楊檸芝,李婷,王燕,陳卓,馬義誠,任強林,劉佳佳,楊會國,姚剛
斷奶前后非特異病原性腹瀉羔羊生長生理及腸道菌群差異性比較
楊檸芝1,李婷1,王燕1,陳卓1,馬義誠1,任強林1,劉佳佳2,楊會國2,姚剛
1新疆農(nóng)業(yè)大學動物醫(yī)學學院,烏魯木齊 830052;2新疆畜牧科學院畜牧研究所,烏魯木齊 830026
【】羔羊腹瀉是由病原微生物、營養(yǎng)改變、環(huán)境應(yīng)激等多因素互作所致的新生和斷奶時期危害羔羊生長的臨床常見病之一。對斷奶前后腹瀉羔羊的生長生理與腸道菌群變化與其同期健康羔羊進行比較。為不同生長階段羔羊腹瀉的針對性防治研究奠定科學基礎(chǔ)。在對羔羊腹瀉進行臨床調(diào)查的基礎(chǔ)上,隨機選擇斷奶前(31—45日齡)健康和腹瀉羔羊各10只、斷奶后(60—75日齡)健康和腹瀉羔羊各10只分成4組進行生長生理、血液生理生化指標及相關(guān)炎性因子指標測定。采集直腸糞樣,用16S rRNA測序進行腸道菌群組成結(jié)構(gòu)比較分析。(1)斷奶前健康與腹瀉羔羊體重差異不顯著。而斷奶后腹瀉羔羊體重極顯著低于健康羔羊(<0.01),且腹瀉羔羊的體溫、脈搏和呼吸頻率也均顯著低于健康羔羊(<0.05)。(2)斷奶前腹瀉羔羊總蛋白、球蛋白、膽固醇等生化指標顯著低于健康羔羊(<0.05)。斷奶后腹瀉羔羊白細胞總數(shù)極顯著高于健康羔羊(<0.01),尿素氮、肌酐、磷、血糖和總膽紅素顯著低于健康羔羊(<0.05),炎性因子IL-4、IL-6、IL-8顯著高于健康羔羊。(3)斷奶后健康羔羊與腹瀉羔羊腸道菌群共有OTUs占比較斷奶前上升近一倍。斷奶前腹瀉羔羊腸道菌群Alpha多樣性顯著降低(<0.05)。健康與腹瀉羔羊的腸道菌群PCoA分布差異顯著(Weighted UniFrac Adonis和Anosim檢驗水平,<0.05),而斷奶后組間差異不顯著。門水平:與其同期健康羔羊相比,斷奶前腹瀉羔羊梭桿菌門相對豐度顯著升高(<0.05),疣微菌門和放線菌門相對豐度顯著下降(<0.05)。斷奶后,腹瀉羔羊黏膠球形菌門和放線菌門相對豐度顯著下降(<0.05)。屬水平:與其同期健康羔羊相比,斷奶前腹瀉羔羊梭桿菌屬和梭菌屬顯著升高(<0.05),而艾克曼菌屬、脫硫弧菌屬和丁酸弧菌屬顯著下降(<0.05)。斷奶后,腹瀉羔羊瘤胃球菌屬顯著下降(<0.05),而脫硫弧菌屬顯著升高(<0.05)。本研究結(jié)果表明斷奶前腹瀉羔羊主要發(fā)生蛋白質(zhì)和血脂降低;而斷奶后腹瀉羔羊的生理變化以尿素氮、肌酐和血糖等指標的下降為特點。斷奶前腹瀉羔羊腸道菌群失調(diào)變化明顯;而斷奶后腹瀉羔羊炎癥反應(yīng)等變化明顯。這些差異可能與斷奶所引起的日糧組成結(jié)構(gòu)和環(huán)境因素改變密切相關(guān)。
羔羊;斷奶;腹瀉;生理生化與炎癥因子;腸道菌群
【研究意義】斷奶是羔羊、犢牛等哺乳動物幼畜生長發(fā)育的關(guān)鍵時期之一。斷奶時哺乳動物幼畜從以吸吮富含營養(yǎng)且易消化的母乳為主轉(zhuǎn)向以采食固體飼料為主,其消化道形態(tài)功能發(fā)生劇烈變化。斷奶期羔羊在飼料營養(yǎng)結(jié)構(gòu)改變、環(huán)境應(yīng)激、病原入侵等因素的綜合影響下,羔羊極易發(fā)生以腹瀉為特征的消化道疾病,導致其生長遲滯甚至死亡,造成羔羊生產(chǎn)效率低下以及巨大的經(jīng)濟損失[1-3]。