• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A high efficient device to accelerate rotor in an alternating magnetic field

    2021-03-15 03:08:16CHENLeiHEXiaoxiaLIDongmeiLIHaixiaZHANGRong
    中國慣性技術(shù)學報 2021年6期

    CHEN Lei, HE Xiaoxia, LI Dongmei, LI Haixia, ZHANG Rong

    (Department of Precision Instrument, Tsinghua University, Beijing 100084, China)

    Abstract: Accelerating or retarding a conducting rotor in alternating or uniform magnetic field is widely used in many applications such as torqueing and stabilizing electrostatic gyros, attitude control reaction sphere, and field supported ultra-high-speed centrifuges. Generally, the magnetic device with large air gap is hard to gain high efficiency. By optimize the winding shape, a high efficient device to accelerate a conducting rotor in an alternating magnetic field is proposed. Firstly, the key factors of improving the device’ efficiency are elucidated. Then the magnetic equivalent circuit based on the device’s structure is modeled. The magnetic flux across the sphere is solved in terms of the Kirchhoff’s law. Factors including core material and size, air gap, leakage flux, winding loss and magnetic field uniformity are examined and some general guidelines to improve the efficiency are deduced. Based on those guidelines, a wider winding shape that generate a more uniform magnetic field with the constraint of the device size is suggested.Furthermore, a 3-D Finite Element Model (FEM) is developed and those are verified by simulation. Two prototypes with narrow winding and wide winding are compared via accelerating experiment. Test results show that the wide winding gains about 2 times as much of accelerating torque and half Joule heat loss than narrow one.

    Key words: accelerating a rotor; alternating magnetic field; finite element analysis; equivalent magnetic circuit

    Accelerating or retarding a conducting rotor in alternating or uniform magnetic field is widely used in many applications, such as stabilizing electrostatic gyros[1,2], attitude control reaction sphere[3-5], field supported ultra-high-speed centrifuges[6]and other similar scenario. The performance of the device is highly dependent on its efficiency and improving the device’s efficiency is in pressing need.

    The theory of the device for accelerating or retarding a sphere is similar with that of Induction motor.The alternating field with a proper frequency induces eddy currents to react with the applied field to produce acceleration torques and the stationary field produces retarding torque for a spinning sphere[7,8]. Based on this theory, the accelerating device is designed with specific winding configuration. To increase the torque, it’s demanding to improve the device’s efficiency by figuring out the key factors for the accelerating torque.

    To gain high rotational speed, the sphere is sealed in a vacuum housing and the accelerating device outside of housing, which means the device has a large air gap and is hard to gain high efficiency. Meanwhile, it is possible to improve the efficiency by optimizing the magnetic path and winding shape. There are mainly four basic tools to evaluate the performance of magnetic devices including analytical models, winding function theory,Magnetic Equivalent Circuit (MEC), and Finite Element Analysis (FEA). Analytical models and winding function theory are much faster than FEA but less accurate and less flexible. MEC models represent a compromise between the accuracy and flexibility of FEA models and the speed of analytical models[9]. In this paper, we integrate the three methods of analytical models, MEC and FEA to systematically optimize the accelerating device.

    We start with the geometry of the two-phase twopole accelerating system. In section 2, the magnetic equivalent circuit is modeled. Magnetic flux is expressed by magnetic reluctance. According to the acceleration torque equation, we identified several factors including core material and size, air gap, winding loss and magnetic field uniformity. Therefore, their effects on the efficiency of the accelerating system are examined and some general guidelines are summarized. Section 3 presents the 3-D FEM simulation and experimental results are demonstrated in Section 4. We conclude the paper in Section 5.

    1 Geometry and equations

    1.1 Geometry

    We illustrate the geometry with two-phase two-pole scheme for accelerating a sphere in alternating magnetic field as shown in Fig.1. The rotating spherical conducting shell is placed in the center. An alternating magnetic field is produced by two pairs of windings coiled on four pole tips of a toroidal core.

