• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms?

    2021-03-19 03:21:32ChengWeiWu吳成偉ChangqingXiang向長(zhǎng)青HengyuYang楊恒玉WuXingZhou周五星GuofengXie謝國(guó)鋒BaoliOu歐寶立andDanWu伍丹
    Chinese Physics B 2021年3期
    關(guān)鍵詞:歐寶長(zhǎng)青五星

    Cheng-Wei Wu(吳成偉), Changqing Xiang(向長(zhǎng)青), Hengyu Yang(楊恒玉), Wu-Xing Zhou(周五星),?,Guofeng Xie(謝國(guó)鋒), Baoli Ou(歐寶立), and Dan Wu(伍丹)

    1School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion,Hunan University of Science and Technology,Xiangtan 411201,China

    2College of Information Science and Engineering,Jishou University,Jishou 416000,China

    3School of Physics and Electronic Science,Changsha University of Science and Technology,Changsha 410114,China

    Keywords: density functional theory,thermoelectric effects,transport properties,electronic structure

    1. Introduction

    Thermoelectric(TE)materials can directly convert waste heat into electricity and vice versa, which provide an effective way for the solution of the global energy crisis without producing new contaminants.[1-3]TE materials have attracted intense research efforts due to the huge demand for energy harvesting and power generation. The TE efficiency of the material is measured by the dimensionless figure of merit,ZT =Sσ2T/(κe+κp), where T is the temperature, S is the Seebeck coefficient,σ is the electrical conductivity,κeis the electronic thermal conductivity,and κpis the phonon thermal conductivity.[4-7]

    According to the formula, high Seebeck coefficient S,high electrical conductivity σ, low phonon thermal conductivity κpcan obtain high ZT.[8]However, these physical parameters S, σ, and κeare dependent on each other, e.g., the Wiedemann-Franz law indicates σ ∝κe, which causes the TE efficiency to be relatively low. Although the theoretical studies have showed that low-dimensional nanoscale systems can contribute to boosting the TE performance originated from the enhancement of phonon scattering and quantum confinement effect, the ZT of most perfect structures is still low because of their high thermal conductivity, such as graphene(2876 W/m·K),[9]borophene(κzig=72 W/m·K,κarm= 145 W/m·K),[10]MoS2(κzig= 54 W/m·K, κarm=33 W/m·K),[11]etc. Therefore, it is necessary to find appropriate means to reduce phonon transport to improve the TE performance. What is more, the TE parameter κpis the relatively independent quantity that can be changed by some method.[12-18]

    In recent years,the thermal transport of low-dimensional nanomaterials has become a research hotspot. Theoretically,by manipulating the phonons or elastic waves that propagate and scatter, the beneficial thermal transport properties can be obtained. Research shows that surface functionalization is one of the feasible and effective manipulation methods.[19,20]This method has been used to regulate the thermal transfer of nanostructured materials composed of group-IV and group-V nonmetallic elements. For example, Wang et al.[21]reduced the thermal conductivity of graphene by depositing gold nanoparticles on its surface by physical deposition. The decrease of the thermal conductivity is mainly attributed to the suppression of ZA phonon modes. Liu et al.[22]improved the thermal conductivity of silene system by full hydrogenation.Although full hydrogenation increases the buckling degree of the silene system, the elimination of asymmetric π-bond is considered to be the main reason for the decrease of phonon scattering rate and the increase of thermal conductivity of hydrogenated silene. Sun et al.[23]studied the effect of oxygencontaining functional groups on the thermal conductivity of reduced graphene oxide by molecular dynamics simulation.Overall, these results are all attributable to the effect of sp3hybridization introduced by surface functionalization on the material.

    Moreover, surface functionalization not only can change the heat transport, but also can change the electron transport properties. For example,Xu et al.[24]reported that monolayer C4N functionalization with adsorbing Li, Na, Be, Mg, Ti, V,Cr,and Mn atoms,resulting in the transformation of C4N from semi-metal to semiconductor. By the first principles calculation, Nguyen et al.[25]found that the bandgap can be opened when the concentration of halogen atoms adsorbed on both sides of silicon is greater than 0.25. Therefore, surface functionalization is an effective way to improve the performance of two-dimensional(2D)materials in a specific field. Particularly, halogen atoms have strong electronegativity, which can bind free electrons on the surface of 2D materials and play a role of surface passivation.In order to open the bandgap of 2D materials with metal or semi-metallic properties,halogen is a good adsorption candidate.[26]

