• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beam steering characteristics in high-power quantum-cascade lasers emitting at ~4.6μm?

    2021-03-19 03:19:28YongQiangSun孫永強JinChuanZhang張錦川FengMinCheng程鳳敏ChaoNing寧超NingZhuo卓寧ShenQiangZhai翟慎強FengQiLiu劉峰奇JunQiLiu劉俊岐ShuManLiu劉舒曼andZhanGuoWang王占國
    Chinese Physics B 2021年3期
    關鍵詞:舒曼

    Yong-Qiang Sun(孫永強), Jin-Chuan Zhang(張錦川), Feng-Min Cheng(程鳳敏),Chao Ning(寧超), Ning Zhuo(卓寧), Shen-Qiang Zhai(翟慎強), Feng-Qi Liu(劉峰奇),3,?,Jun-Qi Liu(劉俊岐), Shu-Man Liu(劉舒曼), and Zhan-Guo Wang(王占國)

    1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    Keywords: beam steering,quantum cascade lasers,fourier transform of the spectra,2D effective-index model

    1. Introduction

    High power and high beam quality have always been the goals pursued by mid-infrared lasers. Currently, the quantum cascade (QC) lasers,[1]whose optical gain amplification derives from quantum-well intersubband transitions,have exhibited breakthrough progress toward these goals.[2-5]Additionally, the high power of this kind laser is frequently accompanied by nonlinear effects. This effect will cause many novel phenomena, which also have a great impact on the device. Beam steering is one of such nonlinear effects, which will have a huge impact on any system that requires relatively precise pointing.[6]For example, it not only affects the longdistance accurate detection of explosives by the laser through backscatter spectroscopy,but also stands as a huge obstacle for the directional infrared countermeasure(DIRCM).[6-8]Nevertheless, it is also possibly to be deliberately controlled[9]and used to perform laser projection by adjusting or scanning the direction of the laser beam.[10,11]Therefore, the origin of the beam steering effects has to be understood so that QC lasers can be better applied. Although the experimental evidence for beam steering in QC lasers has been reported and generally attributed to the interference of transverse modes[6,12]and spatial hole burning induced by higher lateral modes,[7]few studies have been done to explicitly establish an intrinsic linkage between the spectral instabilities and the beam steering and to explore the valuable criterion of the phase locking between the two lowest transverse modes when the beam steering happens.

    In this paper, we combine the results of the spectrum,beam quality, and the Fourier transform spectrum based on the earlier ones[6,7,10]to suggest a method to directly judge the phase locking. The intrinsic linkage between the spectral instabilities and the beam steering is also explicitly expounded based on the Fourier transform spectrum. Then according to the theoretical calculation of a 2D effective-index model and finite element method software simulation, the theoretically calculated far field is obtained which is completely consistent with our experimental results.

    2. Device materials design and waveguide structures

    The QC laser wafer was grown on an n-doped (Si,2 × 1017cm?3) InP substrate by solid-source molecular beam epitaxy (MBE) based on a two-phonon resonance design, which is identical to that in Ref. [13].The active core includes 30 stages of strain-compensated In0.669Ga0.331As/In0.362Al0.638As quantum wells and barriers.[14]The entire structure is as follows: 3.0 μm lower cladding layer (Si, 2.2 × 1016cm?3), 30 active/injector stages, 0.3 μm-thick n-In0.53Ga0.47As layer (Si,4×1016cm?3), 2.4 μm (InP) upper cladding layer (Si,2.2×1016cm?3), and 0.6μm cap layer(Si, 5×1018cm?3).The layer sequence of one period, starting from the injection barrier is as follows (thickness in nanometers):3.8/1.2/1.3/4.3/1.3/3.8/1.4/3.6/2.2/2.8/1.7/2.5/1.8/2.2/1.9/2.1/2.1/2.0/2.1/1.8/2.7/1.8, In0.362Al0.638As barrier layers in bold, In0.669Ga0.331As quantum well layers in roman, and doped layers (Si, 1.5×1017cm?3) were underlined. The specific structure of the device dies in details is shown in Figs.1(a)and 1(b).

