• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport property of inhomogeneous strained graphene?

    2021-03-19 03:19:26BingLanWu吳冰蘭QiangWei魏強(qiáng)ZhiQiangZhang張智強(qiáng)andHuaJiang江華
    Chinese Physics B 2021年3期
    關(guān)鍵詞:江華

    Bing-Lan Wu(吳冰蘭), Qiang Wei(魏強(qiáng)), Zhi-Qiang Zhang(張智強(qiáng)),?, and Hua Jiang(江華),3,?

    1School of Physics and Technology,Soochow University,Suzhou 215006,China

    2State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China

    3Institute for Advanced Study,Soochow University,Suzhou 215006,China

    Keywords: disorder effect,pseudo-magnetic field,strain,transport properties

    1. Introduction

    Over the past decades, the pseudo-magnetic field (PMF)attracts lots of attention due to the synthetic gauge field induced by the mechanical strain in materials,[1-4]which provides a new way of tailoring their electronic properties.[5-15]In graphene,for example,inhomogeneous strain can modulate the coordinate of Dirac cones which initially located at highsymmetry points K and K′.[1,2]Such inhomogeneous straininduced pseudo-gauge field Asenters into the effective Dirac Hamiltonian H=vfσ·p by replacing the mechanical momentum p with the generalized momentum p±eAs,where±denotes the K and K′valleys,respectively. In experiments,various inhomogeneous strained structures have been realized for graphene,[16-23]and the related PMF can reach up to hundreds of Teslas.[24,25]

    The huge field strength also promotes many experimental groups to explore the PMF in artificial graphene systems.[26-28]Among them,the realization of PMF in phonon crystals is an important progress in recent years.[29-32]Especially, PMF induced Landau levels (LLs) and edge states are successfully achieved in such a system.[32]It is natural to ask whether these two states pose the similar transport properties to those in magnetic fields (MFs). As is known, in quantum Hall effect,the edge states introduced by the MFs(U(1)gauge field)are robust against disorder,[2,33-36]while the corresponding LLs are localized. However,the edge states and the LLs in PMF[29,37-43]should be different,since the time-reversal symmetry ensures that the effective PMF of K valley is opposite to that of K′. Therefore, the influence of disorder to states in PMF should be addressed.

    In this paper,we study the transport properties of states in PMF.First,we construct an inhomogeneous strained graphene structure in which an uniform PMF is obtained. Then, the influence of disorder to LLs and edge states is numerically calculated. We find that the edge states induced by PMF are fragile to disorder. Furthermore,the dispersion of LL(except the zeroth LL) is tilted. It acts as one-dimensional channel inside the bulk, and disorder can also cause strong backscattering.We also find that the backscattering for both edge states and LL channels originating from PMF can be suppressed by an external MF,[40,44]because the spatial overlap between counter-propagating channels protected by time-reversal symmetry will be lifted. The above behaviors have the potential application in mesoscopic devices.

    2. Strained graphene model and corresponding spectra

    We consider a model with inhomogeneous strained graphene structure, as shown in Fig.1(a). The tight-binding Hamiltonian reads[1,2]

    To simulate the inhomogeneous stain-induced PMF,the hopping strength tijis simply classified into two categories.[40,47]First,the inhomogeneous strain-induced hopping in the vertical direction(y)is a linear function of the position y,

    in which α (in units of a?1, a is the lattice constant) is the parameter that characterizes the degree of strain. t is the energy unit. A typical distribution of tyis plotted in Fig.1(b). It shows the hopping strength marked in Fig.1(a)by red dashed ellipses. Second,the hopping strength in the other two directions remains a constant tij=t(see Appendix A).The effective Hamiltonian for K valley is written as[1]

    Fig.1. (a)A realization of PMF in graphene. It is achieved by adjusting the hopping along y direction. The MF is along z direction,and the width of the solid lines implies the hopping strength. The dashed green arrows show the vertical hopping ty and the rest of the hopping t. (b)A typical plot of ty versus y for(a).