    Si2BN,which was reported by Andriotis et al. in 2016,is also a kind of graphene-like monolayer structure.[27]It has attracted the interest of researchers in hydrogen storage,battery,and other fields,[28-31]but there have been no reports of any research on TE properties. Because the crystalline structure of Si2BN is more complex than graphene, we predict that it has lower phonon thermal conductivity,which is beneficial to the improvement of TE properties. Nevertheless, the electronic energy band of Si2BN shows its routing metal property, this is negative for TE properties. In theory, by adsorbing halogen atoms on Si2BN,the hybrid type changes from sp2to sp3,resulting in bandgap opening.[32]Moreover,it also breaks the plane structure of Si2BN, the lattice thermal conductivity is further reduced by increasing phonon scattering.

    In this work, we research the thermoelectric transport properties of Si2BN adsorbing halogen atoms (Si2BN-4X,X = F, Cl, Br, and I) by using the first principles calculation and Boltzmann transport theory. By adsorbing halogen atoms, the band gap of Si2BN is opened, which leads to the increase of the Seebeck coefficient. In particular, Si2BN-4I has the largest Seebeck coefficient because of the band degeneracy. In addition, the absorption of halogen atoms increases the phonon scattering,and the lattice thermal conductivity decreases significantly, which leads to a significant increase in the thermoelectric properties.

    2. Methodology

    First-principles calculations are performed based on density functional theory (DFT) using the Vienna ab-initio simulation package (VASP).[33,34]We choose the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof(PBE)parametrization for the exchange-correlation functional.[35]The crystal structure is relaxed with total energy convergence criterion of 10?6eV,the force convergence criterion is 10?4eV/?A, and adopts plane-wave basis with kinetic energy cutoff of 500 eV. The 11×11×1 Γ-center k-mesh is used, and the normal vacuum distance is large than 15 ?A to prevent any physical interactions between the consecutive layers. VASP is used to obtain the second-order interatomic force constant by the finite displacement method with 3×3×1 supercell and 1×1×1 k-mesh, and then the dynamic matrix is constructed by the Phonopy program,and the dynamic matrix is diagonalized to obtain the phonon spectrum.[36]

    Based on Boltzmann transport theory, we use VASP combined with BoltzTraP program to calculate the electronic transport properties of materials.[37]The TE transport parameters are calculated using the relaxation time approximation method, where the relaxation time constant τ is 10?14s.This constant has been widely used in the calculation of electron transport properties and reliable results have been obtained.[38,39]Moreover,the TE transport coefficient is converged by using the k-mesh of 20×20×1 in the Brillouin zone(BZ).[40,41]

    We calculate the phonon thermal conductivity based on linearized phonon Boltzmann transport equation (PBTE)within relaxation time approximation.[42,43,45]Along the specified direction, the thermal conductivity of monolayer Si2BN and its halide in each branch λ can be described as

    where S is the area of the sample,vλis the phonon group velocity of λ branch along the specified direction,which is equal to dω/dq, ω is the phonon frequency for branch λ at wave vector q, τλis the phonon relaxation time of λ branch, and cphis the volumetric specific heat of each mode,which can be calculated with the following formula:

    where γλ, M, ωD,λare the Gr¨uneisen parameter, the mass of unit cell, and the Debye frequency of branch λ, respectively.V is the unit cell volume and V0is the completely relaxed unit cell volume. dωλ(V)/dV is the first derivative of the phonon frequency of branch λ with the volume.[49]

    3. Results and discussion

    Two optimized structures, named Si2BN and Si2BN-4X,are shown in Figs. 1(a) and 1(b), respectively. In top view of Fig.1(a), the lattice constants of Si2BN are a=6.35 ?A,b=6.45 ?A and the bond length between atoms are lSi-Si=2.24 ?A, lSi-N=1.76 ?A, lSi-B=1.95 ?A, and lB-N=1.46 ?A,which are in good agreement with the previously reported ones.[50]In side view of Fig.1(a), the Si2BN shows a plane structure, while the Si2BN-4X (X =F, Cl, Br, I) shows the buckling structure when the surface of Si2BN adsorbs halogen elements, as shown in the side view of Fig.1(b), which is due to the change of the hybrid type of Si-Si atoms. The previous work pointed out that the buckling structure is more beneficial to increase phonon scattering and decrease phonon thermal conductivity.[51]

    Fig.1. Top and side views of the geometric structure of (a) Si2BN and(b)Si2BN-4X (X =F,Cl,Br,I).

