• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport property of inhomogeneous strained graphene?

    2021-03-19 03:19:26BingLanWu吳冰蘭QiangWei魏強(qiáng)ZhiQiangZhang張智強(qiáng)andHuaJiang江華
    Chinese Physics B 2021年3期
    關(guān)鍵詞:江華

    Bing-Lan Wu(吳冰蘭), Qiang Wei(魏強(qiáng)), Zhi-Qiang Zhang(張智強(qiáng)),?, and Hua Jiang(江華),3,?

    1School of Physics and Technology,Soochow University,Suzhou 215006,China

    2State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China

    3Institute for Advanced Study,Soochow University,Suzhou 215006,China

    Keywords: disorder effect,pseudo-magnetic field,strain,transport properties

    1. Introduction

    Over the past decades, the pseudo-magnetic field (PMF)attracts lots of attention due to the synthetic gauge field induced by the mechanical strain in materials,[1-4]which provides a new way of tailoring their electronic properties.[5-15]In graphene,for example,inhomogeneous strain can modulate the coordinate of Dirac cones which initially located at highsymmetry points K and K′.[1,2]Such inhomogeneous straininduced pseudo-gauge field Asenters into the effective Dirac Hamiltonian H=vfσ·p by replacing the mechanical momentum p with the generalized momentum p±eAs,where±denotes the K and K′valleys,respectively. In experiments,various inhomogeneous strained structures have been realized for graphene,[16-23]and the related PMF can reach up to hundreds of Teslas.[24,25]

    The huge field strength also promotes many experimental groups to explore the PMF in artificial graphene systems.[26-28]Among them,the realization of PMF in phonon crystals is an important progress in recent years.[29-32]Especially, PMF induced Landau levels (LLs) and edge states are successfully achieved in such a system.[32]It is natural to ask whether these two states pose the similar transport properties to those in magnetic fields (MFs). As is known, in quantum Hall effect,the edge states introduced by the MFs(U(1)gauge field)are robust against disorder,[2,33-36]while the corresponding LLs are localized. However,the edge states and the LLs in PMF[29,37-43]should be different,since the time-reversal symmetry ensures that the effective PMF of K valley is opposite to that of K′. Therefore, the influence of disorder to states in PMF should be addressed.

    In this paper,we study the transport properties of states in PMF.First,we construct an inhomogeneous strained graphene structure in which an uniform PMF is obtained. Then, the influence of disorder to LLs and edge states is numerically calculated. We find that the edge states induced by PMF are fragile to disorder. Furthermore,the dispersion of LL(except the zeroth LL) is tilted. It acts as one-dimensional channel inside the bulk, and disorder can also cause strong backscattering.We also find that the backscattering for both edge states and LL channels originating from PMF can be suppressed by an external MF,[40,44]because the spatial overlap between counter-propagating channels protected by time-reversal symmetry will be lifted. The above behaviors have the potential application in mesoscopic devices.

    2. Strained graphene model and corresponding spectra

    We consider a model with inhomogeneous strained graphene structure, as shown in Fig.1(a). The tight-binding Hamiltonian reads[1,2]

    To simulate the inhomogeneous stain-induced PMF,the hopping strength tijis simply classified into two categories.[40,47]First,the inhomogeneous strain-induced hopping in the vertical direction(y)is a linear function of the position y,

    in which α (in units of a?1, a is the lattice constant) is the parameter that characterizes the degree of strain. t is the energy unit. A typical distribution of tyis plotted in Fig.1(b). It shows the hopping strength marked in Fig.1(a)by red dashed ellipses. Second,the hopping strength in the other two directions remains a constant tij=t(see Appendix A).The effective Hamiltonian for K valley is written as[1]

    Fig.1. (a)A realization of PMF in graphene. It is achieved by adjusting the hopping along y direction. The MF is along z direction,and the width of the solid lines implies the hopping strength. The dashed green arrows show the vertical hopping ty and the rest of the hopping t. (b)A typical plot of ty versus y for(a).

    3. Transport properties of edge states of strained graphene

    In common view,topological edge states should be robust against disorder and lead to disspationless transport,[51-56]e.g.,QH and QSH.Very recently,such guideline more or less motivates the discovery of ‘QH’ induced by PMF. Thus, we first investigate the transport properties of edge states under PMF in this section.

