• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beam steering characteristics in high-power quantum-cascade lasers emitting at ~4.6μm?

    2021-03-19 03:19:28YongQiangSun孫永強JinChuanZhang張錦川FengMinCheng程鳳敏ChaoNing寧超NingZhuo卓寧ShenQiangZhai翟慎強FengQiLiu劉峰奇JunQiLiu劉俊岐ShuManLiu劉舒曼andZhanGuoWang王占國
    Chinese Physics B 2021年3期
    關鍵詞:舒曼

    Yong-Qiang Sun(孫永強), Jin-Chuan Zhang(張錦川), Feng-Min Cheng(程鳳敏),Chao Ning(寧超), Ning Zhuo(卓寧), Shen-Qiang Zhai(翟慎強), Feng-Qi Liu(劉峰奇),3,?,Jun-Qi Liu(劉俊岐), Shu-Man Liu(劉舒曼), and Zhan-Guo Wang(王占國)

    1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    Keywords: beam steering,quantum cascade lasers,fourier transform of the spectra,2D effective-index model

    1. Introduction

    High power and high beam quality have always been the goals pursued by mid-infrared lasers. Currently, the quantum cascade (QC) lasers,[1]whose optical gain amplification derives from quantum-well intersubband transitions,have exhibited breakthrough progress toward these goals.[2-5]Additionally, the high power of this kind laser is frequently accompanied by nonlinear effects. This effect will cause many novel phenomena, which also have a great impact on the device. Beam steering is one of such nonlinear effects, which will have a huge impact on any system that requires relatively precise pointing.[6]For example, it not only affects the longdistance accurate detection of explosives by the laser through backscatter spectroscopy,but also stands as a huge obstacle for the directional infrared countermeasure(DIRCM).[6-8]Nevertheless, it is also possibly to be deliberately controlled[9]and used to perform laser projection by adjusting or scanning the direction of the laser beam.[10,11]Therefore, the origin of the beam steering effects has to be understood so that QC lasers can be better applied. Although the experimental evidence for beam steering in QC lasers has been reported and generally attributed to the interference of transverse modes[6,12]and spatial hole burning induced by higher lateral modes,[7]few studies have been done to explicitly establish an intrinsic linkage between the spectral instabilities and the beam steering and to explore the valuable criterion of the phase locking between the two lowest transverse modes when the beam steering happens.

    In this paper, we combine the results of the spectrum,beam quality, and the Fourier transform spectrum based on the earlier ones[6,7,10]to suggest a method to directly judge the phase locking. The intrinsic linkage between the spectral instabilities and the beam steering is also explicitly expounded based on the Fourier transform spectrum. Then according to the theoretical calculation of a 2D effective-index model and finite element method software simulation, the theoretically calculated far field is obtained which is completely consistent with our experimental results.

    2. Device materials design and waveguide structures

    The QC laser wafer was grown on an n-doped (Si,2 × 1017cm?3) InP substrate by solid-source molecular beam epitaxy (MBE) based on a two-phonon resonance design, which is identical to that in Ref. [13].The active core includes 30 stages of strain-compensated In0.669Ga0.331As/In0.362Al0.638As quantum wells and barriers.[14]The entire structure is as follows: 3.0 μm lower cladding layer (Si, 2.2 × 1016cm?3), 30 active/injector stages, 0.3 μm-thick n-In0.53Ga0.47As layer (Si,4×1016cm?3), 2.4 μm (InP) upper cladding layer (Si,2.2×1016cm?3), and 0.6μm cap layer(Si, 5×1018cm?3).The layer sequence of one period, starting from the injection barrier is as follows (thickness in nanometers):3.8/1.2/1.3/4.3/1.3/3.8/1.4/3.6/2.2/2.8/1.7/2.5/1.8/2.2/1.9/2.1/2.1/2.0/2.1/1.8/2.7/1.8, In0.362Al0.638As barrier layers in bold, In0.669Ga0.331As quantum well layers in roman, and doped layers (Si, 1.5×1017cm?3) were underlined. The specific structure of the device dies in details is shown in Figs.1(a)and 1(b).

    Fig.1.(a)Schematic two-dimensional representation of the device G709.(b)The structure of G709 under a high-power optical microscope.