    In Fig.2(a), the electronic band structure of Si2BN presents a metal characteristic and the result matches that of Singh et al.[29]well. However, the materials with insulator or metal property are not good TE materials even though they have a large conductivity or Seebeck coefficient than semiconductor materials.

    Therefore, a suitable method to open the bandgap for Si2BN should be applied. When the halogen atoms are adsorbed on the four Si atoms of surface of Si2BN (named Si2BN-4X, X =F, Cl, Br, I), as shown in Fig.3, the electronic structure property of Si2BN transforms from metal to indirect bandgap semiconductor. In addition,the bandgap increases from 1.32 eV of Si2BN-4F to 1.88 eV of Si2BN-4I with the increase of atomic mass of adsorbed halogen, which is presented in Figs. 3(a)-3(d). It is worth mentioning that the electron band structure shows that Si2BN-4X has flat conduction band minimum (CBM) and valence band maximum(VBM),indicating that it has high effective carrier mass, low carrier mobility, and low conductivity, which leads to high S eventually.[52]In addition, the degeneracy of the electronic band structure of Si2BN-4I at the M point in BZ means a large S,which is beneficial to the improvement of ZT.[53-55]

    Fig.2. (a)The electronic band structure and(b)DOS of Si2BN.

    Fig.3. The electronic band structure of (a) Si2BN-4F, (b) Si2BN-4Cl,(c)Si2BN-4Br,(d)Si2BN-4I.

    In order to prove the dynamic stability of Si2BN and Si2BN-4X, we use the finite displacement method to calculate the phonon spectrum. In Fig.4,the results show that there are no imaginary frequencies in the whole BZ,indicating the dynamical stability of Si2BN and Si2BN-4X. In the phonon spectrums of Si2BN and Si2BN-4X,there are multiple phonon gaps in the frequency range from 15 THz to 40 THz. Besides,there are typical strong hybrid features between low-frequency optical branches and acoustic branches in Si2BN and Si2BN-4X. These characteristics indicate that the phonon thermal conductivity of Si2BN and Si2BN-4X will be relatively low.Importantly, as shown in Figs. 4(b)-4(e), there are more and more low-frequency flat optical branches from the Si2BN-4F to Si2BN-4I structure, which means that the phonon thermal conductivity will decrease with the increase of atomic mass of the absorbed halogen.[56]

    Fig.4. The phonon dispersion spectra of (a) Si2BN, (b) Si2BN-4F,(c)Si2BN-4Cl,(d)Si2BN-4Br,(e)Si2BN-4I.

    On the other hand, in order to prove the thermodynamic stability of halogen atoms adsorbed Si2BN, we calculate the adsorption formation energy of halogen atoms on Si2BN surface as shown in Table 1. According to the definition of adsorption formation energy, the formula for our system can be written as

    where Eb[Si2BN-4X], Eb[Si2BN], Eb[X2] are the bind energy per atom of Si2BN-4X, the bind energy per atom of Si2BN,and the bind energy per atom of X2,respectively. n is the total number of Si2BN-4X,nXis the number of adsorbing halogen atoms. Efis the adsorption formation energy per adsorbing halogen atom of Si2BN-4X.

    The unit adsorption formation energies of the X atom on the Si2BN are all above 1 eV/atom as shown in Table 1. This means that the binding energy of Si2BN-4X is larger,and the energy released by the formation of Si2BN-4X from isolated atoms is greater than that of Si2BN and X2. Therefore, the lower total free energy of Si2BN-4X demonstrates that the adsorption of X2by Si2BN is experimentally feasible.

    Table 1. The adsorption formation energy of halogen atoms adsorbed by Si2BN is calculated. Ef[Si2BN-4X] is the adsorption formation energy per adsorbing halogen of Si2BN-4X,Eb[Si2BN-4X]is the bind energy per atom of Si2BN and Si2BN-4X,and Eb[X2]is the bind energy per atom of X2.