    3. Transport properties of edge states of strained graphene

    In common view,topological edge states should be robust against disorder and lead to disspationless transport,[51-56]e.g.,QH and QSH.Very recently,such guideline more or less motivates the discovery of ‘QH’ induced by PMF. Thus, we first investigate the transport properties of edge states under PMF in this section.

    Figures 2(c)and 2(d)show the distribution of edge states with Ef=0.016t [see the green and black dots in Figs. 2(a)and 2(b)]. Different from the edge states of QH systems, the counter-propagating states under PMF only exist around the Ny=202 boundary,being consistent with previous studies.[29]It is noteworthy that the quality of edge states in this strained graphene depends on the ribbon width Nyand strain parameters α (see Appendix C). Since the spatial overlap will enhance backscattering between the counter-propagating states,one can anticipate that edge states in PMF would be fragile to disorder. Thus, we study the variation of differential conductance G for edge states under disorder. For simplicity,the Fermi energy is fixed at Ef=0.016t with φ =0 (i.e., MF is absent),where only the edge states exist[see Fig.2(a)]. When the disorder concentrates on the upper region of the sample[see Fig.3(a)],we find that G decreases sharply even for weak disorder[see Fig.3(c)]. In contrast,if disorder locates on the area without edge states, the G =e2/h plateau exists when W <t [see Figs.3(b)and 3(d)]. The behavior of G also suggests that the counter-propagating edge states under PMF distinguish from the helical edge states in QSH, since the latter are robust against nonmagnetic disorder.

    We also find that the external magnetic field will significantly redistribute the edge states when φ is large enough.For example, we plot the band structure in Fig.2(b) with φ =0.012,where the counter-propagating edge states become separated in space[see Figs.2(c)and 2(d)]. The redistributed channels are robust under disorder,which implies that the external magnetic field can eliminate the backscattering of the sample. If the edge states induced by PMF are destroyed by disorder,the external magnetic field will rebuild the quantized differential conductance G. As shown in Figs. 3(c) and 3(d),G increases with the increase of φ and reaches the quantized value e2/h again at φ =0.016. In practical application,since disorder inevitably exists and edge channels induced by PMF can be destroyed even under weak disorder (W ?t),a switch device could be achieved by adjusting the magnetic field strength in a sample with PMF.

    Fig.2. (a)and(b)The energy spectra with the same strain parameters α =0.015,and the MFs are φ =0 and φ =0.012,respectively. (c)and(d)The probability density distributions for the edge states marked with black and green circles in panels(a)and(b).

    Fig.3.(a)and(b)Schematic representation of two-terminal device(width Ny=202,length Nx=100),in which the violet region is disordered.The counter-propagating edge states are labeled with black and red arrows,where the left-moving edge states with and without φ are represented by solid red arrows and dotted red arrows,respectively. (c)and(d)Two-terminal differential conductance G versus disorder strength W for the devices shown in(a)and(b),respectively. The Fermi energy is fixed at Ef=0.016t.

    4. Transport properties of LLs of strained graphene

    Interestingly, compared with the localized LLs in QHE,we find that LLs of strained graphene impose unique transport properties. Due to the uniform Bs, the energy spectrum in strained graphene is also quantized into discrete LLs

    Here,n is the LL index. Significantly,if n/= 0,the LLs are no longer flat as it would be in an external MF,and thus it is more appropriate to call them pseudo-Landau levels(see Appendix D).For better comparison,we will still call them Landau levels(LLs). This is because both vx,vyand eigen-wavefunction[57]