    Fig.1 Two-phase two-pole accelerating device with alternating magnetic field

    To define the system clearly, we introduce the symbols as follows.

    Ni1,Ni2,Ni3,Ni4—Magneto-motive force of the four windings with polarity determined by right hand rule.

    φ1,φ2,φ3,φ4—Magnetic flux within the four pole tips.

    Obviously,φ13andφ24are effective magnetic flux through the sphere.

    1.2 Accelerating torque

    According to Arthur F. Hayes[8]and additional calculating, we obtain the following equation for the theoretical accelerating torqueTzalong the sphere rotating axiszin an alternating magnetic field

    Where,Ω—alternating magnetic field angular frequency.ω—rotating angular frequency of the sphere.α—radius of the sphere.ζ—surface resistivity of the sphere.μ—permeability of the sphere.

    Because magnetic fluxφis proportional to flux densityB, it can be deduced from Eq.1 that the accelerating torque is proportional to square ofφ13andφ24. So maximizing the efficiency of the accelerating torque is converted to maximizeφ13andφ24.

    1.3 Magnetic equivalent circuit

    According to Fig.1, the magnetic equivalent circuit is modeled as Fig.2.

    Fig.2 Magnetic equivalent circuit of the accelerating device

    Where,R1,R2,R3,R4—Reluctance of the four pole tips.

    R12,R23,R34,R14—Reluctance of the toroidal core between any two of adjacent pole tips.

    R13,R24—Reluctance of the air between two i nphase pole tips.

    Ignoring both hysteresis and saturation, we can get the reluctance as follows.

    Where, ?i—Length of thei-th pole tip.r—mean radius of the toroidal core.r′—mean radius of the toroidal air outside the core.μC—permeability of the core.μ0—permeability of free space.Ai—Cross section area of thei-th pole tip.Ali—Leakage magnetic area between pole tip and winding.Atij—Cross section area of the toroidal ring between thei-th andj-th pole tips.Aaij—Cross section area of the air between thei-th andj-th pole tips.

    With a known structure of accelerating device, all the reluctances can be calculated or estimated, so the unknown magnetic flux can be solved according to Kirchhoff’s voltage and current law.

    In total there are 18 unknown magnetic flux including,φ1,φ2,φ3φ4,,,,φ12,φ23,φ34,φ14,φ13,φ24,,,and. Among whichφ13andφ24are the magnetic flux we want to solve next.

    1.4 Magnetic flux equation

    At Junction 1-8 shown in Fig.1, the total magnetic flux entering a junction is equal to the total magnetic flux leaving the same junction, we can get equation of (2)-(9)as follows.

    Checking the close loop between any two of the four sources, we have equation of (10)-(15).

    Selecting the outermost and innermost loops,equation of (16)-(19) can be deduced.

    The single magneto-motive force source loop can be used to build equation of (20)-(23).

    The equations above are algebra equations and its analytic solutions are given in appendix.

    According to the appendix, the following engineering proper simplicity can be set without arising large error.

    Furthermore,andR24are much larger thanR1andR12in the case where the permeability of the core is much greater than the permeability of air. Hence,we can get

    1.5 Windings

    From Eq.(24) and Eq.(25), we need to know the winding current. It is determined by windings and the whole construction of the magnetic circuit. The equivalent impedance of the windings can be expressed as follows.

    WhereR0,L,ρ, ?, andRware resistance,inductance, resistivity, mean length per turn and reluctance of the winding respectively. Then, the alternating current of the winding is:

    Where V1,2is the voltage applied to the winding.Substitute the above equation into Eq.(24) and Eq.(25),

    Now, the flux through the sphere is expressed by reluctance and winding parameters, we can analyze their effect on accelerating torque.

    1.6 Guidelines

    From Eq.(1) and Eq.(25), we deduce the following guidelines to maximizeφ13andφ24to get higher torque.

    Guideline #1:The core should be chosen to makeR1as small as possible to maximize. According to, larger section area and material with higher permeability should be chosen.