    The Si2BN and Si2BN-4X have 2D hexagonal structures.We can study the TE properties along the armchair and zigzag directions. Firstly,we focus on the armchair direction. In order to systematically study the TE properties of Si2BN and Si2BN-4X along the armchair direction at room temperature,we calculate the Seebeck coefficient S, electrical conductivity σ, electronic thermal conductivity κe, power factor PF,phonon thermal conductivity κp, and ZT based on the average temperature T of 300 K and electron constant relaxation time τ of 10?14s. All the results are plotted in Fig.5. As shown in Figs.5(a)-5(b),the S of Si2BN-4X is larger than that of Si2BN;moreover,S decreases and σ increases with the increase of charge carrier concentration n, which is due to the Pisarenko relation.[57]However,the PF of Si2BN and Si2BN-4X appear a maximum as n increases,and the maximal PF of the former is much lower than that of the latter,indicating that the optimal TE performance of Si2BN-4X can be realized at some carrier concentration.

    As can be seen from Fig.5(d),the electronic thermal conductivity displays similar behavior to the conductivity. In addition, we can see that the phonon thermal conductivity of Si2BN-4X is lower than that of Si2BN in the temperature range from 200 K to 800 K,as illustrated in Fig.5(e).It is worth noting that the phonon thermal conductivity κpof Si2BN-4I is the lowest among all structures. According to the TE formula,we calculate the TE figure of merit as a function of carrier concentration, as shown in Fig.5(f). The ZT values of Si2BN-4X are significantly greater than that of Si2BN, regardless of the change in carrier concentration. Meanwhile,the ZT curve of Si2BN-4X increases firstly and then decreases with the increases of carrier concentration,where the ZT value of Si2BN-4I is the largest compared to others structures. At 300 K,the ZT maximum of Si2BN is only 0.03, while that of Si2BN-4I reaches 0.50,which is about 16 times that of Si2BN.

    Fig.5. (a) The Seebeck coefficient, (b) electrical conductivity, (c) power factor, (d) electronic thermal conductivity, (e) phonon thermal conductivity,and(f)ZT of Si2BN and Si2BN-4X along armchair direction.

    Fig.6. (a) The group velocity and (b) phonon lifetime of Si2BN-4I along armchair direction.

    From the above results, Si2BN-4I is the optimal structure for TE performance,which stems from the lowest thermal conductively after the surface functionalization. The phonon thermal conductivity of Si2BN-4I is only 0.41 W/m·K while that of Si2BN is 3.38 W/m·K at 300 K.In order to explain the decrease of phonon thermal conductivity of Si2BN-4I compared with that of Si2BN in armchair direction, we calculate the group velocity and phonon lifetime along the armchair direction.Figure 6(b)shows that the Si2BN-4I has multiple wide optical-optical gaps in the range from 15 THz to 35 THz.Therefore, the decrease of phonon thermal conductivity of Si2BN-4I compared with Si2BN results from the decrease of the group velocity.[53]

    In order to study the effect of temperature on thermoelectric properties, the TE performance of the armchair direction of Si2BN-4I at the temperatures of 300 K,500 K,and 800 K is calculated and shown in Fig.7. As the temperature increases,the PF of Si2BN-4I increases(in Fig.7(c)),while the phonon thermal conductivity of Si2BN-4I decreases(in Fig.7(e)). As a result,the ZT value of Si2BN-4I increases with the increase of temperature(in Fig.7(f)),and the ZT of Si2BN-4I can reach 0.8 at 800 K.However,compared with Figs.7(c)and 7(f),the optimal ZT carrier concentration (NZT) has a large deviation from the optimal PF carrier concentration (NPF), and the PF corresponding to NZTis relatively low. Obviously,with the increase of temperature,NPFbecomes lower,S corresponding to NPFdecreases very slight, and the increase of electrical conductivity σ is also very small.But with the increase of temperature,the increase of κecorresponding to NPFis much greater than that of κp, and the value of κeis an order of magnitude higher than that of κp. Therefore, κeplays a major role that influences the ZT with the change of temperature, and NZTmoves towards the lower κe. This limits the improvement of ZT to some extent, and the excessive κealso indicates that there is still space for improvement of the TE performance of Si2BN-4I.[58]

    Fig.7. (a) The Seebeck coefficient, (b) electrical conductivity, (c) power factor, (d) electronic thermal conductivity, (e) phonon thermal conductivity,and(f)ZT of Si2BN-4I along armchair direction at 300 K,500 K,and 800 K,respectively.

    Fig.8. The ZT of Si2BN and Si2BN-4X along zigzag direction at 300 K.

