig.5. Comparison of ablation velocity between simulation and value of Ref.[36].

    3. MPIM for estimating ablated boundary heat flux

    In the present study, the two-dimensional ablation inverse problem is solved based on the model predictive control theory.[40]

    3.1. Objective function

    The estimation of the transient heat flux distribution on the ablated boundary can be summarized as a predictive control problem, for which the objective function is established as Eq.(14)to optimize the unknown heat flux matrix Q. For Eq. (14), the first term on the right-hand side describes the relationship between the unknown heat flux matrix and the known measured temperatures,i.e.,the formulation of the 2D ablation inverse problem. Furthermore, considering the illposeness of the 2D ablation inverse problem,the second term is added to improve the stability of the estimation solution.

    In Eq.(14):

    Y =[Yk, Yk+1, ..., Yk+R?1]T

    3.2. Predictive model

    In Eq.(15),

    The matrix equation corresponding to Eq. (15) is shown as the following equation:

    where

    3.3. Rolling optimization of boundary heat flux and ablated boundary reconstruction

    According to Eqs. (14)and(18), the heat flux of the ablated boundary is online estimated by rolling optimization.Then, the estimation value of the heat flux on the ablated boundary is utilized to reconstruct the ablated boundary.

    After substituting Eq. (18) into Eq. (14) and ordering dJ(Q)/dQ=0, the optimal heat flux matrix Q in the time domain[tk,tk+R?1]can be obtained to be

    where

    According to the estimation result of qk, the ablation model Eqs.(1)-(6)and energy balance equation of the ablated boundary are used to obtain the ablation velocity v(x,tk). And, the ablated boundary shape can be reconstructed based on v(x,tk).

    4. Numerical experiments and discussion

    4.1. Conditions of numerical experiments

    Reference[42]shows that the width and the initial thickness of the ablation material are Lx=4 cm and Ly0=2 cm,respectively. The thermal conductivity of the material is taken as λ = 5 W/(m·K), density ρ = 1000 kg/m3, heat capacity cp=1200 J/(kg·K),phase transition temperature TAB=833 K,and latent heat of vaporization HAB=2.326×106J/kg.

    Taking M = N = 9, the M temperature measurement points are evenly arranged along the x direction inside the material(y=1.0 cm)and the N estimation points are uniformly set to be on the boundary Γ1.

    The transient heat flux distribution loaded to the ablated boundary is assumed as follows:

    where ω is the random number obeying the standard normal distribution in the interval [?2.576, 2.576], and σ denotes the standard deviation of the temperature measurement errors.

    4.2. Grid independence verification

    The time step size is to take Δt =1 s. Different mesh divisions with uniform rectangular unit are chosen to discretize the initial heat transfer domain. When t=75 s,the simulation results of the temperature distribution with different mesh divisions at y=1.0 cm are shown in Fig.6. When the numbers of units are respectively chosen to be 40×40, 60×60, and 80×80,the temperature distributions are similar. Thus,in the subsequent numerical experiment the number of units is taken to be 40×40.

    Fig.6. Temperature distribution at y=1.0 cm with different mesh divisions at t=75 s.

    The number of uniform rectangular units is taken to be 40×40. The time step sizes are respectively chosen to be Δt =0.5 s, 1.0 s, 2.0 s, and 5.0 s to simulate the temperature evolution with time. The simulation results of time-evolution of temperature with different time step sizes at a measurement point(x=4.0 cm,y=1.0 cm)are shown in Fig.7. According to Fig.7,the time step size is taken to be Δt=1.0 s.

    Fig.7. Temperature evolution with time at measurement point(x=4.0 cm,y=1.0 cm)with different time step sizes.

    4.3. Estimation and reconstruction results

    The number of future time steps is R=8,the standard deviation of temperature measurement errors is σ =0.0 K.Figures 8(a) and 8(b) respectively show the exact heat flux and the estimation result obtained by the MPIM.

    Fig.9. (a)The exact value and(b)the reconstruction value of v(x,t).