    Guideline #2:The air gap between two in-phase pole tips should be as small as possible to reduce reluctanceR24. This means the pole tips should be designed as close to the sphere surface as possible.

    Guideline #3:Eq.(24) and Eq.(25) calculates the magnetic flux passing through the rotor through a simplified magnetic circuit model when the magnetic flux is perpendicular to the respected axis. During operation, the coil will generate a rotating magnetic field.When the direction of the magnetic field rotates to a certain direction between the x and y axis, the magnetic circuit model suggests that there is no pole tips and windings in this direction. Thus, the magneto-motive force is weaker and the reluctance is stronger, which results in lower magnetic flux in this direction. Eq. (1) is deduced based on the magnetic field is uniform along x and y direction which means the magnetic field around the sphere surface should be as uniform as possible to makeφ13andφ24fluctuating less. A wide-winding design can increase the magneto-motive force to reduce magnetic field fluctuation.

    The above guidelines are not all compliant with each other. Within the structure size, the winding size and pole tip section area should be compromised.Furthermore, uniformity of the magnetic field should be considered carefully by optimizing the winding and pole tip structure.

    2 Simulation and experimental result

    To verify the guidelines deduced from EMC equations. Several simulations are carried out using finite element analysis (FEA) Method. Constrained by the sphere size and permitted space, we designed two types of windings to examine the effect of magnetic uniformity on accelerating efficiency. Secondly the situations of toroidal core and pole tip made from high and low permeability are checked respectively. Finally, the pole tip size and air gap between in-phase pole tips are simulated.

    The acceleration device includes a stator which is a toroidal core with 4 pole tips, and 4 winding coils around each pole as shown in Fig.3. Geometric parameter is given in Tab.1. The following simulations are all based on the same parameter if no additional notification is given.

    Tab.1 simulation parameters

    Fig.3 Illustration of four narrow windings around pole tips

    2.1 Pole tip section area

    Guideline #1 suggests that larger pole tip section areaAiresults in higher torque. Pole tip section area can be enlarged by increase Pole tip heighthp. Pole tip height ranging from 8 mm to 28 mm are simulated and the result is shown in Fig.4.

    Fig.4 Torque with respect to pole tip height

    Simulation results suggests the torque increases with higher pole tip height. This approves our guideline#1.

    2.2 Material permeability of stator

    Guideline #1 also suggests stator material permeability affects acceleration torque. Stator core’s relativity permeability ranging from 1 to 50000 is simulated to help select core material from air to the general magnetically permeable material. Result is given in Fig.5.

    Fig.5 Torque with respect to stator relative permeability

    Simulation results suggests that higher stator permeability helps to increases torque, which is approval to guideline #1. However, when relative permeability is above 20000, the torque increases very slowly. We choose 1J85 permalloy to make the stator, which has a relative permeability about 40000.

    2.3 Air gap between in-phase pole tips

    Guideline #2 requires the air gap between two inphase pole tips to be as small as possible. In-phase pole tip distance can be reduced by prolong the length of the pole tipslp. A simulation with pole tip length from 0 mm to 10 mm is carried out as shown in Fig.6.

    Fig.6 Effect of air gap on torque

    From the simulation result we can see that the smaller air gap, i.e. longer pole tip length, the higher torque is obtained. This approves our guideline #2.

    2.4 Magnetic field uniformity

    To increase the uniformity of magnetic field,guideline #3 suggested a “wide-winding design”.Windings tightly centered around the pole tips are called narrow winding as Fig.3 shows. To improve the uniformity of the magnetic field, a novel design featuring wide windings distributed along the inner radius of the stator core is proposed, and it is called “wide winding”.To maximize the width of windings, the windings overlaps each other. The wide winding design is illustrated in Fig.7. The stator core parameters remain the same with narrow winding design in Tab.1, and the winding number of turns reduced half to maintain the same volume with narrow windings.