    The above calculations of TE properties are based on the armchair direction. In Fig.8(a), we obtain the ZT values of Si2BN and Si2BN-4X at 300 K along the zigzag direction. In the zigzag direction of Si2BN-4I, we draw the same conclusion as in the armchair direction, but the TE performance in the zigzag direction is slightly lower than that in the armchair direction, so we mainly introduce the TE performance in the armchair direction. The similar conclusions can be obtained in the zigzag direction.

    4. Conclusion

    In this work, we study the electron transport, thermal transport, and thermoelectric properties of Si2BN adsorbing halogen atoms(Si2BN-4X,X=F,Cl,Br,and I)using the first principles calculation and Boltzmann transport theory. The adsorption of halogen atoms can significantly regulate the energy band structure and lattice thermal conductivity of Si2BN.The band gap of Si2BN is opened by adsorbing halogen atoms,which leads to the increase of Seebeck coefficient. In particular, Si2BN-4I has the largest Seebeck coefficient because of the band degeneracy. In addition, the absorption of halogen atoms increases the phonon scattering,and the lattice thermal conductivity decreases significantly, which leads to a significant increase of ZT.

    猜你喜歡
    歐寶長(zhǎng)青五星
    La preservación del tejido de seda tradicional
    建德五星
    守護(hù)那抹“五星紅”
    長(zhǎng)青開(kāi)啟中馬圓夢(mèng)之旅
    長(zhǎng)青 邁步環(huán)保公益
    倪凱銘確認(rèn)從歐寶離職
    歐寶2017年業(yè)務(wù)或繼續(xù)虧損
    五星花
    長(zhǎng)青榮耀三十載
    歐寶退出中國(guó)市場(chǎng)
    超碰97精品在线观看| 99久国产av精品国产电影| 中文乱码字字幕精品一区二区三区| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 男人舔奶头视频| 中文精品一卡2卡3卡4更新| 最后的刺客免费高清国语| 中文字幕亚洲精品专区| 五月开心婷婷网| 日本色播在线视频| 国产综合精华液| 国产中年淑女户外野战色| 精品久久久噜噜| 国产高清不卡午夜福利| 99久久精品热视频| 精品久久久久久久末码| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花 | 国产片特级美女逼逼视频| 久久久久久久久久久丰满| 人妻一区二区av| 国产男女超爽视频在线观看| 天天一区二区日本电影三级| 波多野结衣巨乳人妻| 精品视频人人做人人爽| 国产日韩欧美在线精品| 亚洲成人久久爱视频| 18禁在线无遮挡免费观看视频| 男女边吃奶边做爰视频| 亚洲av成人精品一二三区| 汤姆久久久久久久影院中文字幕| 亚洲国产高清在线一区二区三| 日韩一区二区视频免费看| 日本一本二区三区精品| 青春草视频在线免费观看| 中国美白少妇内射xxxbb| 亚洲最大成人中文| 亚洲电影在线观看av| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人爽人人夜夜| 白带黄色成豆腐渣| 看黄色毛片网站| 亚洲精品一区蜜桃| 精品视频人人做人人爽| 亚洲国产精品999| 国产毛片a区久久久久| 亚洲电影在线观看av| 午夜福利高清视频| 日本午夜av视频| 国产成人免费观看mmmm| 精品一区在线观看国产| 综合色丁香网| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| av在线app专区| 久久久久久久久久人人人人人人| 777米奇影视久久| 男人和女人高潮做爰伦理| 国产免费又黄又爽又色| 亚洲av欧美aⅴ国产| 日韩av免费高清视频| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 自拍偷自拍亚洲精品老妇| 