    Figures 2(c)and 2(d)show the distribution of edge states with Ef=0.016t [see the green and black dots in Figs. 2(a)and 2(b)]. Different from the edge states of QH systems, the counter-propagating states under PMF only exist around the Ny=202 boundary,being consistent with previous studies.[29]It is noteworthy that the quality of edge states in this strained graphene depends on the ribbon width Nyand strain parameters α (see Appendix C). Since the spatial overlap will enhance backscattering between the counter-propagating states,one can anticipate that edge states in PMF would be fragile to disorder. Thus, we study the variation of differential conductance G for edge states under disorder. For simplicity,the Fermi energy is fixed at Ef=0.016t with φ =0 (i.e., MF is absent),where only the edge states exist[see Fig.2(a)]. When the disorder concentrates on the upper region of the sample[see Fig.3(a)],we find that G decreases sharply even for weak disorder[see Fig.3(c)]. In contrast,if disorder locates on the area without edge states, the G =e2/h plateau exists when W <t [see Figs.3(b)and 3(d)]. The behavior of G also suggests that the counter-propagating edge states under PMF distinguish from the helical edge states in QSH, since the latter are robust against nonmagnetic disorder.

    We also find that the external magnetic field will significantly redistribute the edge states when φ is large enough.For example, we plot the band structure in Fig.2(b) with φ =0.012,where the counter-propagating edge states become separated in space[see Figs.2(c)and 2(d)]. The redistributed channels are robust under disorder,which implies that the external magnetic field can eliminate the backscattering of the sample. If the edge states induced by PMF are destroyed by disorder,the external magnetic field will rebuild the quantized differential conductance G. As shown in Figs. 3(c) and 3(d),G increases with the increase of φ and reaches the quantized value e2/h again at φ =0.016. In practical application,since disorder inevitably exists and edge channels induced by PMF can be destroyed even under weak disorder (W ?t),a switch device could be achieved by adjusting the magnetic field strength in a sample with PMF.

    Fig.2. (a)and(b)The energy spectra with the same strain parameters α =0.015,and the MFs are φ =0 and φ =0.012,respectively. (c)and(d)The probability density distributions for the edge states marked with black and green circles in panels(a)and(b).

    Fig.3.(a)and(b)Schematic representation of two-terminal device(width Ny=202,length Nx=100),in which the violet region is disordered.The counter-propagating edge states are labeled with black and red arrows,where the left-moving edge states with and without φ are represented by solid red arrows and dotted red arrows,respectively. (c)and(d)Two-terminal differential conductance G versus disorder strength W for the devices shown in(a)and(b),respectively. The Fermi energy is fixed at Ef=0.016t.

    4. Transport properties of LLs of strained graphene

    Interestingly, compared with the localized LLs in QHE,we find that LLs of strained graphene impose unique transport properties. Due to the uniform Bs, the energy spectrum in strained graphene is also quantized into discrete LLs

    Here,n is the LL index. Significantly,if n/= 0,the LLs are no longer flat as it would be in an external MF,and thus it is more appropriate to call them pseudo-Landau levels(see Appendix D).For better comparison,we will still call them Landau levels(LLs). This is because both vx,vyand eigen-wavefunction[57]

    Figure 4(b) plots the spatial distribution of typical states for n=?1 LL with Ef=?0.173t and φ =0 [i.e., the red and gray circles in Fig.4(a)]. When MF is absent, the red and gray curves(corresponding to wavefunctions of forwarding LL and its counterpart) in Fig.4(b) overlap due to the time-reversal symmetry, and the center of the wavefunction is located around Ny=100. The effect of disorder on these states is also investigated. When Anderson disorder is applied to all areas of the device (i.e., both areas of A and B in Fig.4(c)),differential conductance G decreases to zero for W >3t (see the red line in Fig.4(d)), meaning all the states are localized by disorder. Then, we remove disorder in the range Ny∈[50,150](i.e.,yellow region A in Fig.4(c)). G for such condition holds e2/h plateau even when W >3t [see the black line in Fig.4(d)]. These results imply that one channel still exists. According to Fig.4(b), such conducting channel is corresponding to LL states. Moreover, the conducting LLs provide a routine to realize one-dimensional channels in a twodimensional system,and one can manipulate the on/off status of these channels by adjusting the distribution of disorder.