    Figure 4(b) plots the spatial distribution of typical states for n=?1 LL with Ef=?0.173t and φ =0 [i.e., the red and gray circles in Fig.4(a)]. When MF is absent, the red and gray curves(corresponding to wavefunctions of forwarding LL and its counterpart) in Fig.4(b) overlap due to the time-reversal symmetry, and the center of the wavefunction is located around Ny=100. The effect of disorder on these states is also investigated. When Anderson disorder is applied to all areas of the device (i.e., both areas of A and B in Fig.4(c)),differential conductance G decreases to zero for W >3t (see the red line in Fig.4(d)), meaning all the states are localized by disorder. Then, we remove disorder in the range Ny∈[50,150](i.e.,yellow region A in Fig.4(c)). G for such condition holds e2/h plateau even when W >3t [see the black line in Fig.4(d)]. These results imply that one channel still exists. According to Fig.4(b), such conducting channel is corresponding to LL states. Moreover, the conducting LLs provide a routine to realize one-dimensional channels in a twodimensional system,and one can manipulate the on/off status of these channels by adjusting the distribution of disorder.

    Fig.4. (a)Energy spectrum of the strained graphene ribbon with α =0.015 and Ny=202. The system holds time-reversal symmetry since the real MF φ =0. (b)The typical probability density distribution of counter-propagating bulk n=?1 LL states marked with the gray and red circles in panel(a)at Ef=?0.0173t. (c)Schematic of two-terminal device. The yellow region with width δNy=10 and two violet regions represent bulk disordered region A and edge disordered area B, respectively. (d) Differential conductance G versus disorder strength W at Ef =?0.0173t. (e) Probability density distributions|Ψ|2 versus combinations(Ny ,E)for all the bulk states in n=?1 LL.The color bar represents the probability density. (f)G for the device shown in panel(c)with the disordered region B shifting from[85,95]to[105,115]. The disorder strength is fixed to W =4t.

    Although both edge states and LL states in PMF are onedimensional channels, their energy dependent behaviors are totally different. The spatial distribution of edge states (LL states)is insensitive(sensitive)to E. To deeply understand the LL states,we present their distribution of wavefunction versus Nyand energy E for the n=?1 LL.As shown in Fig.4(e),all the states of the LL are on the bulk of the sample. Also, the center of the wavefunction shifts almost linearly in space with an increase of E.These results are consistent with Eqs.(4)and(5)that the LLs(n/=0)are y(Ny)dependent.According to the above LLs behaviors,one can filter corresponding conducting channels for particular energy E region through engineering the disorder distribution. As shown in Fig.4(c),we put disorder only in region A.The differential conductance G decreases by e2/h[see Fig.4(f)],meaning that one of the bulk LL channels is filtered by the disorder. Moreover, the filtered energy region shifts to the lower energy as the disordered region A moves from[85,95]to[105,115]. It agrees with the distribution of wavefunction for LLs[see Fig.4(e)].

    Fig.5. (a) Energy spectrum of the strained graphene ribbon with α =0.015, Ny =202, and the external magnetic field φ =0.0015. (b)Schematic diagram of effective magnetic field in K and K′ valleys. The blue and red arrows represent the directions of the PMF and MF,respectively. (c)The probability density distribution of counter-propagating n=?1 LL states at Ef =?0.0177t (the black and red circles in panel(a)). (d)G versus disorder strength W with the disorder distributing in the range Ny ∈[105,115]for different MF φ. Other parameters are the same as those in Fig.2.

    5. Conclusion

    In summary, we study the transport properties of graphene states under inhomogeneous strain. We find both edge states and bulk LL states induced by pseudo-magnetic field build one-dimensional conducting channels,but they tend to be localized after the disorder is introduced. However,with the help of a real magnetic field,the suppression of backscattering recovers the conducting channels from localized LL states and edge states. Based on these results, a switching device could be realized in disordered pseudo-magnetic field graphene by adjusting the real magnetic field.

    Acknowledgement

    We are grateful to Chui-zhen Chen and Rui-Chun Xiao for helpful discussion.

    Appendix A

    When the uniaxial deformation is along an armchair direction(i.e.,the y axis in the main text),the hopping strength t1(ty),t2,t3in all three directions will change.According to the equation given in Ref.[47],the hopping strengths t2and t3can be expressed as t2=t3=(1+αy)0.12≈1+0.12αy ≈1 when assuming t1=1+αy. In order to further clarify the appropriateness of the approximation t2,3≈1,we plot the energy spectrum of strained graphene for t2,3=1 and t2,3=(1+αy)0.12in Fig.A1,and there is only little difference between the two models.Thus,our main results still hold.Besides,the hopping strength shown in our main text can be easily realized in artificial systems,[i.e.,photonic crystals,electric circuits,etc.]. In our main text,we set t2,3=1 only for simplicity.