国产精品女同一区二区软件| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 亚洲美女视频黄频| 五月天丁香电影| 精品一区二区三卡| av在线观看视频网站免费| 我要看日韩黄色一级片| 国产爽快片一区二区三区| 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 亚洲伊人久久精品综合| av国产久精品久网站免费入址| av在线app专区| 欧美三级亚洲精品| 日韩强制内射视频| 久久久久久久国产电影| 色综合色国产| 亚洲av福利一区| 国产精品久久久久久精品电影小说 | 在线观看人妻少妇| 亚洲精品视频女| 18禁在线播放成人免费| 别揉我奶头 嗯啊视频| av天堂中文字幕网| 一级a做视频免费观看| 久久精品夜色国产| www.av在线官网国产| av免费观看日本| 国产亚洲91精品色在线| 国产一区二区在线观看日韩| 亚洲欧洲国产日韩| 欧美另类一区| 偷拍熟女少妇极品色| 久久综合国产亚洲精品| 天美传媒精品一区二区| 精品久久国产蜜桃| av一本久久久久| 卡戴珊不雅视频在线播放| 在线看a的网站| 国产精品福利在线免费观看| 亚洲精品色激情综合| 欧美性猛交╳xxx乱大交人| 国产亚洲av嫩草精品影院| 蜜桃亚洲精品一区二区三区| 免费人成在线观看视频色| 免费看不卡的av| 看十八女毛片水多多多| 久久久久久久久大av| 亚洲最大成人手机在线| 人人妻人人看人人澡| 亚洲精品自拍成人| 亚洲国产精品成人综合色| 97在线人人人人妻| 久久久亚洲精品成人影院| 嫩草影院精品99| 嘟嘟电影网在线观看| h日本视频在线播放| 日日撸夜夜添| 亚洲精品第二区| 特级一级黄色大片| 丰满人妻一区二区三区视频av| 国产精品熟女久久久久浪| 国产欧美日韩精品一区二区| 五月伊人婷婷丁香| 国内精品宾馆在线| 亚洲,欧美,日韩| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说 | 欧美老熟妇乱子伦牲交| www.色视频.com| 国产精品熟女久久久久浪| 赤兔流量卡办理| 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频 | 一级片'在线观看视频| 国产美女午夜福利| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 亚洲无线观看免费| 亚洲欧洲国产日韩| 99热6这里只有精品| 久久久久久久久久成人| 免费电影在线观看免费观看| 2021少妇久久久久久久久久久| 久久精品国产a三级三级三级| 国产高清三级在线| 欧美潮喷喷水| 色5月婷婷丁香| 白带黄色成豆腐渣| 成人亚洲欧美一区二区av| 久久女婷五月综合色啪小说 | av天堂中文字幕网| 日本黄大片高清| 日韩av不卡免费在线播放| 少妇人妻一区二区三区视频| 日韩中字成人| 18禁裸乳无遮挡动漫免费视频 | 久久久久性生活片| 国产日韩欧美亚洲二区| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 美女国产视频在线观看| 一边亲一边摸免费视频| 最近中文字幕高清免费大全6| 国产乱来视频区| 高清毛片免费看| 国产伦在线观看视频一区| 老司机影院毛片| 大话2 男鬼变身卡| 两个人的视频大全免费| 欧美日韩精品成人综合77777| 久久人人爽av亚洲精品天堂 | 免费看av在线观看网站| 亚洲三级黄色毛片| 欧美日韩综合久久久久久| 美女主播在线视频| 美女xxoo啪啪120秒动态图| 黄色视频在线播放观看不卡| 乱码一卡2卡4卡精品| 一个人看视频在线观看www免费| 欧美精品一区二区大全| 国产精品一及| 国产成人aa在线观看| 特级一级黄色大片| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 久久97久久精品| 97在线人人人人妻| 久久99蜜桃精品久久| 色播亚洲综合网| 国产一区有黄有色的免费视频| 中文字幕av成人在线电影| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| av国产免费在线观看| 亚洲最大成人手机在线| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 免费看av在线观看网站| 精品国产露脸久久av麻豆| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 自拍偷自拍亚洲精品老妇| 欧美成人一区二区免费高清观看| 色5月婷婷丁香| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 噜噜噜噜噜久久久久久91| 高清毛片免费看| 男人舔奶头视频| 18禁在线无遮挡免费观看视频| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 国国产精品蜜臀av免费| 在线观看人妻少妇| 又大又黄又爽视频免费| 欧美3d第一页| 午夜福利网站1000一区二区三区| 欧美成人a在线观看| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 亚洲欧美日韩东京热| 寂寞人妻少妇视频99o| 日韩欧美精品v在线| 3wmmmm亚洲av在线观看| 最近最新中文字幕免费大全7| 一二三四中文在线观看免费高清| 高清毛片免费看| 黄色日韩在线| 少妇丰满av| 性插视频无遮挡在线免费观看| 国产91av在线免费观看| 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 