    Fig.1.(a)Schematic two-dimensional representation of the device G709.(b)The structure of G709 under a high-power optical microscope.

    The epi-wafer was etched into a double-channel waveguide laser. First a 300 nm thick SiO2layer was deposited by plasma enhanced chemical vapor deposition (PECVD) as a mask for filling semi-insulating InP:Fe for better heat dissipation around the ridge. And a 450 nm thick SiO2layer was deposited for insulation, and electrical contact was provided by a Ti/Au layer deposited by electron beam evaporation. An additional 4 μm thick gold layer was electroplated to further improve the heat dissipation. After thinning down to about 140μm,a Ge/Au/Ni/Au metal contact layer was deposited on the substrate side of the wafer. The waveguides were cleaved into 6-mm-long bars, and the facet of sample G709 was uncoated for the measurement of edging emitting power. Finally, the lasers were mounted epilayer side-down on a diamond heat-sink with indium solder,which were subsequently soldered on copper heat sinks.

    3. Analysis of experimental results and model establishment verification

    The lasers were tested after wire bonding,and mounting on a holder containing a thermoelectric cooler(TEC)to monitor the heat-sink temperature. The measurements were performed using a Fourier transform infrared(FTIR)spectrometer with 0.125 cm?1resolution in rapid scan mode.The output optical power was collected by a calibrated thermopile detector,which was put in front of the laser front facet without any efficiency correction.

    3.1. Analysis of experimental results

    Figure 2 shows the typical power-current(P-I)curves of sample G709, with 6 to 14 μs current pulses at a repetition rate of 50 kHz and the heat-sink temperature 25?C. During the test interval, to avoid damage, the lasers were not tested to the maximum operating current in this configuration. Its maximum output power exceeded 704 mW (on double facet)over a broad range of current,and the results of threshold current and dynamic range are similar. Additionally, the continuous wave(CW)light-current-voltage(L-I-V)curves of the sample G709 at the heat-sink temperature 25?C are shown.Within the tested current range, the working voltage range was 6.543 V-11.054 V and its maximum double output power reached 854.2 mW.

    Fig.2. Typical power-current curves of sample G709,with 14μs current pulses at a repetition rate of 50 kHz and the heat-sink temperature 25 ?C.It also shows the CW light-current-voltage curves of the sample G709 at the heat-sink temperature 25 ?C.

    Figure 3(a) shows the far-field patterns of the device at 25?C along the ridge-width direction at different injection current. The far-field at 0.5 A exhibits a Gaussian-like distribution.As the current increases from 0.6 A to 0.9 A,the shoulder peaks distributed on both sides in the far field not only gradually enhance,but also irregularly deflect to the left and right directions. Especially in the range of 1.0 A-1.2 A, the farfield peak position undergoes a significant turning, known as the beam steering.[6]It should be noted that the maximum intensity peak of the beam in the far field is offset by+14.2?and?14.2?from the facet normal(0?)at 1.0 A and 1.2 A,respectively. The facet normal(0?)is used as the zero coordinate of the far-field.The diffraction limit(DL)angle of the fundamental mode at the full-width at half-maximum (FWHM) is 46?according to the single-slit diffraction theory. In the entire test interval, the FWHM increases from 47?±0.5?(≈1.02 DL)at 0.5 A to 60?±0.5?(≈1.3 DL)at 1.2 A.Therefore,the farfield at high current could not be a pure fundamental transverse mode. Then perhaps the reason for this beam steering is that the two lowest transverse modes with slightly different effective refractive indexes are coherent, and the phase difference between the modes is constant. Furthermore,varying the current induces substantial angular steering of the output, which is usually accompanied by a significant qualitative change in the spectral characteristics.[6,10]