    Fig.A1. Energy spectrum of the strained graphene for t2,3 =1 (blue solid line)and t2,3=(1+αy)0.12 (red dashed line).

    Appendix B

    In this appendix, we present the detailed derivation of the pseudo-gauge potential A and the Fermi velocity vx,vyin strained graphene. Since the results of K′valley are similar to those of K valley,we only consider the K valley for simplicity.

    Based on the tight-binding approximation, the Hamiltonian of an unstrained graphene can be written as

    in which ty=t and

    The corresponding Dirac point in K valley is sitting at

    which satisfies

    For the strained graphene, ty= t is replaced by ty=t(1+αy). Thus, the Dirac point K is shifted from KDto KS=KD+δ,and the follow equation still holds:

    Using KS=KD+δ, equation(B3)can be rewritten around the original Dirac point KDas

    To obtain the Fermi velocities vx,vy,we replace κ by KS+Δ.Then,the tight-binding Hamiltonian is given as follows:

    in which Δ=(Δx,Δy)is a vector between KSand κ. Moreover,

    [see Eq. (B3)]. After Taylor expanding h12to the first order,we find

    Based on Eq.(B7),the Fermi velocities are

    Appendix C

    In this appendix, we study the variation of the relative broadening of the edge state l/Nywith strain parameters α for two different system sizes Ny=202 and Ny=162,where l is the edge state broadening and Nyis the ribbon width.

    It can be seen from Fig.C1 that the smaller the strain strength is,the wider the edge state is expanded. However,for the larger system, its relative expansion is still small. Therefore,in order to obtain high-quality edge states,a larger strain parameter is needed for systems with a smaller sample size.

    Fig.C1. The relative broadening of the edge state l/Ny for different strain parameters α,where the red and the blue lines correspond to the ribbon widths Ny=202 and Ny=162,respectively.

    Appendix D

    Unlike in a real magnetic field,the LLS formed in a PMF can be tilted. As shown in Fig.D1, the tilted bands (except states with zero energy)under PMF are obtained as expected,and all the states are on the bulk of the sample. Further, the corresponding edge states are also observed(see the inset near Ny=202). Thus,these bands are similar to the traditional LLs in real magnetic fields,except the tilted dispersion. It is more appropriate to call them pseudo-Landau level(PLLs).

    Fig.D1. (a) Energy spectrum of the strained graphene ribbon with α =0.015,Ny=202. (b)and(c)Probability density distributions versus combinations (Ny, kx) for all the states in the 1st and 0th energy levels,respectively. The states marked by the red and green lines in(a)correspond to the bulk states in the red and green boxes in(b)and(c),respectively.