婷婷色综合www| 国产精品麻豆人妻色哟哟久久| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 在现免费观看毛片| 在线观看人妻少妇| 三级国产精品欧美在线观看| 亚洲国产精品成人综合色| 国产成人午夜福利电影在线观看| 丰满人妻一区二区三区视频av| 在线 av 中文字幕| 国产黄片美女视频| 观看美女的网站| 国产高清三级在线| 亚洲伊人久久精品综合| 特大巨黑吊av在线直播| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 国产精品国产av在线观看| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| 最近中文字幕高清免费大全6| 成年女人在线观看亚洲视频 | av在线老鸭窝| 亚洲伊人久久精品综合| 高清毛片免费看| 只有这里有精品99| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区| 亚洲,一卡二卡三卡| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 噜噜噜噜噜久久久久久91| 国产一区有黄有色的免费视频| 美女主播在线视频| 色视频www国产| 国产成人精品久久久久久| 女人十人毛片免费观看3o分钟| 成人午夜精彩视频在线观看| 在线观看三级黄色| av线在线观看网站| 黄片wwwwww| 少妇人妻精品综合一区二区| 成人毛片60女人毛片免费| 毛片一级片免费看久久久久| 国产精品.久久久| 嫩草影院精品99| av专区在线播放| 国产精品久久久久久精品电影| 欧美3d第一页| 2021天堂中文幕一二区在线观| 久久韩国三级中文字幕| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 精品国产乱码久久久久久小说| 久久6这里有精品| 色视频www国产| 精品久久久久久久人妻蜜臀av| 肉色欧美久久久久久久蜜桃 | 国产老妇伦熟女老妇高清| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说 | 丰满乱子伦码专区| 五月天丁香电影| 99热这里只有精品一区| www.av在线官网国产| 99久久精品热视频| 视频中文字幕在线观看| 最近的中文字幕免费完整| 国产大屁股一区二区在线视频| 九九在线视频观看精品| 夫妻午夜视频| 国产精品蜜桃在线观看| 国产av码专区亚洲av| 视频区图区小说| 大片免费播放器 马上看| 丝袜喷水一区| 在线观看av片永久免费下载| 日韩成人av中文字幕在线观看| 成年免费大片在线观看| 内射极品少妇av片p| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 中文字幕久久专区| 日韩av在线免费看完整版不卡| 国产精品女同一区二区软件| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 亚洲精品乱久久久久久| 少妇人妻精品综合一区二区| 成人免费观看视频高清| 日韩大片免费观看网站| 成年免费大片在线观看| 国内精品美女久久久久久| 久久久久久久午夜电影| 久久精品国产亚洲av天美| av网站免费在线观看视频| 69av精品久久久久久| 国产色婷婷99| 久久精品久久久久久噜噜老黄| 国产 精品1| 欧美区成人在线视频| 我要看日韩黄色一级片| 亚洲人成网站在线播| 网址你懂的国产日韩在线| 一级片'在线观看视频| 婷婷色av中文字幕| 五月开心婷婷网| 日韩制服骚丝袜av| 丰满少妇做爰视频| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| 99久久精品一区二区三区| 国产亚洲91精品色在线| 秋霞伦理黄片| 男女边吃奶边做爰视频| 免费看不卡的av| 亚洲av电影在线观看一区二区三区 | 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精品aⅴ在线观看| av卡一久久| 十八禁网站网址无遮挡 | 麻豆国产97在线/欧美| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲5aaaaa淫片| 亚洲人与动物交配视频| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 午夜免费观看性视频| 街头女战士在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 新久久久久国产一级毛片| 91aial.com中文字幕在线观看| 午夜老司机福利剧场| 免费黄频网站在线观看国产| 午夜福利高清视频| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 日本黄色片子视频| 亚洲在久久综合| 日韩伦理黄色片| 亚洲欧美日韩卡通动漫| 国产一区有黄有色的免费视频| 街头女战士在线观看网站| 美女cb高潮喷水在线观看| 亚洲性久久影院| 亚洲国产av新网站| 99久久精品国产国产毛片| av黄色大香蕉| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 观看美女的网站| 亚洲不卡免费看| 22中文网久久字幕| 91久久精品国产一区二区成人| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 国产伦在线观看视频一区| 亚州av有码| 婷婷色av中文字幕| 