    Figure 3(b) shows that the range of the spectrum gradually broadens from 0.031 μm at 0.5 A to 0.146 μm at 0.9 A.However, the longitudinal mode range of the spectrum suddenly decreases in the range of 1.0 A-1.2 A.It is possible that the increase of the current causes the gain hole-burning effect.Additionally,the spectrum of 1.0 A shows that although a significant small range of widening and multiple longitudinal modes exist around 4.72 μm, it also can be clearly observed that there are a series of relatively small and uniform longitudinal modes in the 4.65 μm-4.70 μm range. Nevertheless,when the laser is energized at 1.1 A and 1.2 A, the optical intensities of the multi-longitudinal mode distributed in this spectrum range are minimal caused by obvious hole-burning in the gain space.

    Fig.3. (a)Measured far-field intensity distributions of the device at driving currents of 0.5,0.6,0.7,0.8,0.9,1.0,1.1,and 1.2 A(from bottom to top)in pulsed mode at the heat-sink temperature 25 ?C.(b)Emission spectra for the λ =4.65μm QCL at T =25 ?C.(c)Fourier transforms of the spectra. The laser is driven by pulsed current from 0.5 A to 1.2 A at a repetition rate of 50 kHz. The pulse duration is 10μs.

    In order to further verify that the beam steering may be caused by the coherence of the two transverse modes. We performed Fourier transform of the spectra. Figure 3(c) shows that there are two situations in the Fourier analysis over a broad range of injection currents, either only showing one peak at a certain current, or showing three closely adjacent and equally spaced peaks.[12]And there is no observation of multiple peaks that are closely adjacent and spaced differently at a certain current. This shows no incoherence between transverse modes in this range.[6,12]At the same time,the far-field profiles under most currents[Fig.3(a)]obviously do not show a completely consistent Gaussian distribution, indicating that these far-fields at high current should not be a pure fundamental transverse mode. Furthermore, since most of the farfields FWHM are between once the DL and twice the DL in the 0.5 A-1.2 A interval, it cannot be considered that these far-fields only contain the first-order mode. As a result, it is natural to attribute them to that the two lateral lowest modes with slightly different effective refractive indices are coherent.This demonstrates the phase locking of the two lowest modes to judge the occurrence of the beam steering.

    Finally,COMSOL simulations and theoretical model calculations are performed to further verify the rationality of the judgement and experimental results.

    3.2. Model establishment and verification

    The modes are simulated by solving the Maxwell’s equations with a 2D finite-element method software. According to the simulation, the two lowest transverse modes can coexist in the laser cavity, as shown in Fig.4(a), where the TM0 and TM1 modes are represented in the bottom panel and top panel,respectively.

    It is noted that the stripe width for the double-channel devices typically varies from 6.1μm at the top of the active region to 9.2μm at the bottom,while for the buried heterostructure the average waveguide width is 7.5μm. The reason why high-order modes appear in such a narrow ridge is that the thinner waveguide layer on the active area of the device causes plasmon loss. Therefore,it is very effective to produce a high beam quality by appropriately increasing the thickness of the top waveguide layer and relatively reducing the ridge width.On the basis of the results, figure 4(b) shows the calculated far-field profiles by taking various phase difference(?0.6π to 0.6π) between the basic 0th lateral mode and the 1st lateral mode.

    Fig.4. (a) Calculated 2D optical mode distribution for the quantum cascade laser, 0th lateral mode (top panel) and 1st lateral mode (bottom panel). (b) Theoretical far-field profiles for a 7.5-μm-wide QCL emitting at 4.65μm,for a series of phase differences(Φ)ranging from?0.6π to 0.6π. The ratio of photon densities in the two lowest order modes is assumed to be P0/P1=3:4.

    From a 2D effective-index model,we assume that the ratio of the photon density of the fundamental mode to the firstorder mode is P0/P1=3:4. The optical field of the whole superposition is approximately[6,15-17]

    where β0and β1represent the propagation constants of the fundamental and first-order modes,respectively. The relationship between the two coefficients simulated in COMSOL is β0?β1≈0.031k0,where k0=2π/λ. E0and E1represent the near fields of the fundamental mode and the first-order mode,which can be obtained from COMSOL.