    Fig.4. (a)Energy spectrum of the strained graphene ribbon with α =0.015 and Ny=202. The system holds time-reversal symmetry since the real MF φ =0. (b)The typical probability density distribution of counter-propagating bulk n=?1 LL states marked with the gray and red circles in panel(a)at Ef=?0.0173t. (c)Schematic of two-terminal device. The yellow region with width δNy=10 and two violet regions represent bulk disordered region A and edge disordered area B, respectively. (d) Differential conductance G versus disorder strength W at Ef =?0.0173t. (e) Probability density distributions|Ψ|2 versus combinations(Ny ,E)for all the bulk states in n=?1 LL.The color bar represents the probability density. (f)G for the device shown in panel(c)with the disordered region B shifting from[85,95]to[105,115]. The disorder strength is fixed to W =4t.

    Although both edge states and LL states in PMF are onedimensional channels, their energy dependent behaviors are totally different. The spatial distribution of edge states (LL states)is insensitive(sensitive)to E. To deeply understand the LL states,we present their distribution of wavefunction versus Nyand energy E for the n=?1 LL.As shown in Fig.4(e),all the states of the LL are on the bulk of the sample. Also, the center of the wavefunction shifts almost linearly in space with an increase of E.These results are consistent with Eqs.(4)and(5)that the LLs(n/=0)are y(Ny)dependent.According to the above LLs behaviors,one can filter corresponding conducting channels for particular energy E region through engineering the disorder distribution. As shown in Fig.4(c),we put disorder only in region A.The differential conductance G decreases by e2/h[see Fig.4(f)],meaning that one of the bulk LL channels is filtered by the disorder. Moreover, the filtered energy region shifts to the lower energy as the disordered region A moves from[85,95]to[105,115]. It agrees with the distribution of wavefunction for LLs[see Fig.4(e)].

    Fig.5. (a) Energy spectrum of the strained graphene ribbon with α =0.015, Ny =202, and the external magnetic field φ =0.0015. (b)Schematic diagram of effective magnetic field in K and K′ valleys. The blue and red arrows represent the directions of the PMF and MF,respectively. (c)The probability density distribution of counter-propagating n=?1 LL states at Ef =?0.0177t (the black and red circles in panel(a)). (d)G versus disorder strength W with the disorder distributing in the range Ny ∈[105,115]for different MF φ. Other parameters are the same as those in Fig.2.

    5. Conclusion

    In summary, we study the transport properties of graphene states under inhomogeneous strain. We find both edge states and bulk LL states induced by pseudo-magnetic field build one-dimensional conducting channels,but they tend to be localized after the disorder is introduced. However,with the help of a real magnetic field,the suppression of backscattering recovers the conducting channels from localized LL states and edge states. Based on these results, a switching device could be realized in disordered pseudo-magnetic field graphene by adjusting the real magnetic field.

    Acknowledgement

    We are grateful to Chui-zhen Chen and Rui-Chun Xiao for helpful discussion.

    Appendix A

    When the uniaxial deformation is along an armchair direction(i.e.,the y axis in the main text),the hopping strength t1(ty),t2,t3in all three directions will change.According to the equation given in Ref.[47],the hopping strengths t2and t3can be expressed as t2=t3=(1+αy)0.12≈1+0.12αy ≈1 when assuming t1=1+αy. In order to further clarify the appropriateness of the approximation t2,3≈1,we plot the energy spectrum of strained graphene for t2,3=1 and t2,3=(1+αy)0.12in Fig.A1,and there is only little difference between the two models.Thus,our main results still hold.Besides,the hopping strength shown in our main text can be easily realized in artificial systems,[i.e.,photonic crystals,electric circuits,etc.]. In our main text,we set t2,3=1 only for simplicity.

    Fig.A1. Energy spectrum of the strained graphene for t2,3 =1 (blue solid line)and t2,3=(1+αy)0.12 (red dashed line).