    The epi-wafer was etched into a double-channel waveguide laser. First a 300 nm thick SiO2layer was deposited by plasma enhanced chemical vapor deposition (PECVD) as a mask for filling semi-insulating InP:Fe for better heat dissipation around the ridge. And a 450 nm thick SiO2layer was deposited for insulation, and electrical contact was provided by a Ti/Au layer deposited by electron beam evaporation. An additional 4 μm thick gold layer was electroplated to further improve the heat dissipation. After thinning down to about 140μm,a Ge/Au/Ni/Au metal contact layer was deposited on the substrate side of the wafer. The waveguides were cleaved into 6-mm-long bars, and the facet of sample G709 was uncoated for the measurement of edging emitting power. Finally, the lasers were mounted epilayer side-down on a diamond heat-sink with indium solder,which were subsequently soldered on copper heat sinks.

    3. Analysis of experimental results and model establishment verification

    The lasers were tested after wire bonding,and mounting on a holder containing a thermoelectric cooler(TEC)to monitor the heat-sink temperature. The measurements were performed using a Fourier transform infrared(FTIR)spectrometer with 0.125 cm?1resolution in rapid scan mode.The output optical power was collected by a calibrated thermopile detector,which was put in front of the laser front facet without any efficiency correction.

    3.1. Analysis of experimental results

    Figure 2 shows the typical power-current(P-I)curves of sample G709, with 6 to 14 μs current pulses at a repetition rate of 50 kHz and the heat-sink temperature 25?C. During the test interval, to avoid damage, the lasers were not tested to the maximum operating current in this configuration. Its maximum output power exceeded 704 mW (on double facet)over a broad range of current,and the results of threshold current and dynamic range are similar. Additionally, the continuous wave(CW)light-current-voltage(L-I-V)curves of the sample G709 at the heat-sink temperature 25?C are shown.Within the tested current range, the working voltage range was 6.543 V-11.054 V and its maximum double output power reached 854.2 mW.

    Fig.2. Typical power-current curves of sample G709,with 14μs current pulses at a repetition rate of 50 kHz and the heat-sink temperature 25 ?C.It also shows the CW light-current-voltage curves of the sample G709 at the heat-sink temperature 25 ?C.

    Figure 3(a) shows the far-field patterns of the device at 25?C along the ridge-width direction at different injection current. The far-field at 0.5 A exhibits a Gaussian-like distribution.As the current increases from 0.6 A to 0.9 A,the shoulder peaks distributed on both sides in the far field not only gradually enhance,but also irregularly deflect to the left and right directions. Especially in the range of 1.0 A-1.2 A, the farfield peak position undergoes a significant turning, known as the beam steering.[6]It should be noted that the maximum intensity peak of the beam in the far field is offset by+14.2?and?14.2?from the facet normal(0?)at 1.0 A and 1.2 A,respectively. The facet normal(0?)is used as the zero coordinate of the far-field.The diffraction limit(DL)angle of the fundamental mode at the full-width at half-maximum (FWHM) is 46?according to the single-slit diffraction theory. In the entire test interval, the FWHM increases from 47?±0.5?(≈1.02 DL)at 0.5 A to 60?±0.5?(≈1.3 DL)at 1.2 A.Therefore,the farfield at high current could not be a pure fundamental transverse mode. Then perhaps the reason for this beam steering is that the two lowest transverse modes with slightly different effective refractive indexes are coherent, and the phase difference between the modes is constant. Furthermore,varying the current induces substantial angular steering of the output, which is usually accompanied by a significant qualitative change in the spectral characteristics.[6,10]

    Figure 3(b) shows that the range of the spectrum gradually broadens from 0.031 μm at 0.5 A to 0.146 μm at 0.9 A.However, the longitudinal mode range of the spectrum suddenly decreases in the range of 1.0 A-1.2 A.It is possible that the increase of the current causes the gain hole-burning effect.Additionally,the spectrum of 1.0 A shows that although a significant small range of widening and multiple longitudinal modes exist around 4.72 μm, it also can be clearly observed that there are a series of relatively small and uniform longitudinal modes in the 4.65 μm-4.70 μm range. Nevertheless,when the laser is energized at 1.1 A and 1.2 A, the optical intensities of the multi-longitudinal mode distributed in this spectrum range are minimal caused by obvious hole-burning in the gain space.

    Fig.3. (a)Measured far-field intensity distributions of the device at driving currents of 0.5,0.6,0.7,0.8,0.9,1.0,1.1,and 1.2 A(from bottom to top)in pulsed mode at the heat-sink temperature 25 ?C.(b)Emission spectra for the λ =4.65μm QCL at T =25 ?C.(c)Fourier transforms of the spectra. The laser is driven by pulsed current from 0.5 A to 1.2 A at a repetition rate of 50 kHz. The pulse duration is 10μs.