    The exact ablation velocity v(x,t)and the reconstruction result of the ablation velocity v(x,t)are shown in Fig.9.

    As shown in Figs. 10 and 11, the estimation results of the boundary heat flux and the reconstruction results of the ablation velocity at x=0 cm and x=4.0 cm are respectively compared with the exact values at the corresponding locations.

    Fig.10. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm.

    Fig.11. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm.

    Figure 12 shows the reconstruction results of the ablated boundary shape and the temperature field of the material at different moments.

    Fig.12.Reconstruction results of transient ablated boundary shape and temperature field.

    4.4. Effect of measurement errors

    Fig.13. Estimation results of boundary heat flux q(x,t)with σ =0.1 K(a)and σ =1.0 K(b).

    Fig.14. Reconstruction results of ablation velocity v(x,t) with σ =0.1 K(a)and σ =1.0 K(b).

    The number of future time steps is R = 8. The standard deviation of temperature measurement errors is respectively chosen to be σ =0 K, σ =0.1 K, and σ =1.0 K to investigate the effect of the measurement errors on the result.The estimation results of the boundary heat flux q(x,t) and the reconstruction results of the ablation velocity v(x,t) are shown in Figs.13 and 14,respectively. In addition,the results at x=0 cm and x=4.0 cm are shown in Figs.15 and 16 respectively. The reconstruction results of the ablated boundary shape and the temperature field of the material are shown in Fig.17.

    Fig.15. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm with different values of σ.

    Fig.16. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm with different values of σ.

    Fig.17.Reconstruction results of transient ablated boundary shape and temperature field at t=75 s with σ =0.1 K(a)and σ =1.0 K(b).

    When the standard deviation of the temperature measurement errors σ is taken to be different values, the relative average errors of the results are shown in Table 1. The relative average error is defined by the following equation:

    Comparisons between simulation and experiment results in Figs.8-12 and Figs.13-17 indicate that although there exist different temperature measurement errors, the established inverse method can be used to obtain the acceptable estimation results of boundary heat flux and ablation velocity.

    Table 1. Relative average errors of estimation results with different values of σ.

    4.5. Effect of the number of future time steps

    The standard deviation of temperature measurement errors is σ =0.1 K.The number of future time steps is chosen separately to be R=5, R=8, and R=12 to investigate the effect of the number of future time steps on the results. The estimation results of the boundary heat flux q(x,t)and the reconstruction results of the boundary ablation velocity v(x,t)are shown in Figs.18 and 19,respectively.

    Fig.18. Estimation results of boundary heat flux q(x,t)with R=5(a)and R=12(b).

    Fig.19.Reconstruction results of ablation velocity v(x,t)with R=5(a)and R=12(b).

    Fig.20. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=0 cm with different values of R.

    Fig.21. Exact and estimation results of(a)boundary heat flux and(b)ablation velocity at x=4.0 cm with different values of R.

    In addition, the results at x=0 cm and x=4.0 cm are shown in Figs.20 and 21 respectively. The reconstruction results of the ablated boundary shape and the temperature field of the material are shown in Fig.22.

    Fig.22.Reconstruction results of transient ablated boundary shape and temperature field at t=75 s with R=5(a)and R=12(b).

    When the number of the future time steps R is taken to be different values, the relative average errors of the results are shown in Table 2.

    Table 2. Relative average errors of results with different values of R.

    The simulation experiment results given above(Figs.18-22)illustrate that the inverse method established in this paper has little sensitivity to the number of the future time steps in the scope of above experiments.

    4.6. Effect of location of measurement points

    The standard deviation of the temperature measurement errors,the number of the future time steps and the number of the measurement points are, respectively, σ =0.1 K, R=8,and M=9. The locations of the measurement points are chosen,respectively,as y=0.6 cm,y=0.8 cm,y=1.0 cm,and y=1.2 cm to investigate the effect of the location of the measurement points on the result. The relative average errors of the results with different locations of the measurement points are shown in Table 3.

    Table 3. Relative average errors of results with different locations of measurement points.