羔羊斷奶期的消化系統(tǒng)形態(tài)結(jié)構(gòu)和功能的生長發(fā)育變化以及致羔羊腹瀉的多病因?qū)W研究報道已屢見不鮮[4-7]。導致羔羊腹瀉的原因也會隨年齡的變化而變化[8-9]。由于斷奶過程帶來的羔羊生存環(huán)境的巨大變化,斷奶期健康羔羊的腸道菌群也會發(fā)生顯著變化,斷奶前和斷奶后腸道菌群的組成結(jié)構(gòu)也具有顯著差異性[10-11]。因此,揭示斷奶期腹瀉羔羊宿主生理生化變化和腸道菌群的變化特點對于精準防治羔羊消化道疾病,減少發(fā)病率和死亡率,提高羔羊生產(chǎn)效益具有重要科學意義?!厩叭搜芯窟M展】近年來,腸道菌群在宿主健康調(diào)控中的作用日益凸顯,嬰幼兒和幼畜發(fā)生腹瀉和腸道菌群的改變關(guān)系密切。在豬流行性腹瀉病毒(PEDV)感染的吮乳仔豬腸道中,整體微生態(tài)平衡被打破,表現(xiàn)為梭桿菌門(Fusobacterium)、變形菌門(Proteobacteria)相對豐度顯著高于健康仔豬,而擬桿菌門(Bacteroidetes)豐度顯著低于健康仔豬[12]。Huang等[13]發(fā)現(xiàn)斷奶過渡期因PEDV感染發(fā)生腹瀉的吮乳仔豬大腸埃希氏菌()、腸球菌()、梭菌()和韋榮球菌()菌屬顯著高于健康對照組仔豬。人和動物的腹瀉是多種胃腸道疾病以及非腸道感染的其他疾病的主要臨床表現(xiàn),大多具有炎性癥狀發(fā)生和機體免疫異常[14-15],在炎癥腸病發(fā)生發(fā)展過程中,細胞因子起著重要的作用,主要表現(xiàn)為促炎和抗炎細胞因子之間相互促進相互制約作用,二者的動態(tài)變化決定了炎癥的發(fā)展及結(jié)局[16]。Fernández等比較了斷奶前健康與腹瀉羔羊的血清細胞因子的變化,發(fā)現(xiàn)腹瀉羔羊的IL-1β濃度極顯著高于健康對照組[17]。因球蟲感染導致的腹瀉羔羊腸道免疫組化結(jié)果顯示所檢測的細胞因子IFN-α、IFN-γ、IL-1α、IL-1β、IL-2、IL-6、IL-10、TNF-α和TNF-β均顯著高于健康對照組羔羊,其中增高最多的是促炎細胞因子IL-1α和IL-6[18]。發(fā)生輪狀病毒性腹瀉的(20月齡內(nèi))嬰幼兒的IL-6、IL-10和IFN-γ也顯著高于健康對照組[19]。楊立華等[20]研究發(fā)現(xiàn)無論是病毒感染還是細菌感染,腹瀉患兒的血清細胞因子TNF-α、IL-6、IL-8均顯著升高。與健康羔羊相比,目前對于斷奶前和斷奶后腹瀉羔羊生理狀況和其腸道菌群的差異性變化以及宿主和其腸道菌群的互作關(guān)系尚缺乏足夠清晰的比較研究?!颈狙芯壳腥朦c】針對斷奶前和斷奶后臨床散發(fā)、非傳染性腹瀉的羔羊,即非特異病原性腹瀉羔羊,采用與其對應(yīng)日齡段的健康羔羊進行比較的方法,排除日齡變化的疊加干擾,比較斷奶前和斷奶后腹瀉羔羊生長、生理生化指標、炎性因子和腸道菌群組成結(jié)構(gòu)變化?!緮M解決的關(guān)鍵問題】探索斷奶前、后腹瀉羔羊的上述變化的差異性。以期為不同生長階段羔羊腹瀉的精準防治奠定基礎(chǔ)。