    Therefore, if we assume that the aligned phase is at the back facet(phase difference=0),[6]then the phase difference between the two on the cavity surface can be calculated according to the following formula:

    where Δn is the difference between the effective refractive indices of the two near-field modes,Lcis the cavity length of the laser,and λ is the wavelength of the laser. Through this calculation is ideal,the initial far-field experimental result at 0.6 A is consistent with the theoretical calculation of Φ =0, indicating that there is no constant phase in the two modes at the beginning. By this method,we estimate that the phase difference between the two lateral modes is around 0.2π at 1.0 A or?0.2π at 1.1 A,and that the calculated far field profile beam steering angle is around 13.5?or ?13.5?, which fairly well agrees with the experimental value of 14.2?or ?14.2?.

    3.3. Conclusion and perspectives

    In summary,we explain the intrinsic linkage between the spectral instabilities and the beam steering and report a valuable criterion consisting of the analysis of the Fourier transform of the spectra and beam quality to judge the phase difference locking of two modes. Furthermore,our model for 2D interference between the two lowest order lateral modes reproduces the experimental finding. That is,a given device can switch between strong steering in either direction or no steering when the operating conditions(phase difference)are varied.This sufficiently verifies that the criterion of beam steering given in this paper is extremely effective.

    Acknowledgment

    The authors would like to thank Ping Liang and Ying Hu for their help in device processing.