    In order to further verify that the beam steering may be caused by the coherence of the two transverse modes. We performed Fourier transform of the spectra. Figure 3(c) shows that there are two situations in the Fourier analysis over a broad range of injection currents, either only showing one peak at a certain current, or showing three closely adjacent and equally spaced peaks.[12]And there is no observation of multiple peaks that are closely adjacent and spaced differently at a certain current. This shows no incoherence between transverse modes in this range.[6,12]At the same time,the far-field profiles under most currents[Fig.3(a)]obviously do not show a completely consistent Gaussian distribution, indicating that these far-fields at high current should not be a pure fundamental transverse mode. Furthermore, since most of the farfields FWHM are between once the DL and twice the DL in the 0.5 A-1.2 A interval, it cannot be considered that these far-fields only contain the first-order mode. As a result, it is natural to attribute them to that the two lateral lowest modes with slightly different effective refractive indices are coherent.This demonstrates the phase locking of the two lowest modes to judge the occurrence of the beam steering.

    Finally,COMSOL simulations and theoretical model calculations are performed to further verify the rationality of the judgement and experimental results.

    3.2. Model establishment and verification

    The modes are simulated by solving the Maxwell’s equations with a 2D finite-element method software. According to the simulation, the two lowest transverse modes can coexist in the laser cavity, as shown in Fig.4(a), where the TM0 and TM1 modes are represented in the bottom panel and top panel,respectively.

    It is noted that the stripe width for the double-channel devices typically varies from 6.1μm at the top of the active region to 9.2μm at the bottom,while for the buried heterostructure the average waveguide width is 7.5μm. The reason why high-order modes appear in such a narrow ridge is that the thinner waveguide layer on the active area of the device causes plasmon loss. Therefore,it is very effective to produce a high beam quality by appropriately increasing the thickness of the top waveguide layer and relatively reducing the ridge width.On the basis of the results, figure 4(b) shows the calculated far-field profiles by taking various phase difference(?0.6π to 0.6π) between the basic 0th lateral mode and the 1st lateral mode.

    Fig.4. (a) Calculated 2D optical mode distribution for the quantum cascade laser, 0th lateral mode (top panel) and 1st lateral mode (bottom panel). (b) Theoretical far-field profiles for a 7.5-μm-wide QCL emitting at 4.65μm,for a series of phase differences(Φ)ranging from?0.6π to 0.6π. The ratio of photon densities in the two lowest order modes is assumed to be P0/P1=3:4.

    From a 2D effective-index model,we assume that the ratio of the photon density of the fundamental mode to the firstorder mode is P0/P1=3:4. The optical field of the whole superposition is approximately[6,15-17]

    where β0and β1represent the propagation constants of the fundamental and first-order modes,respectively. The relationship between the two coefficients simulated in COMSOL is β0?β1≈0.031k0,where k0=2π/λ. E0and E1represent the near fields of the fundamental mode and the first-order mode,which can be obtained from COMSOL.

    Therefore, if we assume that the aligned phase is at the back facet(phase difference=0),[6]then the phase difference between the two on the cavity surface can be calculated according to the following formula:

    where Δn is the difference between the effective refractive indices of the two near-field modes,Lcis the cavity length of the laser,and λ is the wavelength of the laser. Through this calculation is ideal,the initial far-field experimental result at 0.6 A is consistent with the theoretical calculation of Φ =0, indicating that there is no constant phase in the two modes at the beginning. By this method,we estimate that the phase difference between the two lateral modes is around 0.2π at 1.0 A or?0.2π at 1.1 A,and that the calculated far field profile beam steering angle is around 13.5?or ?13.5?, which fairly well agrees with the experimental value of 14.2?or ?14.2?.

    3.3. Conclusion and perspectives

    In summary,we explain the intrinsic linkage between the spectral instabilities and the beam steering and report a valuable criterion consisting of the analysis of the Fourier transform of the spectra and beam quality to judge the phase difference locking of two modes. Furthermore,our model for 2D interference between the two lowest order lateral modes reproduces the experimental finding. That is,a given device can switch between strong steering in either direction or no steering when the operating conditions(phase difference)are varied.This sufficiently verifies that the criterion of beam steering given in this paper is extremely effective.