    Fig.7 Wide winding design

    Simulations are carried out to evaluate the performance of new design. Fig.8 and Fig.9 shows the magnetic field distribution of the two designs. It shows that the magnetic field generated by narrow winding is concentrated around pole tips. While the field of wide winding is more uniform.Usingto measure the non uniformity of the magnetic field at point, we can calculate the non uniformity of the magnetic field within the area of the rotor. The result is given in Tab.2, and it suggests the magnetic field of wide winding is about 3.5 times more uniform than narrow winding.

    Tab.2 Simulated torques of two type of windings

    Fig.8 Magnetic field of the narrow winding

    Fig.9 Magnetic field of the wide winding

    Accelerating efficiency of these two types of windings is also simulated and the result is shown in Tab.2. The simulation results show that the wide winding not only has more uniform magnetic field, but also doubled the torque than narrow winding. The simulation result is compliant with the guideline #3.

    3 Experimental result

    To examine the performance of wide winding design compared to narrow winding, both windings are built. The rotor is a sphere metal shell that is electro statically suspended in the center of the winding in a vacuum chamber. The whole experiment setup is shown in Fig.10, and the parameters is given in Tab.1.

    Fig.10 Experiment devices

    The two different designs have different electrical circuit parameters. Therefore, same driving voltage applied to both narrow and wide windings will have different power consumption. To acquire a comparable result, different driving voltage is applied to achieve same apparent power consumption. Driving voltage,phase current and other respective electrical parameters are given in Tab.3.

    Tab.3 Experimented torques of two windings.

    During rotor acceleration experiment, the spin speed of the rotor is recorded and shown in Fig.11. The spin speed is then mathematically converted into acceleration speed and further translated into torque. The result is given in Fig.11 and Fig.12.

    Fig.11 Sphere spin speed versus time

    Fig.12 Torque with respect to spin speed

    The result shows that the torque decreased as rotor spin speed increased, this is due to change in slip rate.

    Experiment result shows the wide winding design gains 0.96 times more accelerating torque than narrow winding, which coincide with the simulated result.

    4 Conclusions

    In this paper, we deduced three general guidelines for the device of accelerating sphere in alternating field based on the magnetic equivalent circuit and finite element simulation. A wide winding design is put forward to generate more uniform magnetic field.Experimental prototypes are built, and prove the wide winding design gains 0.96 times more accelerating torque than narrow winding one.

    Appendix

    According to Eq.(10) to Eq.(25), we can get

    Where

    So, only three flux ofφ12,φ23andφ34are unknown.

    Letx=[φ12φ23φ34]T, according to Eq.(10) to Eq.(23), We get

    Where

    From Eq.28 and Eq.29, all the magnetic flux can be solved. With engineering proper simplicity, we have

    Substitute the above equations into Eq.(28)-Eq.(42),the other flux can be solved.