    猜你喜歡
    舒曼
    音樂與愛情——舒曼與克拉拉的愛情馬拉松
    中老年保健(2021年2期)2021-08-22 07:31:04
    Diagnosis and treatment of mixed infection of hepatic cystic and alveolar echinococcosis:Four case reports
    淺析舒曼藝術歌曲的音樂特征
    黃河之聲(2019年1期)2019-12-16 02:09:22
    舒曼奢華系列AL1新品推介
    琴童(2017年4期)2017-06-14 02:17:56
    浮躁是最大的失敗
    百家講壇(2016年3期)2016-09-27 19:29:55
    蝴蝶飛舞
    ——舒曼的人生
    北方音樂(2016年15期)2016-02-03 07:08:41
    2014德國法蘭克福展看舒曼鋼琴華麗蛻變
    舒曼鋼琴攜斯坦納亮相2014美國NAMM展覽會
    舒曼鋼琴2014年上海國際樂器展現(xiàn)場盛況
    舒曼《g小調第二號鋼琴奏鳴曲》(OP.22)的彈奏分析
    音樂探索(2012年1期)2012-04-29 00:44:03
    国产亚洲精品久久久久久毛片| 午夜久久久在线观看| 久久人妻av系列| 亚洲专区字幕在线| 老汉色∧v一级毛片| 一a级毛片在线观看| 90打野战视频偷拍视频| 女人精品久久久久毛片| 亚洲一区二区三区不卡视频| 国产精品影院久久| 亚洲无线在线观看| 女警被强在线播放| 9191精品国产免费久久| av中文乱码字幕在线| 亚洲久久久国产精品| 国产亚洲欧美在线一区二区| 国产精品久久久人人做人人爽| netflix在线观看网站| 九色亚洲精品在线播放| 在线观看www视频免费| 国产又色又爽无遮挡免费看| 宅男免费午夜| 久久久久久人人人人人| 伊人久久大香线蕉亚洲五| 婷婷六月久久综合丁香| 91精品三级在线观看| 51午夜福利影视在线观看| 日韩高清综合在线| 99国产精品一区二区蜜桃av| 欧美成狂野欧美在线观看| 欧美色视频一区免费| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 色综合婷婷激情| 亚洲一区二区三区不卡视频| 久久香蕉精品热| 老熟妇仑乱视频hdxx| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 午夜影院日韩av| 国产成人影院久久av| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 亚洲国产精品sss在线观看| 久久久水蜜桃国产精品网| 亚洲五月天丁香| 色av中文字幕| 国产亚洲精品久久久久久毛片| 1024香蕉在线观看| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 日日摸夜夜添夜夜添小说| 午夜免费鲁丝| 国产精品,欧美在线| 精品乱码久久久久久99久播| 国产黄a三级三级三级人| 嫩草影院精品99| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 欧美一级a爱片免费观看看 | 亚洲精品国产精品久久久不卡| 久久精品91无色码中文字幕| 男女之事视频高清在线观看| 免费观看人在逋| 性少妇av在线| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| av在线播放免费不卡| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 午夜久久久在线观看| 国产精品乱码一区二三区的特点 | 日本vs欧美在线观看视频| 午夜免费鲁丝| 精品不卡国产一区二区三区| 人人妻,人人澡人人爽秒播| 巨乳人妻的诱惑在线观看| 久久精品影院6| 免费人成视频x8x8入口观看| 日韩一卡2卡3卡4卡2021年| 黄片播放在线免费| 变态另类成人亚洲欧美熟女 | 成人国语在线视频| 黄色丝袜av网址大全| 国产精品国产高清国产av| 91字幕亚洲| 长腿黑丝高跟| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 色综合欧美亚洲国产小说| 黑人操中国人逼视频| 成人av一区二区三区在线看| 在线永久观看黄色视频| 国产精品av久久久久免费| 久久九九热精品免费| 两人在一起打扑克的视频| 亚洲情色 制服丝袜| 国产精品国产高清国产av| 午夜福利高清视频| 久久婷婷人人爽人人干人人爱 | 老司机午夜十八禁免费视频| 欧美另类亚洲清纯唯美| 麻豆一二三区av精品| 亚洲中文字幕日韩| 日韩欧美一区视频在线观看| 久久中文字幕人妻熟女| 久久久久国产精品人妻aⅴ院| 色老头精品视频在线观看| 久久人人97超碰香蕉20202| 亚洲精品美女久久久久99蜜臀| 国产高清有码在线观看视频 | 真人做人爱边吃奶动态| 午夜两性在线视频| 99re在线观看精品视频| 国产三级黄色录像| 如日韩欧美国产精品一区二区三区| 久9热在线精品视频| 9色porny在线观看| 国产亚洲精品一区二区www| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲精品在线观看二区| 午夜福利,免费看| 一个人观看的视频www高清免费观看 | 一级黄色大片毛片| 身体一侧抽搐| 亚洲激情在线av| 国产精品二区激情视频| 