    Appendix B

    In this appendix, we present the detailed derivation of the pseudo-gauge potential A and the Fermi velocity vx,vyin strained graphene. Since the results of K′valley are similar to those of K valley,we only consider the K valley for simplicity.

    Based on the tight-binding approximation, the Hamiltonian of an unstrained graphene can be written as

    in which ty=t and

    The corresponding Dirac point in K valley is sitting at

    which satisfies

    For the strained graphene, ty= t is replaced by ty=t(1+αy). Thus, the Dirac point K is shifted from KDto KS=KD+δ,and the follow equation still holds:

    Using KS=KD+δ, equation(B3)can be rewritten around the original Dirac point KDas

    To obtain the Fermi velocities vx,vy,we replace κ by KS+Δ.Then,the tight-binding Hamiltonian is given as follows:

    in which Δ=(Δx,Δy)is a vector between KSand κ. Moreover,

    [see Eq. (B3)]. After Taylor expanding h12to the first order,we find

    Based on Eq.(B7),the Fermi velocities are

    Appendix C

    In this appendix, we study the variation of the relative broadening of the edge state l/Nywith strain parameters α for two different system sizes Ny=202 and Ny=162,where l is the edge state broadening and Nyis the ribbon width.

    It can be seen from Fig.C1 that the smaller the strain strength is,the wider the edge state is expanded. However,for the larger system, its relative expansion is still small. Therefore,in order to obtain high-quality edge states,a larger strain parameter is needed for systems with a smaller sample size.

    Fig.C1. The relative broadening of the edge state l/Ny for different strain parameters α,where the red and the blue lines correspond to the ribbon widths Ny=202 and Ny=162,respectively.

    Appendix D

    Unlike in a real magnetic field,the LLS formed in a PMF can be tilted. As shown in Fig.D1, the tilted bands (except states with zero energy)under PMF are obtained as expected,and all the states are on the bulk of the sample. Further, the corresponding edge states are also observed(see the inset near Ny=202). Thus,these bands are similar to the traditional LLs in real magnetic fields,except the tilted dispersion. It is more appropriate to call them pseudo-Landau level(PLLs).

    Fig.D1. (a) Energy spectrum of the strained graphene ribbon with α =0.015,Ny=202. (b)and(c)Probability density distributions versus combinations (Ny, kx) for all the states in the 1st and 0th energy levels,respectively. The states marked by the red and green lines in(a)correspond to the bulk states in the red and green boxes in(b)and(c),respectively.