    It can be known from Table 3 that the closer to the bottom of the ablation material(the farther away from the boundary heat flux) the measurement points, the worse the results of the boundary heat flux estimation and the ablation velocity reconstruction will be. However, the shorter the distance between the measurement points and the boundary heat flux,the less the effect of the location of the measurement points on the results will be.

    4.7. Effect of the number of measurement points

    The standard deviation of the temperature measurement errors and the number of the future time steps are,respectively,σ =0.1 K and R=8. The location of the measurement points is at y=1.0 cm. The number of the measurement points is respectively chosen to be M=4,M=6,M=9,and M=12 to investigate the effect of the number of the measurement points on the results. The relative average errors of the results with the different numbers of the measurement points are shown in Table 4.

    Table 4. Relative average errors of results with different values of M.

    According to Table 4, by increasing the number of measurement points,the accuracies of the boundary heat flux estimation results and the ablation velocity reconstruction results are improved. But,the larger the number of the measurement points,the less the improvement extent of the results will be.

    5. Conclusions

    In this paper, a 2D ablation inverse problem is investigated,and a model predictive inverse method(MPIM)is presented to estimate the unknown heat flux on the ablated boundary of the 2D ablation process. The movement law of the ablated boundary is reconstructed according to the estimation result of the time and space-dependent heat flux.

    The MPIM establishes the time-varying predictive model of the temperatures at the measurement points inside the ablation material based on the influence relationship matrix. This method can online estimate the time- and space-dependent heat flux on the ablated boundary by the rolling optimization combining with the predictive model.According to the numerical results,for the presented inverse method,the choice of the number of the future time steps has a marginal effect on the reconstruction results of the boundary conditions,and the acceptable results can be obtained even though the measurement errors of the temperature exist. In addition, the locations and the number of the measurement points can influence the reconstruction results. Appropriately reducing the distance between the measurement points and the boundary heat flux,as well as arranging enough measurement points,can be beneficial to the method presented in this paper.