国产精品日韩av在线免费观看 | 国内精品久久久久久久电影| 日韩欧美三级三区| 欧美日本亚洲视频在线播放| 久久久久久人人人人人| 18禁国产床啪视频网站| 中亚洲国语对白在线视频| 国产精品 国内视频| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 亚洲国产精品久久男人天堂| 老司机深夜福利视频在线观看| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| 激情在线观看视频在线高清| 12—13女人毛片做爰片一| 国产精品综合久久久久久久免费 | 亚洲久久久国产精品| 欧美在线一区亚洲| 免费在线观看黄色视频的| 我的亚洲天堂| 变态另类成人亚洲欧美熟女 | 欧洲精品卡2卡3卡4卡5卡区| 中文字幕精品免费在线观看视频| 丁香欧美五月| 国产成年人精品一区二区| av网站免费在线观看视频| 99香蕉大伊视频| 多毛熟女@视频| 欧美日韩福利视频一区二区| 国内久久婷婷六月综合欲色啪| 不卡av一区二区三区| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av高清一级| av片东京热男人的天堂| 久久国产亚洲av麻豆专区| 变态另类成人亚洲欧美熟女 | 精品一区二区三区视频在线观看免费| 99国产精品一区二区三区| 老司机深夜福利视频在线观看| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 国产亚洲精品久久久久5区| 午夜精品在线福利| 亚洲精品国产色婷婷电影| 美国免费a级毛片| 自线自在国产av| 黄色视频不卡| 国产精品亚洲一级av第二区| 精品人妻1区二区| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 在线十欧美十亚洲十日本专区| 亚洲三区欧美一区| 变态另类成人亚洲欧美熟女 | 9191精品国产免费久久| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国在线观看网站| 别揉我奶头~嗯~啊~动态视频| 十分钟在线观看高清视频www| av电影中文网址| 自线自在国产av| 在线永久观看黄色视频| av超薄肉色丝袜交足视频| 色综合欧美亚洲国产小说| 九色国产91popny在线| 香蕉久久夜色| 日韩精品青青久久久久久| 欧美日本亚洲视频在线播放| 19禁男女啪啪无遮挡网站| 19禁男女啪啪无遮挡网站| 制服诱惑二区| 99热只有精品国产| 男女床上黄色一级片免费看| 高清黄色对白视频在线免费看| 色精品久久人妻99蜜桃| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线黄色| 亚洲人成77777在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲精品第一综合不卡| 国产男靠女视频免费网站| 国产一区二区三区综合在线观看| 日本撒尿小便嘘嘘汇集6| 久久人妻av系列| 亚洲一区二区三区不卡视频| 国产真人三级小视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲aⅴ乱码一区二区在线播放 | 97碰自拍视频| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 两性午夜刺激爽爽歪歪视频在线观看 | 成年人黄色毛片网站| 9色porny在线观看| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 一本久久中文字幕| 最新美女视频免费是黄的| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆 | 日韩av在线大香蕉| 欧美在线一区亚洲| 午夜久久久在线观看| 亚洲 欧美 日韩 在线 免费| 天堂√8在线中文| 久9热在线精品视频| 啦啦啦观看免费观看视频高清 | 亚洲成a人片在线一区二区| 色尼玛亚洲综合影院| 中文字幕av电影在线播放| 亚洲最大成人中文| 国产高清激情床上av| 制服诱惑二区| 九色国产91popny在线| 午夜福利影视在线免费观看| 一区二区三区激情视频| 精品国产美女av久久久久小说| 青草久久国产| 久久 成人 亚洲| 国产精品99久久99久久久不卡| 日韩免费av在线播放| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀| 午夜精品在线福利| 怎么达到女性高潮| 91字幕亚洲| 日本 欧美在线| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 男女做爰动态图高潮gif福利片 | 夜夜躁狠狠躁天天躁| 妹子高潮喷水视频| 美女高潮到喷水免费观看| 男人的好看免费观看在线视频 | 国产精品爽爽va在线观看网站 | 18禁观看日本| 国产一区在线观看成人免费| 久热这里只有精品99| 日日干狠狠操夜夜爽| 国产精华一区二区三区| 老司机午夜福利在线观看视频| 亚洲情色 制服丝袜| 成人国产综合亚洲| 国产精品久久久久久亚洲av鲁大| 日韩欧美三级三区| 亚洲无线在线观看| 欧美成人性av电影在线观看| 免费搜索国产男女视频| 很黄的视频免费| 看片在线看免费视频| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利一区二区在线看| 