    猜你喜歡
    江華
    Role of excited states in helium-like ions on high-order harmonic generation
    江華:清正廉潔傳家風(fēng)
    為城市副中心高質(zhì)量發(fā)展提供堅(jiān)強(qiáng)組織保障
    Clinical observation of pediatric Tuina plus oral Chinese medication for pediatric anorexia due to spleen failing in transportation
    新商業(yè)模式下新商科通識(shí)課建設(shè)的思考和探索
    “鳥”與“烏”
    陳江華 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:20
    A 4-layer method of developing integrated sensor systems with LabVIEW
    巧記多音字(十四)
    讀寫算(上)(2012年10期)2012-09-10 12:14:38
    巧記多音字(十五)
    讀寫算(上)(2012年11期)2012-07-01 06:21:46
    巨乳人妻的诱惑在线观看| 久久久精品区二区三区| 国产亚洲最大av| 久久免费观看电影| 久久鲁丝午夜福利片| 国产亚洲精品第一综合不卡 | 久久精品熟女亚洲av麻豆精品| 亚洲图色成人| 久久久久久久大尺度免费视频| 国产无遮挡羞羞视频在线观看| 男女国产视频网站| 少妇人妻 视频| 街头女战士在线观看网站| 天天操日日干夜夜撸| 肉色欧美久久久久久久蜜桃| 久久久久久久久久成人| 亚洲第一av免费看| 丁香六月天网| 精品亚洲成国产av| 国产视频首页在线观看| 爱豆传媒免费全集在线观看| 一区在线观看完整版| 免费观看av网站的网址| 精品少妇黑人巨大在线播放| 国产色婷婷99| 精品一区二区三卡| 夜夜爽夜夜爽视频| 日韩制服丝袜自拍偷拍| 女性被躁到高潮视频| 久久99热这里只频精品6学生| 啦啦啦在线观看免费高清www| www.色视频.com| 国产精品国产三级国产av玫瑰| 色吧在线观看| 亚洲av.av天堂| 精品久久久久久电影网| 亚洲精品久久久久久婷婷小说| 男女下面插进去视频免费观看 | 我的女老师完整版在线观看| 99热国产这里只有精品6| 人人妻人人澡人人看| 精品一区二区免费观看| xxx大片免费视频| 日日撸夜夜添| freevideosex欧美| 亚洲av日韩在线播放| 国产av码专区亚洲av| 你懂的网址亚洲精品在线观看| 伦精品一区二区三区| 国产精品久久久av美女十八| 免费黄色在线免费观看| 亚洲婷婷狠狠爱综合网| 91久久精品国产一区二区三区| 国产精品秋霞免费鲁丝片| 男人操女人黄网站| 国产精品偷伦视频观看了| 国产黄频视频在线观看| 国产一区二区在线观看日韩| 国产福利在线免费观看视频| 深夜精品福利| 亚洲国产毛片av蜜桃av| 亚洲av综合色区一区| 女性被躁到高潮视频| 欧美日韩国产mv在线观看视频| 欧美日韩国产mv在线观看视频| 五月天丁香电影| 国产片特级美女逼逼视频| 国产成人av激情在线播放| 国产视频首页在线观看| 黑人猛操日本美女一级片| 综合色丁香网| 久久精品国产综合久久久 | 男人添女人高潮全过程视频| 乱码一卡2卡4卡精品| 亚洲欧美色中文字幕在线| 亚洲丝袜综合中文字幕| 国产探花极品一区二区| 久久亚洲国产成人精品v| 又黄又粗又硬又大视频| 看非洲黑人一级黄片| 一级毛片黄色毛片免费观看视频| 在线天堂最新版资源| 亚洲av日韩在线播放| 纵有疾风起免费观看全集完整版| 在线天堂最新版资源| 伦理电影大哥的女人| 欧美激情 高清一区二区三区| kizo精华| 亚洲,欧美精品.| 亚洲成色77777| 最近最新中文字幕大全免费视频 | 亚洲性久久影院| 五月开心婷婷网| 91精品三级在线观看| 宅男免费午夜| 日韩一区二区视频免费看| 午夜福利,免费看| 人人妻人人澡人人爽人人夜夜| 99视频精品全部免费 在线| 性高湖久久久久久久久免费观看| 波野结衣二区三区在线| 国产成人一区二区在线| 91精品三级在线观看| 一级毛片黄色毛片免费观看视频| 男女啪啪激烈高潮av片| 亚洲精品视频女| 男女免费视频国产| 国产男女超爽视频在线观看| 欧美人与善性xxx| 亚洲,欧美精品.| a级片在线免费高清观看视频| 中国美白少妇内射xxxbb| 亚洲,欧美精品.| 久久久欧美国产精品| 国产在线视频一区二区| 高清视频免费观看一区二区| 精品一品国产午夜福利视频| 午夜影院在线不卡| 丝瓜视频免费看黄片| 欧美成人精品欧美一级黄| 性色av一级| 麻豆精品久久久久久蜜桃| 97人妻天天添夜夜摸| 欧美 亚洲 国产 日韩一| 精品少妇久久久久久888优播| 在线观看国产h片| 日本av免费视频播放| 国产成人精品久久久久久| 国产不卡av网站在线观看| 国产在线视频一区二区| 99视频精品全部免费 在线| 精品人妻偷拍中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 免费高清在线观看日韩| 在线看a的网站| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| 国产高清国产精品国产三级| 9色porny在线观看| 高清不卡的av网站| 一本大道久久a久久精品| 久热久热在线精品观看| 在线观看免费视频网站a站| 免费大片黄手机在线观看| 国产精品.