    精品国产超薄肉色丝袜足j| 极品人妻少妇av视频| 91成人精品电影| 狠狠精品人妻久久久久久综合| 动漫黄色视频在线观看| 一边摸一边抽搐一进一出视频| 亚洲国产精品成人久久小说| 中文字幕精品免费在线观看视频| 窝窝影院91人妻| 我的亚洲天堂| 国产精品一区二区在线不卡| 亚洲精品国产色婷婷电影| 色婷婷av一区二区三区视频| 久久香蕉激情| 黄色片一级片一级黄色片| av福利片在线| 国产黄色免费在线视频| 1024视频免费在线观看| a级毛片在线看网站| 成年人黄色毛片网站| 69av精品久久久久久 | 韩国精品一区二区三区| 日韩欧美国产一区二区入口| 91成人精品电影| 在线亚洲精品国产二区图片欧美| 国产深夜福利视频在线观看| 999精品在线视频| 悠悠久久av| 亚洲精品中文字幕在线视频| 国产高清视频在线播放一区 | 国产黄频视频在线观看| 国产极品粉嫩免费观看在线| 如日韩欧美国产精品一区二区三区| 免费观看a级毛片全部| 成年人黄色毛片网站| 色94色欧美一区二区| 亚洲久久久国产精品| 日本精品一区二区三区蜜桃| 国产在线免费精品| 国产在线视频一区二区| 国产欧美亚洲国产| 久久久水蜜桃国产精品网| 日韩三级视频一区二区三区| 亚洲国产精品999| 久久久精品免费免费高清| 亚洲视频免费观看视频| 午夜福利乱码中文字幕| 国产91精品成人一区二区三区 | 日韩精品免费视频一区二区三区| 亚洲国产看品久久| 国产主播在线观看一区二区| 久久精品熟女亚洲av麻豆精品| 一区二区日韩欧美中文字幕| 久久精品aⅴ一区二区三区四区| 午夜影院在线不卡| 丁香六月天网| 精品亚洲乱码少妇综合久久| 乱人伦中国视频| 亚洲av成人不卡在线观看播放网 | 亚洲精品久久久久久婷婷小说| 天天操日日干夜夜撸| 亚洲激情五月婷婷啪啪| 一级,二级,三级黄色视频| 丝袜人妻中文字幕| 国产熟女午夜一区二区三区| 热99re8久久精品国产| 亚洲伊人久久精品综合| 国产一区二区在线观看av| 日本撒尿小便嘘嘘汇集6| 亚洲免费av在线视频| 最新在线观看一区二区三区| 亚洲精品乱久久久久久| 国产精品欧美亚洲77777| av一本久久久久| 黄色a级毛片大全视频| 精品免费久久久久久久清纯 | 青草久久国产| av福利片在线| 久久久久视频综合| 久久久国产一区二区| 午夜成年电影在线免费观看| 少妇的丰满在线观看| 亚洲精品国产一区二区精华液| 操美女的视频在线观看| 欧美黄色淫秽网站| 国产高清国产精品国产三级| av国产精品久久久久影院| 女人爽到高潮嗷嗷叫在线视频| 男人爽女人下面视频在线观看| 一级黄色大片毛片| 少妇粗大呻吟视频| 国产精品久久久av美女十八| 80岁老熟妇乱子伦牲交| 欧美精品高潮呻吟av久久| 国产成人系列免费观看| 国产日韩欧美在线精品| 国产xxxxx性猛交| 欧美变态另类bdsm刘玥| 亚洲国产精品999| www.999成人在线观看| 90打野战视频偷拍视频| 美女大奶头黄色视频| 99精品久久久久人妻精品| 国产麻豆69| 免费久久久久久久精品成人欧美视频| 国产av国产精品国产| 欧美性长视频在线观看| 女人被躁到高潮嗷嗷叫费观| 久久亚洲精品不卡| 婷婷色av中文字幕| 新久久久久国产一级毛片| 两个人免费观看高清视频| 国产一区二区三区综合在线观看| 美女脱内裤让男人舔精品视频| 中国美女看黄片| 国产麻豆69| 法律面前人人平等表现在哪些方面 | 免费人妻精品一区二区三区视频| 黄片大片在线免费观看| 99久久国产精品久久久| 夫妻午夜视频| 久久 成人 亚洲| 欧美精品啪啪一区二区三区 | 日韩,欧美,国产一区二区三区| 男女免费视频国产| 精品久久久久久电影网| 亚洲欧洲日产国产| 色播在线永久视频| 国产精品久久久久久精品电影小说| 亚洲精品国产区一区二| 国产在线观看jvid| 亚洲,欧美精品.| 狠狠婷婷综合久久久久久88av| 汤姆久久久久久久影院中文字幕| 99久久精品国产亚洲精品| 伦理电影免费视频| 黑人操中国人逼视频| 精品少妇一区二区三区视频日本电影| 十八禁高潮呻吟视频| avwww免费| 国产精品.久久久| 最近最新免费中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 久久热在线av| 国产精品熟女久久久久浪| 狠狠精品人妻久久久久久综合| 精品一区二区三卡| 一本一本久久a久久精品综合妖精| 久久人妻福利社区极品人妻图片| 欧美日韩视频精品一区| 中文精品一卡2卡3卡4更新| 精品国内亚洲2022精品成人 | 在线观看一区二区三区激情| 午夜福利一区二区在线看| 美女高潮到喷水免费观看| 国产福利在线免费观看视频| 国产欧美日韩一区二区精品| 老司机午夜福利在线观看视频 | 日本撒尿小便嘘嘘汇集6| 9色porny在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品国产av蜜桃| 欧美黑人精品巨大| 女人久久www免费人成看片| 国产精品久久久久久人妻精品电影 | 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性xxxx| 看免费av毛片| 美女国产高潮福利片在线看| 日韩中文字幕欧美一区二区| 下体分泌物呈黄色| 97在线人人人人妻| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 午夜福利一区二区在线看| 捣出白浆h1v1| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 免费av中文字幕在线| 欧美精品亚洲一区二区| 老司机靠b影院| 激情视频va一区二区三区| 国产成人系列免费观看| 一二三四社区在线视频社区8| 久久人妻福利社区极品人妻图片| 欧美亚洲 丝袜 人妻 在线| 色婷婷av一区二区三区视频| 人人澡人人妻人| 亚洲va日本ⅴa欧美va伊人久久 | a级片在线免费高清观看视频| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 国产精品一区二区在线不卡| 超碰成人久久| 亚洲国产成人一精品久久久| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 涩涩av久久男人的天堂| 99re6热这里在线精品视频| 午夜福利在线观看吧| 一区二区av电影网| 国产高清videossex| 丰满少妇做爰视频| 婷婷色av中文字幕| 另类亚洲欧美激情| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 精品第一国产精品| 国产精品免费视频内射| 国产一区有黄有色的免费视频| 午夜福利免费观看在线| 一区在线观看完整版| 久久久精品94久久精品| 亚洲专区字幕在线| 欧美 日韩 精品 国产| 欧美黄色片欧美黄色片| 国产成人精品无人区| 十分钟在线观看高清视频www| 啦啦啦在线免费观看视频4| 国产精品久久久久久精品电影小说| 亚洲国产毛片av蜜桃av| 岛国毛片在线播放| 波多野结衣一区麻豆| 一级毛片电影观看| 777久久人妻少妇嫩草av网站| 日韩制服丝袜自拍偷拍| 国产精品.久久久| 少妇人妻久久综合中文| 欧美久久黑人一区二区| 97精品久久久久久久久久精品| 男女无遮挡免费网站观看| 啪啪无遮挡十八禁网站| 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍图片 自拍| 日韩制服丝袜自拍偷拍| 久久女婷五月综合色啪小说| 欧美日韩一级在线毛片| 精品一区在线观看国产| 亚洲午夜精品一区,二区,三区| 极品少妇高潮喷水抽搐| 美女脱内裤让男人舔精品视频| 老司机午夜十八禁免费视频| 在线观看免费高清a一片| 飞空精品影院首页| 国产91精品成人一区二区三区 | 人成视频在线观看免费观看| 日韩大片免费观看网站| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 欧美激情极品国产一区二区三区| 久久精品亚洲av国产电影网| 久久影院123| 一级a爱视频在线免费观看| 欧美在线黄色| 国产免费福利视频在线观看| 热99re8久久精品国产| 在线观看免费高清a一片| 狠狠精品人妻久久久久久综合| 在线天堂中文资源库| 国产成人影院久久av| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| 精品亚洲乱码少妇综合久久| 成在线人永久免费视频| 久久精品成人免费网站| 久久精品人人爽人人爽视色| 他把我摸到了高潮在线观看 | 欧美 亚洲 国产 日韩一| 伦理电影免费视频| 久久精品久久久久久噜噜老黄| 黄频高清免费视频| 久久精品熟女亚洲av麻豆精品| 又紧又爽又黄一区二区| 999精品在线视频| 亚洲国产精品999| 成年人黄色毛片网站| 91大片在线观看| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 在线av久久热| 午夜激情av网站| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 午夜免费鲁丝| 久久精品国产a三级三级三级| 99久久精品国产亚洲精品| 欧美成狂野欧美在线观看| av在线播放精品| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 黑人猛操日本美女一级片| 日韩免费高清中文字幕av| 男女无遮挡免费网站观看| 日本a在线网址| √禁漫天堂资源中文www| 国产视频一区二区在线看| 一本一本久久a久久精品综合妖精| 男人操女人黄网站| 91精品伊人久久大香线蕉| 日本91视频免费播放| 国产亚洲欧美在线一区二区| 亚洲伊人久久精品综合| 欧美性长视频在线观看| kizo精华| 1024视频免费在线观看| 欧美少妇被猛烈插入视频| 99热全是精品| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久小说| 