    猜你喜歡
    江華
    Role of excited states in helium-like ions on high-order harmonic generation
    江華:清正廉潔傳家風(fēng)
    為城市副中心高質(zhì)量發(fā)展提供堅(jiān)強(qiáng)組織保障
    Clinical observation of pediatric Tuina plus oral Chinese medication for pediatric anorexia due to spleen failing in transportation
    新商業(yè)模式下新商科通識(shí)課建設(shè)的思考和探索
    “鳥”與“烏”
    陳江華 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:20
    A 4-layer method of developing integrated sensor systems with LabVIEW
    巧記多音字(十四)
    讀寫算(上)(2012年10期)2012-09-10 12:14:38
    巧記多音字(十五)
    讀寫算(上)(2012年11期)2012-07-01 06:21:46
    女人精品久久久久毛片| 亚洲欧洲精品一区二区精品久久久| 满18在线观看网站| 婷婷色麻豆天堂久久| 国产成人91sexporn| av一本久久久久| 欧美人与性动交α欧美软件| 亚洲国产精品国产精品| 欧美激情极品国产一区二区三区| 日本av免费视频播放| cao死你这个sao货| 在线av久久热| 国产在视频线精品| 久久精品国产a三级三级三级| 亚洲,欧美精品.| 久久99一区二区三区| 国产一区二区在线观看av| 91老司机精品| 亚洲成人免费电影在线观看 | 国产成人91sexporn| 黄色a级毛片大全视频| 欧美日韩精品网址| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 后天国语完整版免费观看| 一本—道久久a久久精品蜜桃钙片| 日本av手机在线免费观看| 一级a爱视频在线免费观看| av天堂在线播放| 在线精品无人区一区二区三| 香蕉国产在线看| 黑人猛操日本美女一级片| 我要看黄色一级片免费的| 久久人人97超碰香蕉20202| 欧美黄色片欧美黄色片| 亚洲av国产av综合av卡| 久久午夜综合久久蜜桃| 在线观看www视频免费| 欧美在线黄色| 永久免费av网站大全| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 亚洲av在线观看美女高潮| 久久久久精品人妻al黑| 在线观看免费午夜福利视频| 日本欧美国产在线视频| a 毛片基地| 丁香六月天网| 亚洲欧美一区二区三区黑人| 亚洲综合色网址| 男男h啪啪无遮挡| 久久久精品区二区三区| 99re6热这里在线精品视频| 久久精品成人免费网站| 两个人看的免费小视频| 老汉色∧v一级毛片| 亚洲成人国产一区在线观看 | 最近手机中文字幕大全| 国产日韩欧美亚洲二区| 精品国产一区二区三区久久久樱花| 亚洲人成电影免费在线| 亚洲中文日韩欧美视频| 久久久久久人人人人人| www.999成人在线观看| 伊人亚洲综合成人网| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精| 亚洲 国产 在线| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 成年av动漫网址| 国产欧美亚洲国产| av片东京热男人的天堂| 日本欧美国产在线视频| 另类亚洲欧美激情| a级毛片在线看网站| 国产男女内射视频| 亚洲成人免费电影在线观看 | 日本av免费视频播放| 黑人欧美特级aaaaaa片| 晚上一个人看的免费电影| 99re6热这里在线精品视频| 久久九九热精品免费| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 久久久国产精品麻豆| 国产欧美日韩综合在线一区二区| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 黄色视频不卡| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| h视频一区二区三区| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 亚洲国产看品久久| 亚洲精品自拍成人| 黄色a级毛片大全视频| 亚洲精品国产区一区二| 亚洲成色77777| 九草在线视频观看| 最新在线观看一区二区三区 | 一二三四社区在线视频社区8| 午夜av观看不卡| 亚洲欧美日韩高清在线视频 | 亚洲国产精品成人久久小说| 一本一本久久a久久精品综合妖精| 香蕉国产在线看| 久久99热这里只频精品6学生| 婷婷成人精品国产| av有码第一页| 亚洲免费av在线视频| 咕卡用的链子| 精品人妻在线不人妻| 欧美xxⅹ黑人| 欧美大码av| 在线观看www视频免费| 老汉色av国产亚洲站长工具| e午夜精品久久久久久久| 日韩免费高清中文字幕av| tube8黄色片| 国产成人精品久久二区二区91| 欧美日韩亚洲国产一区二区在线观看 | 国产爽快片一区二区三区| 