    猜你喜歡
    陳紅
    面包樹
    躬耕(2024年2期)2024-03-07 08:32:55
    三八節(jié)感懷
    晚晴(2022年3期)2022-06-01 13:48:42
    更正
    詩與遠(yuǎn)方
    平原的草
    陳紅作品
    作品賞析(3)
    作品賞析(11)
    Measurement of particle size based on digital imaging technique*
    勇敢地坐在上司身邊
    時代金融(2012年13期)2012-04-29 00:44:03
    999久久久精品免费观看国产| 天天躁日日躁夜夜躁夜夜| 中文字幕人妻丝袜制服| 久久久久久久大尺度免费视频| 一区二区三区乱码不卡18| 美女扒开内裤让男人捅视频| av超薄肉色丝袜交足视频| 欧美日韩中文字幕国产精品一区二区三区 | 91老司机精品| 最新的欧美精品一区二区| 黄色视频,在线免费观看| 亚洲av电影在线进入| 露出奶头的视频| 男女无遮挡免费网站观看| 日韩精品免费视频一区二区三区| 精品久久久久久久毛片微露脸| 伦理电影免费视频| www.精华液| 最新在线观看一区二区三区| 免费高清在线观看日韩| 日韩制服丝袜自拍偷拍| 亚洲中文字幕日韩| 一本综合久久免费| 午夜福利视频精品| 法律面前人人平等表现在哪些方面| 一区二区三区精品91| 满18在线观看网站| 免费看a级黄色片| 建设人人有责人人尽责人人享有的| 午夜福利视频精品| 久久青草综合色| 精品国产乱码久久久久久小说| 一级a爱视频在线免费观看| 老司机福利观看| 99re6热这里在线精品视频| 久久久欧美国产精品| 日本五十路高清| 97人妻天天添夜夜摸| 久久国产亚洲av麻豆专区| 露出奶头的视频| 男女高潮啪啪啪动态图| 精品熟女少妇八av免费久了| 国产精品国产av在线观看| tube8黄色片| 欧美日韩精品网址| 一区二区三区国产精品乱码| 久久久国产成人免费| 性高湖久久久久久久久免费观看| 亚洲欧美色中文字幕在线| 亚洲成国产人片在线观看| 十八禁网站免费在线| 国产精品国产高清国产av | 女人久久www免费人成看片| 免费一级毛片在线播放高清视频 | 交换朋友夫妻互换小说| www.精华液| 91老司机精品| 老司机深夜福利视频在线观看| 一边摸一边做爽爽视频免费| 91成人精品电影| av有码第一页| 丝袜人妻中文字幕| 色精品久久人妻99蜜桃| 男女下面插进去视频免费观看| 天天操日日干夜夜撸| 精品国产乱码久久久久久男人| 性色av乱码一区二区三区2| 国产免费福利视频在线观看| 90打野战视频偷拍视频| 国产成人精品在线电影| 久久av网站| 久久久国产精品麻豆| 久久中文字幕一级| a级毛片在线看网站| 叶爱在线成人免费视频播放| 久久这里只有精品19| 菩萨蛮人人尽说江南好唐韦庄| 女人精品久久久久毛片| 后天国语完整版免费观看| 国产一区二区在线观看av| 国产精品免费大片| 国产片内射在线| 高清视频免费观看一区二区| 亚洲国产欧美日韩在线播放| 色播在线永久视频| 三级毛片av免费| 欧美黑人欧美精品刺激| 成年动漫av网址| 欧美黑人精品巨大| a级片在线免费高清观看视频| 99精品欧美一区二区三区四区| a级片在线免费高清观看视频| 一进一出好大好爽视频| 丁香六月天网| 亚洲国产毛片av蜜桃av| 美女午夜性视频免费| 一区二区三区乱码不卡18| 丁香六月欧美| 最近最新中文字幕大全电影3 | 大香蕉久久成人网| 国产福利在线免费观看视频| 色94色欧美一区二区| 欧美日韩黄片免| 又黄又粗又硬又大视频| 亚洲av成人一区二区三| 精品少妇久久久久久888优播| 精品久久蜜臀av无| 麻豆av在线久日| 91av网站免费观看| 亚洲av电影在线进入| 极品少妇高潮喷水抽搐| 日韩免费av在线播放| 天堂俺去俺来也www色官网| 色老头精品视频在线观看| 国产成人欧美在线观看 | 18禁国产床啪视频网站| 80岁老熟妇乱子伦牲交| 国产三级黄色录像| 精品国产乱码久久久久久男人| 夜夜爽天天搞| 一夜夜www| 成人免费观看视频高清| 欧美激情高清一区二区三区| 在线看a的网站| 啪啪无遮挡十八禁网站| 国产欧美日韩精品亚洲av| 欧美午夜高清在线| 91字幕亚洲| 亚洲第一av免费看| 乱人伦中国视频| 亚洲熟女毛片儿| 在线观看免费视频日本深夜| 欧美日韩精品网址| 精品国产乱子伦一区二区三区| 国产男女内射视频| 狂野欧美激情性xxxx| 亚洲精品乱久久久久久| 老司机福利观看| 少妇的丰满在线观看| 午夜久久久在线观看| 久久午夜综合久久蜜桃| 国产99久久九九免费精品| 久久久久久久久免费视频了| 精品国内亚洲2022精品成人 | 中文字幕另类日韩欧美亚洲嫩草| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 国产精品偷伦视频观看了| 久9热在线精品视频| 精品一区二区三区四区五区乱码| 国产成人免费观看mmmm| 亚洲国产欧美在线一区| www.