精品高清国产在线一区| 国产一区有黄有色的免费视频| 99国产精品一区二区蜜桃av | 18禁国产床啪视频网站| 久久性视频一级片| 真人做人爱边吃奶动态| av在线app专区| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 老汉色∧v一级毛片| 国产精品九九99| 亚洲国产av新网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女午夜一区二区三区| 看免费av毛片| av在线老鸭窝| 亚洲黑人精品在线| 成人18禁高潮啪啪吃奶动态图| 国产亚洲一区二区精品| 捣出白浆h1v1| 成人国产av品久久久| 久久ye,这里只有精品| 久久久精品区二区三区| 岛国毛片在线播放| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 1024视频免费在线观看| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 国产成人精品久久二区二区91| 正在播放国产对白刺激| 亚洲 国产 在线| 免费观看av网站的网址| 男女国产视频网站| 蜜桃国产av成人99| 国产亚洲欧美在线一区二区| 桃花免费在线播放| 亚洲成人手机| 天堂俺去俺来也www色官网| 十八禁网站免费在线| 高清黄色对白视频在线免费看| 亚洲国产欧美在线一区| 亚洲欧美精品综合一区二区三区| 国产伦理片在线播放av一区| 黄片大片在线免费观看| 99久久综合免费| 久久狼人影院| 男人操女人黄网站| 天天躁日日躁夜夜躁夜夜| 久久精品aⅴ一区二区三区四区| 免费人妻精品一区二区三区视频| 精品一区二区三区av网在线观看 | 精品久久蜜臀av无| 在线 av 中文字幕| 国产91精品成人一区二区三区 | 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 日韩 欧美 亚洲 中文字幕| 一区二区三区精品91| 一本大道久久a久久精品| 精品一区二区三卡| 日本av免费视频播放| 一级毛片女人18水好多| 精品亚洲乱码少妇综合久久| 91av网站免费观看| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看| 成年av动漫网址| 精品国产一区二区三区久久久樱花| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 国产精品九九99| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 大片电影免费在线观看免费| 欧美激情久久久久久爽电影 | 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播| 交换朋友夫妻互换小说| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 青草久久国产| 老司机亚洲免费影院| 亚洲av美国av| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 91成年电影在线观看| 精品欧美一区二区三区在线| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| av天堂久久9| 欧美精品一区二区免费开放| 日韩一卡2卡3卡4卡2021年| 在线永久观看黄色视频| 成年美女黄网站色视频大全免费| 女警被强在线播放| 午夜免费鲁丝| 秋霞在线观看毛片| 成年动漫av网址| 欧美xxⅹ黑人| 亚洲伊人久久精品综合| 啦啦啦中文免费视频观看日本| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 真人做人爱边吃奶动态| 国产精品久久久人人做人人爽| 日本wwww免费看| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 免费久久久久久久精品成人欧美视频| 亚洲精品国产av蜜桃| cao死你这个sao货| 国产成人免费无遮挡视频| 午夜免费观看性视频| 操美女的视频在线观看| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 久久影院123| 亚洲国产毛片av蜜桃av| 久久久国产成人免费| 老熟妇乱子伦视频在线观看 | 国产熟女午夜一区二区三区| 国产精品99久久99久久久不卡| 日韩熟女老妇一区二区性免费视频| 国产激情久久老熟女| 午夜视频精品福利| 久久精品国产亚洲av高清一级| 窝窝影院91人妻| 午夜福利一区二区在线看| 性少妇av在线| 亚洲三区欧美一区| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 