女性生殖器流出的白浆| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 国产黄频视频在线观看| 精品少妇内射三级| 乱人伦中国视频| 两个人免费观看高清视频| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 麻豆乱淫一区二区| 国产亚洲欧美在线一区二区| xxx大片免费视频| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美精品济南到| 啦啦啦视频在线资源免费观看| 亚洲av综合色区一区| 久久久久精品人妻al黑| 久久久久视频综合| 在线观看www视频免费| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 手机成人av网站| 国产午夜精品一二区理论片| 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| 美女中出高潮动态图| 日韩人妻精品一区2区三区| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 欧美精品一区二区大全| 黄色怎么调成土黄色| 嫩草影视91久久| 欧美激情高清一区二区三区| 国产日韩一区二区三区精品不卡| 午夜免费成人在线视频| 日韩av不卡免费在线播放| 黄片播放在线免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影观看| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| a级毛片黄视频| 尾随美女入室| 狂野欧美激情性xxxx| 九色亚洲精品在线播放| videosex国产| 国产精品欧美亚洲77777| 久久久久久免费高清国产稀缺| 女人久久www免费人成看片| 久久久久久亚洲精品国产蜜桃av| 丰满饥渴人妻一区二区三| 看十八女毛片水多多多| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 男女边摸边吃奶| 免费在线观看日本一区| 国产精品香港三级国产av潘金莲 | 亚洲av成人不卡在线观看播放网 | 色综合欧美亚洲国产小说| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| 午夜久久久在线观看| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全免费视频 | 成人亚洲精品一区在线观看| 国产高清国产精品国产三级| 男女午夜视频在线观看| 亚洲人成电影观看| 免费在线观看视频国产中文字幕亚洲 | 少妇被粗大的猛进出69影院| 国产一区二区三区av在线| 久久精品国产综合久久久| 国产淫语在线视频| 国产一区二区在线观看av| 曰老女人黄片| 国产三级黄色录像| av一本久久久久| 好男人电影高清在线观看| 亚洲av日韩在线播放| 9色porny在线观看| 久久国产精品男人的天堂亚洲| 超色免费av| 色播在线永久视频| 尾随美女入室| 日韩av免费高清视频| 欧美日韩黄片免| 肉色欧美久久久久久久蜜桃| 国精品久久久久久国模美| 午夜影院在线不卡| 亚洲av成人精品一二三区| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| 国产精品三级大全| 黑人巨大精品欧美一区二区蜜桃| 免费人妻精品一区二区三区视频| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情av网站| 成人免费观看视频高清| 亚洲av电影在线观看一区二区三区| av天堂在线播放| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 亚洲男人天堂网一区| 在线av久久热| 男人舔女人的私密视频| 大香蕉久久成人网| a 毛片基地| 久久精品人人爽人人爽视色| 人人澡人人妻人| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 日韩中文字幕欧美一区二区 | 看免费av毛片| 蜜桃在线观看..| 色婷婷av一区二区三区视频| 少妇粗大呻吟视频| 日韩av在线免费看完整版不卡| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| √禁漫天堂资源中文www| 韩国精品一区二区三区| 麻豆国产av国片精品| 亚洲一区中文字幕在线| 精品国产一区二区三区久久久樱花| 中国国产av一级| 欧美av亚洲av综合av国产av| 国产麻豆69| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| bbb黄色大片| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| av天堂久久9| 搡老岳熟女国产| 精品熟女少妇八av免费久了| 丰满饥渴人妻一区二区三| 男女免费视频国产| 欧美日韩国产mv在线观看视频| 久久亚洲国产成人精品v| 少妇的丰满在线观看| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 国产精品99久久99久久久不卡| 亚洲av电影在线进入| 久久影院123| 久久久国产欧美日韩av| 菩萨蛮人人尽说江南好唐韦庄| 建设人人有责人人尽责人人享有的| 国产成人精品久久久久久| 国产1区2区3区精品| 国产一卡二卡三卡精品| www.