精华液| 成人18禁高潮啪啪吃奶动态图| 国产一区二区 视频在线| 脱女人内裤的视频| 国产99久久九九免费精品| 男男h啪啪无遮挡| 欧美一级毛片孕妇| 色老头精品视频在线观看| 日韩欧美国产一区二区入口| 色在线成人网| 纵有疾风起免费观看全集完整版| 别揉我奶头~嗯~啊~动态视频| √禁漫天堂资源中文www| 激情在线观看视频在线高清 | 欧美老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 大码成人一级视频| 国产在视频线精品| 欧美在线黄色| 欧美日韩亚洲综合一区二区三区_| 亚洲伊人久久精品综合| 一本久久精品| 亚洲全国av大片| 久久毛片免费看一区二区三区| 最近最新中文字幕大全免费视频| 桃花免费在线播放| kizo精华| 亚洲一码二码三码区别大吗| 久久精品亚洲av国产电影网| 欧美日韩福利视频一区二区| 最新在线观看一区二区三区| 大码成人一级视频| 一本—道久久a久久精品蜜桃钙片| 制服人妻中文乱码| 美女国产高潮福利片在线看| 老司机靠b影院| 怎么达到女性高潮| 日韩免费av在线播放| 极品教师在线免费播放| av网站在线播放免费| 不卡av一区二区三区| 免费少妇av软件| 色精品久久人妻99蜜桃| 国产高清videossex| 欧美激情久久久久久爽电影 | 免费看a级黄色片| 国产av精品麻豆| 精品久久蜜臀av无| 九色亚洲精品在线播放| 国产一卡二卡三卡精品| 日本av免费视频播放| 国产成人免费无遮挡视频| 少妇 在线观看| 亚洲久久久国产精品| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 国产在线一区二区三区精| 午夜福利免费观看在线| 十八禁人妻一区二区| 国产片内射在线| 国产高清视频在线播放一区| 国产精品九九99| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久国产电影| 精品久久久久久久毛片微露脸| 大陆偷拍与自拍| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 午夜福利视频在线观看免费| cao死你这个sao货| 女人精品久久久久毛片| 国产精品久久久久成人av| 一二三四在线观看免费中文在| 久久国产精品男人的天堂亚洲| 国产91精品成人一区二区三区 | 欧美日韩精品网址| 中文亚洲av片在线观看爽 | 国产在线观看jvid| 国产一区二区三区在线臀色熟女 | 老熟妇乱子伦视频在线观看| 人人妻,人人澡人人爽秒播| 久久亚洲精品不卡| 老司机影院毛片| 久久午夜亚洲精品久久| 可以免费在线观看a视频的电影网站| 国产aⅴ精品一区二区三区波| 夫妻午夜视频| 亚洲色图综合在线观看| 不卡av一区二区三区| 欧美日韩黄片免| 搡老岳熟女国产| 精品人妻在线不人妻| 亚洲精品粉嫩美女一区| 69av精品久久久久久 | 999精品在线视频| 欧美 日韩 精品 国产| 色在线成人网| 国产在线视频一区二区| 亚洲人成77777在线视频| 精品久久久久久久毛片微露脸| 99国产精品一区二区蜜桃av | 亚洲熟女精品中文字幕| 国产黄频视频在线观看| bbb黄色大片| 免费久久久久久久精品成人欧美视频| 啦啦啦视频在线资源免费观看| 亚洲色图av天堂| 18禁观看日本| 亚洲精品久久成人aⅴ小说| 亚洲人成77777在线视频| 99riav亚洲国产免费| 成人国产av品久久久| 91九色精品人成在线观看| 国产无遮挡羞羞视频在线观看| 日韩 欧美 亚洲 中文字幕| 他把我摸到了高潮在线观看 | 亚洲午夜理论影院| 亚洲三区欧美一区| 亚洲国产欧美日韩在线播放| 久热这里只有精品99| 久久国产精品大桥未久av| 在线av久久热| 精品福利观看| 亚洲少妇的诱惑av| 久久中文看片网| 极品教师在线免费播放| 欧美亚洲 丝袜 人妻 在线| av片东京热男人的天堂| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 老司机靠b影院| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 男女无遮挡免费网站观看| 黄色视频不卡| 久久久久国内视频| 老司机福利观看| 我要看黄色一级片免费的| 亚洲伊人色综图| 国产精品二区激情视频| 久久精品91无色码中文字幕| av片东京热男人的天堂| av国产精品久久久久影院| 动漫黄色视频在线观看| 两个人免费观看高清视频| 亚洲欧美一区二区三区黑人| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 999久久久精品免费观看国产| 亚洲视频免费观看视频| 久久人妻福利社区极品人妻图片| 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 我要看黄色一级片免费的| 蜜桃国产av成人99| 一进一出好大好爽视频| 美女高潮到喷水免费观看| tocl精华| 