久久久| 久久久久国产网址| 久久久久精品人妻al黑| 国产成人精品在线电影| 欧美xxⅹ黑人| 日本av免费视频播放| 又粗又硬又长又爽又黄的视频| 黑人欧美特级aaaaaa片| 综合色丁香网| 中国国产av一级| 校园人妻丝袜中文字幕| 最近手机中文字幕大全| www日本在线高清视频| 国产精品一区www在线观看| 激情视频va一区二区三区| 99久久人妻综合| 免费在线观看完整版高清| 国产男女超爽视频在线观看| 肉色欧美久久久久久久蜜桃| 18在线观看网站| 桃花免费在线播放| 在线观看三级黄色| 天堂8中文在线网| 最近手机中文字幕大全| 欧美3d第一页| 久久精品熟女亚洲av麻豆精品| kizo精华| 国产探花极品一区二区| 久久久久久久久久成人| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 少妇被粗大猛烈的视频| 亚洲av男天堂| 免费久久久久久久精品成人欧美视频 | 亚洲精品久久成人aⅴ小说| 国产不卡av网站在线观看| 不卡视频在线观看欧美| 国产白丝娇喘喷水9色精品| 国产av精品麻豆| 久久久久久久久久久久大奶| 亚洲av男天堂| 大码成人一级视频| 精品久久国产蜜桃| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 91精品国产国语对白视频| 男男h啪啪无遮挡| 一本久久精品| 国产精品久久久久久精品电影小说| 久久精品夜色国产| 三级国产精品片| 999精品在线视频| 亚洲av在线观看美女高潮| 精品亚洲乱码少妇综合久久| 91成人精品电影| 午夜免费观看性视频| 色5月婷婷丁香| 男女边摸边吃奶| 各种免费的搞黄视频| 大码成人一级视频| 9色porny在线观看| 毛片一级片免费看久久久久| av女优亚洲男人天堂| 内地一区二区视频在线| 97超碰精品成人国产| 免费观看av网站的网址| 国产成人精品无人区| 日产精品乱码卡一卡2卡三| 欧美日韩视频精品一区| 大码成人一级视频| 国产在视频线精品| 黑人巨大精品欧美一区二区蜜桃 | 国产麻豆69| 99香蕉大伊视频| 日韩制服骚丝袜av| xxxhd国产人妻xxx| 黄网站色视频无遮挡免费观看| 久久国产精品男人的天堂亚洲 | 亚洲精品色激情综合| 久久久久人妻精品一区果冻| 人人澡人人妻人| 又黄又粗又硬又大视频| 国产69精品久久久久777片| 秋霞伦理黄片| 男女免费视频国产| 亚洲av男天堂| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 人妻系列 视频| 自线自在国产av| 十八禁网站网址无遮挡| av网站免费在线观看视频| 香蕉国产在线看| 在线观看国产h片| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 91精品三级在线观看| 欧美xxⅹ黑人| 又大又黄又爽视频免费| 成人影院久久| 久久午夜福利片| 亚洲av综合色区一区| 国产精品不卡视频一区二区| 1024视频免费在线观看| 五月玫瑰六月丁香| 国内精品宾馆在线| 国产成人欧美| 日本欧美视频一区| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 亚洲av福利一区| 老司机亚洲免费影院| 国产色婷婷99| 高清视频免费观看一区二区| 国产熟女欧美一区二区| 蜜臀久久99精品久久宅男| 一本—道久久a久久精品蜜桃钙片| 视频中文字幕在线观看| 在现免费观看毛片| 亚洲精品国产av蜜桃| 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| 亚洲综合色网址| 免费观看性生交大片5| 亚洲综合精品二区| 国产69精品久久久久777片| 午夜福利视频在线观看免费| 欧美激情 高清一区二区三区| 全区人妻精品视频| 制服诱惑二区| 少妇的逼好多水| 国产精品久久久久久av不卡| 侵犯人妻中文字幕一二三四区| 亚洲少妇的诱惑av| 欧美+日韩+精品| 国产免费福利视频在线观看| 精品一区二区三区四区五区乱码 | 久久人妻熟女aⅴ| 午夜av观看不卡| 国产精品欧美亚洲77777| 中文字幕精品免费在线观看视频 | 中文字幕人妻熟女乱码| 亚洲精品久久午夜乱码| 国产乱来视频区| 精品一品国产午夜福利视频| 男女下面插进去视频免费观看 | av在线app专区| 香蕉丝袜av| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费视频播放在线视频| 亚洲五月色婷婷综合| 亚洲少妇的诱惑av| 免费看光身美女| 