    Acknowledgment

    The authors would like to thank Ping Liang and Ying Hu for their help in device processing.

    猜你喜歡
    舒曼
    音樂與愛情——舒曼與克拉拉的愛情馬拉松
    中老年保健(2021年2期)2021-08-22 07:31:04
    Diagnosis and treatment of mixed infection of hepatic cystic and alveolar echinococcosis:Four case reports
    淺析舒曼藝術歌曲的音樂特征
    黃河之聲(2019年1期)2019-12-16 02:09:22
    舒曼奢華系列AL1新品推介
    琴童(2017年4期)2017-06-14 02:17:56
    浮躁是最大的失敗
    百家講壇(2016年3期)2016-09-27 19:29:55
    蝴蝶飛舞
    ——舒曼的人生
    北方音樂(2016年15期)2016-02-03 07:08:41
    2014德國法蘭克福展看舒曼鋼琴華麗蛻變
    舒曼鋼琴攜斯坦納亮相2014美國NAMM展覽會
    舒曼鋼琴2014年上海國際樂器展現(xiàn)場盛況
    舒曼《g小調第二號鋼琴奏鳴曲》(OP.22)的彈奏分析
    音樂探索(2012年1期)2012-04-29 00:44:03
    真实男女啪啪啪动态图| 亚洲色图综合在线观看| 亚洲综合精品二区| 亚洲精品一区蜜桃| 中国美白少妇内射xxxbb| 九九在线视频观看精品| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 成人亚洲精品av一区二区| 尾随美女入室| 久久久亚洲精品成人影院| 亚洲综合色惰| 亚洲精品国产av成人精品| 国产v大片淫在线免费观看| 久久久精品免费免费高清| 亚洲国产高清在线一区二区三| eeuss影院久久| 偷拍熟女少妇极品色| 狂野欧美白嫩少妇大欣赏| 精品一区二区三卡| 欧美精品人与动牲交sv欧美| 久久精品综合一区二区三区| 亚洲av免费高清在线观看| 极品少妇高潮喷水抽搐| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 校园人妻丝袜中文字幕| 中文字幕制服av| 欧美+日韩+精品| 日日啪夜夜撸| 亚洲av一区综合| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 亚洲真实伦在线观看| 久久久久久久午夜电影| 建设人人有责人人尽责人人享有的 | 国产美女午夜福利| 欧美高清成人免费视频www| 欧美精品一区二区大全| 啦啦啦在线观看免费高清www| 最近手机中文字幕大全| 男人添女人高潮全过程视频| 日韩人妻高清精品专区| 久久影院123| 97精品久久久久久久久久精品| 联通29元200g的流量卡| 亚洲一区二区三区欧美精品 | 久久久久久久久久成人| 26uuu在线亚洲综合色| 嫩草影院新地址| 久久精品久久久久久久性| 国产成人午夜福利电影在线观看| av播播在线观看一区| 激情 狠狠 欧美| 午夜激情福利司机影院| 国产精品99久久久久久久久| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 美女视频免费永久观看网站| h日本视频在线播放| 久久精品久久久久久噜噜老黄| av在线播放精品| 久热久热在线精品观看| .国产精品久久| 日本wwww免费看| 午夜福利视频精品| 国产日韩欧美亚洲二区| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 你懂的网址亚洲精品在线观看| 成人国产av品久久久| 成人高潮视频无遮挡免费网站| 精品人妻视频免费看| 视频中文字幕在线观看| 欧美高清性xxxxhd video| 国产精品.久久久| 26uuu在线亚洲综合色| av卡一久久| av线在线观看网站| 亚洲精品视频女| 在线观看三级黄色| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 三级国产精品片| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看| 午夜亚洲福利在线播放| 直男gayav资源| 三级男女做爰猛烈吃奶摸视频| 亚洲伊人久久精品综合| 一本一本综合久久| 久久这里有精品视频免费| 神马国产精品三级电影在线观看| 国产高清国产精品国产三级 | 看免费成人av毛片| av免费在线看不卡| 成年人午夜在线观看视频| 日韩电影二区| 国产精品无大码| 国产黄片视频在线免费观看| 涩涩av久久男人的天堂| 神马国产精品三级电影在线观看| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 久久久亚洲精品成人影院| av在线天堂中文字幕| 欧美3d第一页| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 99热6这里只有精品| 亚洲无线观看免费| 久久久成人免费电影| 亚洲精品国产av成人精品| 免费人成在线观看视频色| 国产黄色免费在线视频| 一区二区三区四区激情视频| 又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 我要看日韩黄色一级片| 国产一级毛片在线| av.