久久热在线av| 九色亚洲精品在线播放| 免费少妇av软件| 天天添夜夜摸| 女警被强在线播放| 久久国产精品人妻蜜桃| 欧美日韩av久久| 91成人精品电影| 久久亚洲真实| 精品熟女少妇八av免费久了| 精品第一国产精品| 国产日韩欧美视频二区| av在线播放免费不卡| 天天添夜夜摸| 久久这里只有精品19| 精品一区二区三区av网在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 国产91精品成人一区二区三区 | 亚洲av成人一区二区三| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 男女之事视频高清在线观看| 操美女的视频在线观看| 午夜免费鲁丝| 激情视频va一区二区三区| 蜜桃在线观看..| a级毛片在线看网站| 大片电影免费在线观看免费| 搡老熟女国产l中国老女人| 韩国精品一区二区三区| 岛国毛片在线播放| 欧美人与性动交α欧美精品济南到| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| 国产高清激情床上av| 久久精品91无色码中文字幕| 伦理电影免费视频| 激情视频va一区二区三区| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 成人亚洲精品一区在线观看| 三级毛片av免费| 一本综合久久免费| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 国产在线一区二区三区精| 一夜夜www| 夫妻午夜视频| 国产精品98久久久久久宅男小说| 精品人妻在线不人妻| 1024视频免费在线观看| 国产高清videossex| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 中亚洲国语对白在线视频| 多毛熟女@视频| 国产精品一区二区精品视频观看| 欧美精品高潮呻吟av久久| 男女免费视频国产| 美女扒开内裤让男人捅视频| 水蜜桃什么品种好| 久久久欧美国产精品| 成人手机av| 亚洲欧美日韩高清在线视频 | 交换朋友夫妻互换小说| 成人影院久久| 飞空精品影院首页| 午夜福利在线免费观看网站| 精品欧美一区二区三区在线| 中文亚洲av片在线观看爽 | 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 国产精品久久久久成人av| 午夜福利乱码中文字幕| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 美女午夜性视频免费| 亚洲精品自拍成人| 国产av国产精品国产| 极品少妇高潮喷水抽搐| cao死你这个sao货| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美亚洲二区| 69av精品久久久久久 | 80岁老熟妇乱子伦牲交| 日本wwww免费看| 成人特级黄色片久久久久久久 | 久久久久国产一级毛片高清牌| 欧美成人午夜精品| 极品教师在线免费播放| 9色porny在线观看| 亚洲精品在线观看二区| 免费人妻精品一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产亚洲在线| 欧美在线黄色| 中文字幕av电影在线播放| 日本五十路高清| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 大香蕉久久网| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 欧美人与性动交α欧美软件| h视频一区二区三区| 两人在一起打扑克的视频| 下体分泌物呈黄色| 亚洲av美国av| 99久久国产精品久久久| 热99国产精品久久久久久7| 日韩欧美一区二区三区在线观看 | 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 最近最新中文字幕大全电影3 | 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜骑夜夜射夜夜干| 国产欧美日韩精品亚洲av| 91麻豆av在线| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸| 亚洲成人手机| 国产精品免费一区二区三区在线 | 黄色视频不卡| 欧美成人免费av一区二区三区 | 日本av手机在线免费观看| 国产深夜福利视频在线观看| 国产精品免费大片| 高清毛片免费观看视频网站 | 亚洲精品国产色婷婷电影| 日韩免费av在线播放| 99国产极品粉嫩在线观看| 日韩人妻精品一区2区三区| 久久久久精品国产欧美久久久| 色在线成人网| 久久精品成人免费网站| 大片免费播放器 马上看| 久久精品aⅴ一区二区三区四区| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 在线天堂中文资源库| 