女警被强在线播放| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸 | 少妇 在线观看| 亚洲性夜色夜夜综合| 久久综合国产亚洲精品| 欧美av亚洲av综合av国产av| 久久久国产成人免费| 黄色视频在线播放观看不卡| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 国产av一区二区精品久久| 亚洲精品乱久久久久久| 亚洲全国av大片| 最新的欧美精品一区二区| 日韩免费高清中文字幕av| 国产三级黄色录像| av天堂久久9| 日韩精品免费视频一区二区三区| 国产区一区二久久| 亚洲国产成人一精品久久久| 欧美亚洲 丝袜 人妻 在线| 99国产精品一区二区三区| 久久女婷五月综合色啪小说| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 久久久久精品人妻al黑| 免费av中文字幕在线| 涩涩av久久男人的天堂| av福利片在线| 一区二区三区激情视频| 交换朋友夫妻互换小说| 一本综合久久免费| 亚洲性夜色夜夜综合| 国产成人免费无遮挡视频| 午夜福利,免费看| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 一区二区三区激情视频| 国产精品久久久久久人妻精品电影 | 国产黄频视频在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 亚洲精品粉嫩美女一区| 91老司机精品| 欧美黄色片欧美黄色片| svipshipincom国产片| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 自线自在国产av| 久久香蕉激情| 国产成人欧美| 国产精品偷伦视频观看了| 老司机在亚洲福利影院| 国产福利在线免费观看视频| 欧美日韩国产mv在线观看视频| 19禁男女啪啪无遮挡网站| 天堂8中文在线网| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 色精品久久人妻99蜜桃| 91精品伊人久久大香线蕉| 中文字幕人妻丝袜一区二区| 欧美精品av麻豆av| 一区福利在线观看| 777米奇影视久久| 日韩制服丝袜自拍偷拍| 大型av网站在线播放| 看免费av毛片| 午夜影院在线不卡| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 一本一本久久a久久精品综合妖精| 日本wwww免费看| 亚洲五月色婷婷综合| 五月开心婷婷网| 2018国产大陆天天弄谢| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 国产成+人综合+亚洲专区| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 男女午夜视频在线观看| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 国产av一区二区精品久久| 久久久久视频综合| 午夜影院在线不卡| 日韩一卡2卡3卡4卡2021年| 国产精品影院久久| 亚洲av男天堂| 午夜影院在线不卡| 国产成人啪精品午夜网站| 99久久人妻综合| 亚洲国产av影院在线观看| videos熟女内射| 色综合欧美亚洲国产小说| 亚洲国产看品久久| 一级毛片电影观看| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 一二三四社区在线视频社区8| 久久青草综合色| 国产在线免费精品| 亚洲国产欧美网| 大陆偷拍与自拍| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡 | √禁漫天堂资源中文www| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 亚洲中文av在线| 精品久久久精品久久久| 男女免费视频国产| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 亚洲熟女毛片儿| av福利片在线| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 亚洲视频免费观看视频| 久久青草综合色| 黄色视频,在线免费观看| www日本在线高清视频| 母亲3免费完整高清在线观看| 曰老女人黄片| 最新的欧美精品一区二区| 成人av一区二区三区在线看 | 韩国精品一区二区三区| 各种免费的搞黄视频| 午夜免费观看性视频| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| av不卡在线播放| 亚洲精品日韩在线中文字幕| 不卡一级毛片| 日韩制服骚丝袜av| 天天影视国产精品| 国产精品免费大片| 人妻一区二区av| 国产成人a∨麻豆精品| 久久人妻熟女aⅴ| 狂野欧美激情性bbbbbb|