精华液| 精品人妻一区二区三区麻豆| 国产成人一区二区三区免费视频网站 | 久久亚洲精品不卡| 日韩中文字幕视频在线看片| 日本五十路高清| 成人手机av| 欧美日韩精品网址| 男女免费视频国产| 超碰成人久久| 免费观看av网站的网址| 大片免费播放器 马上看| 午夜福利,免费看| 亚洲国产中文字幕在线视频| 欧美在线黄色| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 免费高清在线观看视频在线观看| 少妇 在线观看| 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看 | 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 看十八女毛片水多多多| 国产一区二区在线观看av| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网 | 波野结衣二区三区在线| 两人在一起打扑克的视频| a 毛片基地| 久久久久久人人人人人| 中文字幕av电影在线播放| 午夜日韩欧美国产| av天堂在线播放| 精品国产一区二区三区久久久樱花| 欧美日韩一级在线毛片| 欧美日韩国产mv在线观看视频| 欧美97在线视频| 中国美女看黄片| 国产av国产精品国产| 97在线人人人人妻| 最近最新中文字幕大全免费视频 | 建设人人有责人人尽责人人享有的| 啦啦啦 在线观看视频| av片东京热男人的天堂| 九色亚洲精品在线播放| 国产欧美日韩精品亚洲av| 日本vs欧美在线观看视频| 欧美性长视频在线观看| 国产精品久久久人人做人人爽| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 欧美人与性动交α欧美软件| 狠狠婷婷综合久久久久久88av| 在线观看免费高清a一片| 国产欧美日韩精品亚洲av| 中国国产av一级| 欧美变态另类bdsm刘玥| 欧美另类一区| 免费看不卡的av| 日本猛色少妇xxxxx猛交久久| 午夜影院在线不卡| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 亚洲av男天堂| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 欧美在线黄色| 美女扒开内裤让男人捅视频| 精品人妻在线不人妻| 一边亲一边摸免费视频| 国产精品香港三级国产av潘金莲 | 国产91精品成人一区二区三区 | 亚洲av男天堂| 一本大道久久a久久精品| 国产av精品麻豆| 亚洲中文日韩欧美视频| 19禁男女啪啪无遮挡网站| 久久ye,这里只有精品| 欧美黑人精品巨大| 一级毛片电影观看| 1024香蕉在线观看| 男女高潮啪啪啪动态图| 亚洲人成网站在线观看播放| av天堂久久9| av在线老鸭窝| 日本色播在线视频| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品影院| www.999成人在线观看| 国产麻豆69| 丰满饥渴人妻一区二区三| 看免费成人av毛片| 少妇人妻 视频| 曰老女人黄片| 精品人妻在线不人妻| 一区二区三区精品91| 亚洲欧美清纯卡通| 熟女av电影| 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 岛国毛片在线播放| 十分钟在线观看高清视频www| a 毛片基地| videosex国产| 国产精品三级大全| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 麻豆国产av国片精品| 美女国产高潮福利片在线看| 国产一区二区三区综合在线观看| 一级片'在线观看视频| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 99九九在线精品视频| 1024香蕉在线观看| 爱豆传媒免费全集在线观看| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 日本91视频免费播放| 观看av在线不卡| 国产精品免费视频内射| 亚洲九九香蕉| 美女福利国产在线| 熟女av电影| 日韩av免费高清视频| 亚洲少妇的诱惑av| 大香蕉久久成人网| 欧美精品亚洲一区二区| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 9热在线视频观看99| 日韩av不卡免费在线播放| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站 | 国产精品国产三级国产专区5o| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码 | 韩国精品一区二区三区| 成年人黄色毛片网站| 在线亚洲精品国产二区图片欧美| 久久这里只有精品19| 亚洲成人免费av在线播放| 99精品久久久久人妻精品| 成年av动漫网址| 女人精品久久久久毛片| 成年动漫av网址| 精品一区在线观看国产| 欧美黑人欧美精品刺激| 精品少妇内射三级| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 亚洲国产日韩一区二区| 久久影院123| 宅男免费午夜| 