午夜福利免费观看在线| tocl精华| 国产片内射在线| 午夜福利影视在线免费观看| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 大码成人一级视频| 精品不卡国产一区二区三区| 国产欧美日韩一区二区三区在线| 色在线成人网| 91av网站免费观看| 欧美成狂野欧美在线观看| 伦理电影免费视频| 欧美日本视频| 亚洲精品国产区一区二| 国产精品香港三级国产av潘金莲| 久久久国产精品麻豆| 中亚洲国语对白在线视频| 免费不卡黄色视频| 久久影院123| www日本在线高清视频| 亚洲 国产 在线| 精品国产美女av久久久久小说| 精品国产乱码久久久久久男人| 制服诱惑二区| 日本三级黄在线观看| 久久精品国产综合久久久| 亚洲一区二区三区色噜噜| avwww免费| 免费观看人在逋| 久久国产精品人妻蜜桃| 亚洲一区中文字幕在线| 人人妻,人人澡人人爽秒播| 久久久水蜜桃国产精品网| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| 日韩欧美国产一区二区入口| 宅男免费午夜| 99国产精品一区二区蜜桃av| 一进一出抽搐动态| 国产aⅴ精品一区二区三区波| 欧美日韩瑟瑟在线播放| 久久欧美精品欧美久久欧美| 国产精品二区激情视频| 18美女黄网站色大片免费观看| 亚洲第一欧美日韩一区二区三区| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 免费看美女性在线毛片视频| 久99久视频精品免费| 丰满人妻熟妇乱又伦精品不卡| 不卡av一区二区三区| 亚洲少妇的诱惑av| 亚洲精品粉嫩美女一区| 青草久久国产| 国产片内射在线| 日韩精品中文字幕看吧| 久久国产乱子伦精品免费另类| 久久久久久大精品| 一区在线观看完整版| 久久人妻av系列| 又紧又爽又黄一区二区| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 久久香蕉激情| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 97超级碰碰碰精品色视频在线观看| 美国免费a级毛片| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 不卡一级毛片| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 搡老熟女国产l中国老女人| 纯流量卡能插随身wifi吗| 人人妻人人爽人人添夜夜欢视频| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 黄频高清免费视频| 久久久久久久久免费视频了| 亚洲午夜精品一区,二区,三区| 亚洲国产精品999在线| 国产伦人伦偷精品视频| 欧美丝袜亚洲另类 | 亚洲av美国av| 久久性视频一级片| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 18禁国产床啪视频网站| 一区二区三区精品91| 两人在一起打扑克的视频| 咕卡用的链子| 午夜影院日韩av| 中文字幕另类日韩欧美亚洲嫩草| 99久久精品国产亚洲精品| 男男h啪啪无遮挡| 免费在线观看影片大全网站| 国产一卡二卡三卡精品| 一本久久中文字幕| 国产成人av激情在线播放| 亚洲精品国产区一区二| 国产一区二区三区综合在线观看| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 久久婷婷成人综合色麻豆| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 午夜视频精品福利| 黄色视频不卡| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 精品久久久久久,| 亚洲一码二码三码区别大吗| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 精品一区二区三区av网在线观看| 丝袜在线中文字幕| 久久久国产精品麻豆| 两人在一起打扑克的视频| 日韩国内少妇激情av| 亚洲精品久久成人aⅴ小说| www.www免费av| 国内精品久久久久精免费| 18禁观看日本| 大陆偷拍与自拍| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 欧美老熟妇乱子伦牲交| 香蕉国产在线看| 一级毛片高清免费大全| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放 | 成人免费观看视频高清| 很黄的视频免费| 好男人电影高清在线观看| tocl精华| 少妇 在线观看| 亚洲精品中文字幕一二三四区| 脱女人内裤的视频| 涩涩av久久男人的天堂| 午夜免费激情av| 天天一区二区日本电影三级 | 老司机福利观看| 波多野结衣高清无吗| av网站免费在线观看视频| 亚洲av成人一区二区三| 欧美黑人欧美精品刺激| e午夜精品久久久久久久| 欧美激情久久久久久爽电影 | 午夜免费鲁丝| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 不卡av一区二区三区| 久久香蕉国产精品| 精品第一国产精品| 精品一品国产午夜福利视频| 国产亚洲av嫩草精品影院| 亚洲 欧美一区二区三区| 黄色女人牲交| 久久九九热精品免费| 