午夜福利高清视频| 国语对白做爰xxxⅹ性视频网站| 亚洲在久久综合| 一级a做视频免费观看| 国产在线一区二区三区精| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 另类亚洲欧美激情| 国产精品一及| 晚上一个人看的免费电影| 91久久精品电影网| 插阴视频在线观看视频| 全区人妻精品视频| 男人爽女人下面视频在线观看| 午夜福利在线在线| 国产一级毛片在线| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 在线a可以看的网站| 99久国产av精品国产电影| 亚洲精品亚洲一区二区| 极品教师在线视频| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 99九九线精品视频在线观看视频| 亚洲成色77777| 久久国内精品自在自线图片| 蜜臀久久99精品久久宅男| 性色av一级| 99热国产这里只有精品6| 日本一本二区三区精品| 激情五月婷婷亚洲| 五月开心婷婷网| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 色视频www国产| 成人国产麻豆网| 在线观看人妻少妇| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 欧美精品一区二区大全| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 听说在线观看完整版免费高清| 成人高潮视频无遮挡免费网站| 免费大片18禁| 人人妻人人看人人澡| 国产亚洲91精品色在线| 九九爱精品视频在线观看| av免费观看日本| 国产欧美日韩一区二区三区在线 | 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 成人国产麻豆网| 天堂俺去俺来也www色官网| 男女啪啪激烈高潮av片| 一本一本综合久久| 大陆偷拍与自拍| 久久99热这里只频精品6学生| 中国美白少妇内射xxxbb| 久久精品综合一区二区三区| 日韩视频在线欧美| 99久久中文字幕三级久久日本| 别揉我奶头 嗯啊视频| av国产免费在线观看| 青春草国产在线视频| 永久免费av网站大全| 一本久久精品| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 看免费成人av毛片| 亚洲色图综合在线观看| 黄色配什么色好看| 婷婷色综合www| freevideosex欧美| 国产乱人偷精品视频| 亚洲欧洲日产国产| www.av在线官网国产| 春色校园在线视频观看| 国产精品无大码| 又爽又黄a免费视频| 国产黄a三级三级三级人| 国产探花极品一区二区| 高清欧美精品videossex| 午夜日本视频在线| 欧美成人午夜免费资源| 日韩大片免费观看网站| 国产精品不卡视频一区二区| 嫩草影院入口| 神马国产精品三级电影在线观看| 中文字幕免费在线视频6| 久久久国产一区二区| 亚洲国产精品999| 成人无遮挡网站| 中文天堂在线官网| 久久久久久久国产电影| 国产男女内射视频| 国产成人freesex在线| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| av线在线观看网站| 男女边吃奶边做爰视频| 白带黄色成豆腐渣| 国产淫片久久久久久久久| 亚洲欧美日韩无卡精品| 中文字幕久久专区| 亚洲色图综合在线观看| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 亚洲av免费在线观看| 欧美日本视频| 又爽又黄无遮挡网站| 97超视频在线观看视频| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 免费看a级黄色片| 亚洲人成网站高清观看| 偷拍熟女少妇极品色| 国产精品久久久久久久电影| 久久精品久久久久久久性| 亚洲一级一片aⅴ在线观看| 特级一级黄色大片| 男插女下体视频免费在线播放| 国产精品无大码| 观看免费一级毛片| 黄色怎么调成土黄色| 波野结衣二区三区在线| 熟女人妻精品中文字幕| 99热国产这里只有精品6| 国产欧美日韩精品一区二区| 一个人观看的视频www高清免费观看| 22中文网久久字幕| 精品亚洲乱码少妇综合久久| 激情 狠狠 欧美| 亚洲成色77777| 99热这里只有是精品在线观看| 成人国产av品久久久| 国产精品一及| 国产毛片在线视频| 久久久久网色| 久久精品久久久久久噜噜老黄| 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| 日韩国内少妇激情av| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看 | 精品人妻视频免费看| 国产乱来视频区| 久久99精品国语久久久| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 成年版毛片免费区| 国产精品女同一区二区软件| 看黄色毛片网站| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 精品久久国产蜜桃| 午夜免费观看性视频| 欧美另类一区| 久热这里只有精品99| 亚洲国产欧美人成| 中国美白少妇内射xxxbb| 久久综合国产亚洲精品| 在线播放无遮挡| 久久久久久国产a免费观看| 97超碰精品成人国产| 91在线精品国自产拍蜜月| .国产精品久久| 国产精品嫩草影院av在线观看| 永久免费av网站大全| 欧美3d第一页| 久久久成人免费电影| 99久久人妻综合|