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 久久99热6这里只有精品| 免费在线观看完整版高清| 如日韩欧美国产精品一区二区三区| 国产成人精品婷婷| 亚洲色图综合在线观看| 一级黄片播放器| 日韩电影二区| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 国产免费一区二区三区四区乱码| 九九爱精品视频在线观看| 久久久久久久久久人人人人人人| 国产精品人妻久久久影院| 婷婷色综合www| 内地一区二区视频在线| 国产在线免费精品| 亚洲国产av影院在线观看| 亚洲成人手机| 精品亚洲成a人片在线观看| 熟女电影av网| 亚洲国产av影院在线观看| 在线观看国产h片| 欧美丝袜亚洲另类| 国产一区二区三区综合在线观看 | 男人爽女人下面视频在线观看| 国产精品国产av在线观看| 亚洲激情五月婷婷啪啪| 国产精品免费大片| 我要看黄色一级片免费的| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 久久这里有精品视频免费| 免费人妻精品一区二区三区视频| 久久久久视频综合| 国产在线一区二区三区精| 日本黄色日本黄色录像| 香蕉国产在线看| 色视频在线一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 精品人妻偷拍中文字幕| 日本猛色少妇xxxxx猛交久久| 欧美 亚洲 国产 日韩一| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 中文字幕av电影在线播放| 亚洲精品456在线播放app| 熟女av电影| 亚洲精品日韩在线中文字幕| 国产成人精品婷婷| www日本在线高清视频| av在线app专区| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 久久国产亚洲av麻豆专区| 成人二区视频| 18禁国产床啪视频网站| 人人妻人人澡人人看| 亚洲成人手机| 亚洲欧美色中文字幕在线| 久久女婷五月综合色啪小说| 如日韩欧美国产精品一区二区三区| 色哟哟·www| 中文字幕精品免费在线观看视频 | 日韩精品有码人妻一区| 2021少妇久久久久久久久久久| 18+在线观看网站| av播播在线观看一区| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 老司机影院毛片| 国产精品三级大全| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 高清av免费在线| 99热全是精品| 免费在线观看完整版高清| 18在线观看网站| 男女高潮啪啪啪动态图| 久久人人爽人人片av| 亚洲精品一二三| 免费观看a级毛片全部| 人妻人人澡人人爽人人| 秋霞伦理黄片| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 中文字幕免费在线视频6| 欧美最新免费一区二区三区| 美女国产视频在线观看| 亚洲综合精品二区| 热99久久久久精品小说推荐| 国产精品无大码| 国产精品久久久久久av不卡| 少妇精品久久久久久久| 日韩一本色道免费dvd| 天美传媒精品一区二区| av在线app专区| 美女大奶头黄色视频| 丰满乱子伦码专区| 妹子高潮喷水视频| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 曰老女人黄片| 免费看光身美女| 国产精品人妻久久久影院| 少妇 在线观看| 少妇高潮的动态图| 黑人高潮一二区| 在线免费观看不下载黄p国产| 亚洲欧美成人精品一区二区| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 亚洲伊人色综图| 超色免费av| 精品国产国语对白av| 久久久欧美国产精品| 又大又黄又爽视频免费| videossex国产| 成人综合一区亚洲| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 久久精品久久久久久久性| 国产精品久久久av美女十八| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 校园人妻丝袜中文字幕| 午夜福利视频在线观看免费| 免费高清在线观看视频在线观看| 亚洲高清免费不卡视频| 巨乳人妻的诱惑在线观看| 伊人亚洲综合成人网| 欧美性感艳星| 日韩制服丝袜自拍偷拍| 日本-黄色视频高清免费观看| 一级a做视频免费观看| 超碰97精品在线观看| 国产白丝娇喘喷水9色精品| 成人国语在线视频| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 亚洲欧洲国产日韩| 精品一区二区三区视频在线| 熟女av电影| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 欧美日本中文国产一区发布| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 