757午夜福利合集在线观看| 91精品三级在线观看| 国产激情久久老熟女| 一级a爱片免费观看的视频| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 别揉我奶头~嗯~啊~动态视频| 老司机靠b影院| 久久九九热精品免费| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说| 手机成人av网站| 国产精品久久久久久人妻精品电影| 久久久久国产精品人妻aⅴ院| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 美女高潮到喷水免费观看| 脱女人内裤的视频| 午夜福利,免费看| av天堂久久9| 男女做爰动态图高潮gif福利片 | 在线国产一区二区在线| 国产亚洲欧美在线一区二区| 久久影院123| 国产精品香港三级国产av潘金莲| 欧美成人免费av一区二区三区| 午夜福利高清视频| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影 | 波多野结衣高清无吗| 长腿黑丝高跟| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片 | 十分钟在线观看高清视频www| 变态另类成人亚洲欧美熟女 | 成熟少妇高潮喷水视频| 久久久国产欧美日韩av| 在线观看午夜福利视频| 91九色精品人成在线观看| 午夜a级毛片| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 叶爱在线成人免费视频播放| 亚洲欧洲精品一区二区精品久久久| 伊人久久大香线蕉亚洲五| 欧美成人一区二区免费高清观看 | 丝袜美足系列| 久久精品国产清高在天天线| 亚洲欧美激情综合另类| 久久精品91蜜桃| 久久精品国产亚洲av高清一级| 国产激情欧美一区二区| 男女下面进入的视频免费午夜 | 国产精品一区二区三区四区久久 | 欧美一级毛片孕妇| 免费看a级黄色片| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 欧美日本亚洲视频在线播放| av片东京热男人的天堂| 国产一级毛片七仙女欲春2 | 免费在线观看黄色视频的| 欧美性长视频在线观看| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 99国产综合亚洲精品| 丝袜美足系列| 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 日韩av在线大香蕉| 黑人巨大精品欧美一区二区mp4| 香蕉国产在线看| 一区二区三区高清视频在线| 久久香蕉激情| 女人被躁到高潮嗷嗷叫费观| 后天国语完整版免费观看| 午夜视频精品福利| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 999久久久国产精品视频| 免费搜索国产男女视频| 国产人伦9x9x在线观看| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 欧美日本视频| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 日本 av在线| 久久久国产成人精品二区| 日韩精品青青久久久久久| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 99国产精品一区二区蜜桃av| 午夜福利影视在线免费观看| 亚洲av日韩精品久久久久久密| 淫妇啪啪啪对白视频| 18禁国产床啪视频网站| 亚洲国产精品久久男人天堂| 巨乳人妻的诱惑在线观看| 桃色一区二区三区在线观看| 亚洲全国av大片| 制服诱惑二区| 夜夜看夜夜爽夜夜摸| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 咕卡用的链子| 精品久久久久久久毛片微露脸| 一级毛片精品| 黄色视频不卡| 精品国内亚洲2022精品成人| www.999成人在线观看| 天堂影院成人在线观看| 午夜a级毛片| 多毛熟女@视频| 亚洲激情在线av| 91老司机精品| 免费在线观看完整版高清| 国产人伦9x9x在线观看| 在线永久观看黄色视频| 法律面前人人平等表现在哪些方面| 午夜福利欧美成人| 欧美成人免费av一区二区三区| 国产在线观看jvid| 国产精品亚洲av一区麻豆| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 久久精品aⅴ一区二区三区四区| 多毛熟女@视频| 日韩欧美一区二区三区在线观看| 成人18禁在线播放| 黄色女人牲交| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 一卡2卡三卡四卡精品乱码亚洲| 美女午夜性视频免费| 亚洲欧美精品综合久久99| 在线视频色国产色| 婷婷丁香在线五月| 免费少妇av软件| 熟女少妇亚洲综合色aaa.| 在线观看免费视频网站a站| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 黄色丝袜av网址大全| 久久中文看片网| 淫妇啪啪啪对白视频| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 久久久久久大精品| 香蕉久久夜色| 狠狠狠狠99中文字幕| 亚洲第一av免费看|