在线天堂| 国产黄a三级三级三级人| 久久久久国产精品人妻一区二区| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 简卡轻食公司| 99久久九九国产精品国产免费| 少妇人妻久久综合中文| 国产淫片久久久久久久久| 赤兔流量卡办理| 一区二区三区精品91| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 国产人妻一区二区三区在| 国产精品人妻久久久久久| 精品人妻视频免费看| 欧美成人一区二区免费高清观看| 成人午夜精彩视频在线观看| 黄片wwwwww| 精品久久久精品久久久| 亚洲精品一二三| 日本色播在线视频| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 简卡轻食公司| 黄色日韩在线| 一级a做视频免费观看| 国产亚洲一区二区精品| 亚洲国产高清在线一区二区三| 欧美另类一区| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 欧美成人a在线观看| 国产日韩欧美在线精品| 亚洲精品日韩av片在线观看| 丝袜脚勾引网站| 人妻一区二区av| 亚洲伊人久久精品综合| 日本黄色片子视频| 国产午夜福利久久久久久| 嫩草影院精品99| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 国产乱人偷精品视频| 日韩av在线免费看完整版不卡| 嫩草影院新地址| 国产色爽女视频免费观看| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 欧美精品一区二区大全| 亚洲国产精品成人综合色| 日本一本二区三区精品| av免费观看日本| 一本久久精品| 久久精品国产亚洲av涩爱| 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 亚洲欧美日韩另类电影网站 | 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 联通29元200g的流量卡| 久久99热这里只有精品18| 国产精品久久久久久精品电影小说 | 日韩制服骚丝袜av| 国产69精品久久久久777片| .国产精品久久| 欧美少妇被猛烈插入视频| 国产精品蜜桃在线观看| 在线观看av片永久免费下载| videossex国产| 久热这里只有精品99| 欧美日韩精品成人综合77777| 国产精品熟女久久久久浪| 尾随美女入室| 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 卡戴珊不雅视频在线播放| 午夜免费观看性视频| 国产真实伦视频高清在线观看| 午夜福利视频1000在线观看| 国产精品不卡视频一区二区| 一级片'在线观看视频| 亚洲精品中文字幕在线视频 | 联通29元200g的流量卡| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| freevideosex欧美| 婷婷色综合www| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 国产精品伦人一区二区| 国产免费福利视频在线观看| 欧美成人a在线观看| 18+在线观看网站| 精品久久久久久电影网| 成人二区视频| 亚洲av日韩在线播放| 午夜免费鲁丝| 赤兔流量卡办理| 久久久久久久久大av| 免费看av在线观看网站| 亚洲av国产av综合av卡| 国产在视频线精品| 特级一级黄色大片| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 亚洲美女视频黄频| 一级av片app| 国产爱豆传媒在线观看| 国产在视频线精品| 波野结衣二区三区在线| 免费观看无遮挡的男女| 色5月婷婷丁香| 亚洲精品色激情综合| 蜜桃亚洲精品一区二区三区| 亚洲av国产av综合av卡| 黄色视频在线播放观看不卡| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 国产探花在线观看一区二区| 日韩三级伦理在线观看| 成年av动漫网址| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 欧美xxⅹ黑人| 一区二区三区乱码不卡18| 亚洲欧美日韩东京热| 久久久精品94久久精品| 中文字幕久久专区| 亚洲怡红院男人天堂| 欧美丝袜亚洲另类| 亚洲精品日韩在线中文字幕| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 美女内射精品一级片tv| av在线亚洲专区| 