50天的宝宝边吃奶边哭怎么回事| 国产免费av片在线观看野外av| av片东京热男人的天堂| 国产精品98久久久久久宅男小说| 成年人免费黄色播放视频| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 丝袜美腿诱惑在线| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 一级片免费观看大全| av国产精品久久久久影院| av欧美777| 精品国产一区二区久久| 黄色成人免费大全| 天天添夜夜摸| 午夜免费鲁丝| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 久久久精品区二区三区| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 欧美精品人与动牲交sv欧美| 国产精品98久久久久久宅男小说| 久久这里只有精品19| 999久久久国产精品视频| 女警被强在线播放| 黑人巨大精品欧美一区二区蜜桃| 国产国语露脸激情在线看| 韩国精品一区二区三区| aaaaa片日本免费| 亚洲少妇的诱惑av| 亚洲成a人片在线一区二区| 午夜视频精品福利| 久9热在线精品视频| 麻豆乱淫一区二区| 欧美乱妇无乱码| 免费在线观看影片大全网站| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 99久久国产精品久久久| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 香蕉国产在线看| 国产一区二区三区视频了| 欧美日韩成人在线一区二区| 精品福利观看| 精品国产乱码久久久久久男人| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜制服| 欧美乱码精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品久久电影中文字幕 | 亚洲精品一卡2卡三卡4卡5卡| 成在线人永久免费视频| 亚洲情色 制服丝袜| 国产伦理片在线播放av一区| 久久青草综合色| 国产在线免费精品| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 老熟女久久久| 99热国产这里只有精品6| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面| av天堂在线播放| 国产欧美日韩综合在线一区二区| 久热爱精品视频在线9| 国产伦人伦偷精品视频| 99九九在线精品视频| 99re6热这里在线精品视频| 一级毛片电影观看| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 久久久久久久精品吃奶| 一区二区日韩欧美中文字幕| 国产区一区二久久| av天堂在线播放| bbb黄色大片| 欧美 日韩 精品 国产| 久久香蕉激情| 纯流量卡能插随身wifi吗| 后天国语完整版免费观看| 国产无遮挡羞羞视频在线观看| 桃红色精品国产亚洲av| 在线观看66精品国产| 国产有黄有色有爽视频| netflix在线观看网站| 成在线人永久免费视频| 9191精品国产免费久久| 欧美日韩亚洲综合一区二区三区_| 丝袜美足系列| 捣出白浆h1v1| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 宅男免费午夜| 最新美女视频免费是黄的| 国产又色又爽无遮挡免费看| 亚洲第一欧美日韩一区二区三区 | 亚洲精品在线观看二区| 操出白浆在线播放| 男人舔女人的私密视频| 十分钟在线观看高清视频www| 国产淫语在线视频| 久久ye,这里只有精品| 宅男免费午夜| 91老司机精品| 欧美激情极品国产一区二区三区| 国产av国产精品国产| 女人久久www免费人成看片| 免费在线观看日本一区| 国产欧美亚洲国产| 国产精品电影一区二区三区 | 欧美午夜高清在线| 我的亚洲天堂| 中文字幕人妻丝袜一区二区| 午夜免费鲁丝| 国产欧美亚洲国产| 中文字幕av电影在线播放| 丝袜美腿诱惑在线| 国产精品久久久久久精品电影小说| 亚洲一区二区三区欧美精品| 999精品在线视频| 一区二区av电影网| 国产成人系列免费观看| 高清av免费在线| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频 | 午夜福利视频精品| 香蕉丝袜av| 美女国产高潮福利片在线看| 夜夜爽天天搞| 一边摸一边做爽爽视频免费| 国产色视频综合| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 国产精品免费视频内射| 91国产中文字幕| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区| 999久久久精品免费观看国产| 如日韩欧美国产精品一区二区三区| 不卡一级毛片| 操出白浆在线播放|