天堂8中文在线网| 高清毛片免费看| 免费女性裸体啪啪无遮挡网站| 激情五月婷婷亚洲| 国产深夜福利视频在线观看| 两性夫妻黄色片 | 亚洲国产欧美日韩在线播放| 亚洲第一区二区三区不卡| 亚洲色图综合在线观看| 青春草视频在线免费观看| 草草在线视频免费看| 国产精品99久久99久久久不卡 | 久久97久久精品| 夜夜爽夜夜爽视频| 久久这里只有精品19| 国产精品国产三级国产专区5o| 精品酒店卫生间| 2018国产大陆天天弄谢| 国产乱来视频区| 不卡视频在线观看欧美| 精品午夜福利在线看| 国产乱来视频区| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 成人午夜精彩视频在线观看| 久久人人爽av亚洲精品天堂| 中文字幕免费在线视频6| 日本wwww免费看| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 久久久久精品久久久久真实原创| 青春草国产在线视频| 国产成人精品久久久久久| xxxhd国产人妻xxx| 国产xxxxx性猛交| 哪个播放器可以免费观看大片| 9191精品国产免费久久| 国产高清三级在线| 婷婷色综合大香蕉| 最后的刺客免费高清国语| 亚洲第一av免费看| 精品一区二区三区四区五区乱码 | 大码成人一级视频| 欧美亚洲日本最大视频资源| 亚洲av国产av综合av卡| 欧美人与性动交α欧美软件 | 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 丰满迷人的少妇在线观看| 国产精品久久久av美女十八| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 美女xxoo啪啪120秒动态图| 巨乳人妻的诱惑在线观看| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在 | 国产精品成人在线| 五月天丁香电影| 最近中文字幕2019免费版| xxxhd国产人妻xxx| 男女无遮挡免费网站观看| 久久久久精品久久久久真实原创| 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 青青草视频在线视频观看| 亚洲第一av免费看| 少妇人妻 视频| 久久久久国产精品人妻一区二区| 免费av不卡在线播放| 色视频在线一区二区三区| 亚洲国产看品久久| 亚洲欧洲国产日韩| 妹子高潮喷水视频| 纵有疾风起免费观看全集完整版| 美女福利国产在线| 欧美激情国产日韩精品一区| 国产男女内射视频| 老女人水多毛片| 看非洲黑人一级黄片| 一级黄片播放器| 永久免费av网站大全| 精品卡一卡二卡四卡免费| 国产在线视频一区二区| 一级毛片电影观看| 老女人水多毛片| 国产精品秋霞免费鲁丝片| 在线观看www视频免费| 日韩一本色道免费dvd| 国产在视频线精品| 成人免费观看视频高清| 国产视频首页在线观看| av在线老鸭窝| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品,欧美精品| 亚洲国产色片| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 亚洲成人手机| 国产欧美亚洲国产| 一区二区三区四区激情视频| 亚洲性久久影院| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 看十八女毛片水多多多| 国产亚洲最大av| 国产淫语在线视频| 日韩大片免费观看网站| 91成人精品电影| 一级毛片 在线播放| 一个人免费看片子| 亚洲av成人精品一二三区| 日韩制服丝袜自拍偷拍| 99热国产这里只有精品6| 亚洲国产欧美日韩在线播放| 久久免费观看电影| 水蜜桃什么品种好| 亚洲精品自拍成人| 久久人人爽人人片av| 成人黄色视频免费在线看| 妹子高潮喷水视频| av福利片在线| 久久久久久人人人人人| 成人国产麻豆网| 另类精品久久| 波多野结衣一区麻豆| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 免费日韩欧美在线观看| 少妇高潮的动态图| 美女福利国产在线| 少妇被粗大的猛进出69影院 | 大香蕉97超碰在线| 人成视频在线观看免费观看| 日韩一区二区三区影片| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| av福利片在线| 99久久人妻综合| 亚洲伊人久久精品综合| 97在线人人人人妻| 七月丁香在线播放| 国产xxxxx性猛交| 欧美精品国产亚洲| av视频免费观看在线观看| √禁漫天堂资源中文www| 欧美老熟妇乱子伦牲交| av天堂久久9| 欧美日本中文国产一区发布| 一区二区三区四区激情视频| 亚洲人成77777在线视频| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡| 亚洲欧美中文字幕日韩二区| 亚洲精品视频女| 欧美亚洲日本最大视频资源| www.色视频.com| 欧美97在线视频| 丰满乱子伦码专区|