一级a做视频免费观看| 涩涩av久久男人的天堂| 久久久成人免费电影| 一级av片app| 日韩av在线免费看完整版不卡| 午夜福利视频1000在线观看| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 免费人成在线观看视频色| 免费av毛片视频| 性色av一级| 午夜福利网站1000一区二区三区| 能在线免费看毛片的网站| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 亚洲综合精品二区| 久久亚洲国产成人精品v| 免费av毛片视频| 国产精品蜜桃在线观看| av在线观看视频网站免费| 老司机影院成人| 国产高清不卡午夜福利| 男男h啪啪无遮挡| 亚洲国产精品999| 久久久久久国产a免费观看| 久久精品国产亚洲av天美| 日本与韩国留学比较| 下体分泌物呈黄色| 久久久久久九九精品二区国产| 高清欧美精品videossex| 大香蕉久久网| av国产精品久久久久影院| 亚洲国产精品999| 欧美少妇被猛烈插入视频| 黄色欧美视频在线观看| 亚洲精品色激情综合| 99久久人妻综合| 深夜a级毛片| 久久久久性生活片| 午夜日本视频在线| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 18禁裸乳无遮挡免费网站照片| 国产欧美亚洲国产| 一二三四中文在线观看免费高清| 亚洲最大成人中文| 亚洲精品久久午夜乱码| 内射极品少妇av片p| 久久精品综合一区二区三区| 赤兔流量卡办理| 九色成人免费人妻av| 丝袜喷水一区| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 午夜精品国产一区二区电影 | 日韩 亚洲 欧美在线| 两个人的视频大全免费| 禁无遮挡网站| 精品国产露脸久久av麻豆| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| www.色视频.com| 水蜜桃什么品种好| 天堂网av新在线| 日韩一本色道免费dvd| 国产高清国产精品国产三级 | 亚洲美女搞黄在线观看| 亚洲欧美精品专区久久| 一级av片app| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 亚洲成人中文字幕在线播放| 婷婷色av中文字幕| 久久国产乱子免费精品| 91精品国产九色| 亚洲熟女精品中文字幕| 蜜桃亚洲精品一区二区三区| 国产一区二区在线观看日韩| 内地一区二区视频在线| 日本wwww免费看| 欧美高清性xxxxhd video| 最新中文字幕久久久久| 国产乱人偷精品视频| 精品一区二区免费观看| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 日韩伦理黄色片| 午夜精品国产一区二区电影 | 建设人人有责人人尽责人人享有的 | 国产熟女欧美一区二区| 亚洲精品国产av成人精品| 国产熟女欧美一区二区| 老司机影院成人| 麻豆久久精品国产亚洲av| 久久久久网色| 22中文网久久字幕| a级毛色黄片| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 国产精品成人在线| 美女视频免费永久观看网站| 亚洲欧洲国产日韩| 尤物成人国产欧美一区二区三区| 一级毛片 在线播放| 丝袜喷水一区| 国产成人福利小说| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 欧美潮喷喷水| 欧美日韩视频精品一区| 国内揄拍国产精品人妻在线| 色吧在线观看| 内地一区二区视频在线| 黄色配什么色好看| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区| 免费大片18禁| 亚洲丝袜综合中文字幕| 精品国产一区二区三区久久久樱花 | 久久国内精品自在自线图片| 色综合色国产| 夫妻午夜视频| 丝袜喷水一区| 久久久午夜欧美精品| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 成人毛片a级毛片在线播放| av卡一久久| www.av在线官网国产| 丰满乱子伦码专区| 在线观看人妻少妇| 五月伊人婷婷丁香| 亚洲精品成人av观看孕妇| 夫妻性生交免费视频一级片| 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 亚洲精品色激情综合| 免费少妇av软件| 国产成人精品婷婷| 免费av观看视频| 久久久精品欧美日韩精品| 中文资源天堂在线| 观看美女的网站| 亚洲欧美日韩东京热| 免费观看无遮挡的男女| 99精国产麻豆久久婷婷| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区大全| 久久久久性生活片| 日韩中字成人| 久久精品国产a三级三级三级| 七月丁香在线播放| 国产淫语在线视频| 国产高清国产精品国产三级 | 国产成人精品久久久久久| 性色avwww在线观看| 天天一区二区日本电影三级| 青春草亚洲视频在线观看| 亚洲国产精品999| 