欧美少妇被猛烈插入视频| a 毛片基地| 欧美成人精品欧美一级黄| cao死你这个sao货| 高清不卡的av网站| 欧美激情 高清一区二区三区| 又粗又硬又长又爽又黄的视频| 一区二区三区激情视频| 中文字幕亚洲精品专区| 肉色欧美久久久久久久蜜桃| 一级毛片女人18水好多 | 亚洲黑人精品在线| 精品一区二区三区av网在线观看 | 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 欧美大码av| 日韩电影二区| 建设人人有责人人尽责人人享有的| 亚洲av日韩在线播放| 天天躁日日躁夜夜躁夜夜| 九草在线视频观看| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| 中文字幕色久视频| 97在线人人人人妻| 人人妻人人澡人人看| 亚洲综合色网址| 中文字幕制服av| 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| 精品视频人人做人人爽| 久久性视频一级片| 日本欧美国产在线视频| 精品免费久久久久久久清纯 | 99九九在线精品视频| 国产成人91sexporn| 国产高清视频在线播放一区 | 电影成人av| 男人爽女人下面视频在线观看| 国产伦人伦偷精品视频| 老司机深夜福利视频在线观看 | 久久人妻熟女aⅴ| 一本综合久久免费| 美女脱内裤让男人舔精品视频| 亚洲国产欧美网| 精品久久久久久久毛片微露脸 | 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久小说| 热re99久久精品国产66热6| 视频在线观看一区二区三区| 欧美日韩av久久| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 精品欧美一区二区三区在线| 少妇精品久久久久久久| 久久久久久人人人人人| 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9 | 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 丝瓜视频免费看黄片| 亚洲国产欧美一区二区综合| 亚洲国产欧美网| 捣出白浆h1v1| 国产精品一区二区在线不卡| 亚洲国产看品久久| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩视频精品一区| 亚洲欧美一区二区三区国产| 1024香蕉在线观看| 色网站视频免费| av国产精品久久久久影院| 久久鲁丝午夜福利片| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 国产成人一区二区三区免费视频网站 | 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 看免费成人av毛片| 欧美久久黑人一区二区| 国产欧美日韩一区二区三 | 国产成人精品无人区| 国产成人精品久久二区二区免费| 看免费成人av毛片| 脱女人内裤的视频| 欧美激情 高清一区二区三区| 国产精品欧美亚洲77777| 国产在线观看jvid| 99香蕉大伊视频| 日韩中文字幕欧美一区二区 | 国产99久久九九免费精品| 久久久欧美国产精品| 亚洲综合色网址| 国产精品麻豆人妻色哟哟久久| 黄色片一级片一级黄色片| 悠悠久久av| 69精品国产乱码久久久| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 欧美日韩av久久| 亚洲黑人精品在线| 男人爽女人下面视频在线观看| 精品免费久久久久久久清纯 | 国产精品人妻久久久影院| 亚洲欧美色中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 亚洲 国产 在线| 午夜老司机福利片| 欧美+亚洲+日韩+国产| 亚洲欧洲国产日韩| 亚洲 国产 在线| 国产成人av教育| 男人舔女人的私密视频| 国产国语露脸激情在线看| 亚洲国产精品国产精品| bbb黄色大片| 欧美成人精品欧美一级黄| 久久精品亚洲av国产电影网| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 18禁国产床啪视频网站| 高清不卡的av网站| 伊人亚洲综合成人网| 老司机靠b影院| 中文字幕人妻熟女乱码| av在线老鸭窝| 黑人欧美特级aaaaaa片| 人体艺术视频欧美日本| 亚洲午夜精品一区,二区,三区| 国产一区二区三区av在线| 无遮挡黄片免费观看| av一本久久久久| 老司机影院毛片| 久热爱精品视频在线9| 99香蕉大伊视频| 一区福利在线观看| 一级毛片女人18水好多 | 老司机亚洲免费影院| 国产精品偷伦视频观看了| 久久人人97超碰香蕉20202| 多毛熟女@视频| 女性生殖器流出的白浆| 下体分泌物呈黄色| 一区二区av电影网| 欧美在线黄色| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av高清一级| 亚洲av综合色区一区| 各种免费的搞黄视频| a级片在线免费高清观看视频| 男男h啪啪无遮挡| 欧美精品一区二区大全| 一区二区三区激情视频| 两人在一起打扑克的视频| 亚洲,欧美精品.| av电影中文网址| 久久精品成人免费网站| 自线自在国产av| 午夜久久久在线观看| 亚洲av日韩精品久久久久久密 |