精品久久久久久久久av| 国产一区有黄有色的免费视频| 国产精品久久久久久精品电影| 男女那种视频在线观看| 久久久久久国产a免费观看| 熟女av电影| 久久99热这里只频精品6学生| 五月开心婷婷网| 日韩欧美精品免费久久| 交换朋友夫妻互换小说| 久久精品久久久久久久性| 黄片wwwwww| 国产乱人偷精品视频| 国产亚洲91精品色在线| 国产精品国产av在线观看| 久久综合国产亚洲精品| 女人久久www免费人成看片| 一本久久精品| 22中文网久久字幕| 又爽又黄无遮挡网站| 看非洲黑人一级黄片| 少妇熟女欧美另类| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影 | 性色av一级| 少妇丰满av| 国产亚洲av片在线观看秒播厂| 国产国拍精品亚洲av在线观看| 18+在线观看网站| 久久久久久久精品精品| 99视频精品全部免费 在线| 成年人午夜在线观看视频| 亚洲一区二区三区欧美精品 | 久久久久久伊人网av| av在线老鸭窝| 欧美国产精品一级二级三级 | 国产91av在线免费观看| 亚洲精品色激情综合| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 免费av不卡在线播放| 久久国内精品自在自线图片| 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 久久久成人免费电影| 青春草视频在线免费观看| 综合色av麻豆| 女人久久www免费人成看片| 一本久久精品| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 综合色av麻豆| 欧美最新免费一区二区三区| 亚洲精品日本国产第一区| 中文欧美无线码| 99久久人妻综合| 精品久久国产蜜桃| 人人妻人人爽人人添夜夜欢视频 | 国产成人免费观看mmmm| 国产高清三级在线| 久久久久久久午夜电影| h日本视频在线播放| 下体分泌物呈黄色| 26uuu在线亚洲综合色| 中文字幕久久专区| 啦啦啦中文免费视频观看日本| 免费观看av网站的网址| 免费看av在线观看网站| 亚洲av免费在线观看| 国产毛片在线视频| 美女cb高潮喷水在线观看| 2022亚洲国产成人精品| 又爽又黄a免费视频| 国产亚洲最大av| 亚洲成色77777| 日韩 亚洲 欧美在线| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 欧美zozozo另类| 91久久精品电影网| 如何舔出高潮| 亚洲av福利一区| 欧美人与善性xxx| 久久国内精品自在自线图片| 亚洲欧美日韩无卡精品| av在线老鸭窝| 黄色怎么调成土黄色| 天堂中文最新版在线下载 | 亚洲精品自拍成人| 内地一区二区视频在线| 丰满乱子伦码专区| av福利片在线观看| 亚洲欧美日韩另类电影网站 | 激情五月婷婷亚洲| 五月开心婷婷网| 国产美女午夜福利| www.色视频.com| 精品视频人人做人人爽| 色播亚洲综合网| 中文天堂在线官网| 人妻系列 视频| 最近最新中文字幕免费大全7| 国产伦理片在线播放av一区| 性色avwww在线观看| 国产精品偷伦视频观看了| 在线观看人妻少妇| 亚洲av一区综合| 日本黄大片高清| 国产一级毛片在线| 国产男女内射视频| 女人久久www免费人成看片| 国产美女午夜福利| 精品一区二区免费观看| 欧美日本视频| 69av精品久久久久久| 日韩人妻高清精品专区| 高清在线视频一区二区三区| 久久ye,这里只有精品| 熟女电影av网| 美女视频免费永久观看网站| 日韩av免费高清视频| 国产黄片美女视频| 久久久久性生活片| 日韩三级伦理在线观看| 久久久久国产网址| 少妇人妻精品综合一区二区| av免费在线看不卡| 内射极品少妇av片p| 亚洲国产色片| 视频区图区小说| 午夜视频国产福利| 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 天堂网av新在线| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品 | 我要看日韩黄色一级片| 国产午夜福利久久久久久| 久久久久久久大尺度免费视频| 久久精品综合一区二区三区| 欧美区成人在线视频| 成人二区视频| 亚洲国产欧美人成| 国产男女超爽视频在线观看| 热re99久久精品国产66热6| 久久久国产一区二区| av福利片在线观看| 亚洲成人一二三区av| 一级a做视频免费观看| 欧美日韩综合久久久久久| 成人二区视频| 国产一区二区亚洲精品在线观看| 精品国产露脸久久av麻豆| 91精品国产九色| 欧美少妇被猛烈插入视频| 你懂的网址亚洲精品在线观看| 晚上一个人看的免费电影| 91久久精品国产一区二区三区| 99视频精品全部免费 在线| 如何舔出高潮| 综合色av麻豆| 国产免费福利视频在线观看| 少妇熟女欧美另类| 国产精品人妻久久久影院| 黄色一级大片看看| 欧美xxxx性猛交bbbb| 少妇丰满av| 亚洲国产精品999| 久久久久精品性色| 久久99热这里只有精品18| 在线精品无人区一区二区三 | 小蜜桃在线观看免费完整版高清|