本試驗在新疆木壘縣某湖羊養(yǎng)殖場進行,試驗時間為2017年5—12月。該場羔羊隨母羊吮乳,在10—15日齡起開始補飼開食料。當吮乳羔羊日齡在45 d左右、體重達15±2 kg左右開始斷奶,斷奶后羔羊完全采食固體飼料。圍繞羔羊斷奶時期對臨床散發(fā)、無特異病原的非傳染性腹瀉羔羊進行臨床調(diào)查,統(tǒng)計腹瀉和死亡羔羊,計算腹瀉率、死亡率等指標。在此基礎(chǔ)上,隨機選擇斷奶前(31—45日齡)健康和腹瀉羔羊各10只,斷奶后(60—75日齡)健康和腹瀉羔羊各10只進行采樣和各項指標測定。健康羔羊與腹瀉羔羊樣品均在采食前采集,所有羔羊采樣前無任何抗生素接觸史。羔羊分組及日糧組成見表1、2。
1.2.1 羔羊腹瀉觀察測定 每天11:00和17:00在羔羊采食前分別觀察羔羊糞便,出現(xiàn)腹瀉癥狀即采樣,參考Marquardt等[21]的方法進行糞便形態(tài)評分。即,0分:正常,糞便條形或粒狀;1分:軟糞、成形;2分:輕腹瀉,不成形、糞水未分離;3分:嚴重腹瀉,液狀、不成形、糞水分離(圖1)。當糞便評分為2分或以上時認為羔羊發(fā)生腹瀉并統(tǒng)計腹瀉只數(shù)及次數(shù)。計算腹瀉率=試驗期內(nèi)每組羔羊腹瀉頭次/(試驗天數(shù)×每組羔羊頭數(shù))×100%和腹瀉病死率=死亡羔羊數(shù)/腹瀉羔羊數(shù)×100%。
表1 試驗分組
圖1 糞便形態(tài)評分(從左至右:0、1、2和3四級)
表2 斷奶前后羔羊日糧組成及營養(yǎng)水平
預(yù)混料為每千克日糧提供:VA 1100 IU, VD3400 IU, VE ≥ 25 mg, VB2≥6 mg, I 3 mg, Fe 50 mg, Zn 30 mg, Mn 37 mg, Cu 20 mg, Se 1 mg, Mg 30 mg. 營養(yǎng)水平均為計算值
Premix provided the following for per kilogram of the diet: VA 1100 IU, VD3400 IU, VE ≥ 25 mg, VB2≥6 mg, I 3 mg, Fe 50 mg, Zn 30 mg, Mn 37 mg, Cu 20 mg, Se 1 mg, Mg 30 mg. All nutrition content values are calculated values
1.2.2 樣品采集 經(jīng)羔羊頸靜脈采集全血和抗凝血各5 mL,全血靜置析出血清后,再經(jīng)離心分離血清,置于-80 ℃保存。后期用于血液生化指標及炎癥因子測定??鼓ǜ嗡剽c)用于血液生理指標測定。經(jīng)肛門采集直腸糞樣后迅速液氮保存,用于進行16S rRNA測序,分析菌群結(jié)構(gòu)變化。
1.3.1 體重測定 測定時間為早晨08:00空腹稱重。
1.3.2 體溫、脈搏和呼吸(TPR)測定 每天17:00測定。觀察安靜狀態(tài)下羔羊單位時間呼吸次數(shù),固定羔羊采用溫度計測定肛溫。最后觸壓頸靜脈測定脈搏。
1.3.3 血液生理、生化指標測定 生理指標采用XFA6030全自動動物血液細胞分析儀測定;生化指標用TDEXX VetTest生化分析儀測定;
1.3.4 炎癥因子檢測 采用雙抗夾心ELISA試劑盒(武漢基因美生物技術(shù)有限公司)測定4種炎癥因子:IL-1β(JYM0025Sh)、IL-6(JYM0011Sh)、IL-10(JYM0026Sh)和IL-18(JYM0066Sh)。
1.3.5 腸道群落結(jié)構(gòu)多樣性測定 采用糞便基因組 DNA 提取試劑盒(天根生化有限公司)。完成基因組抽提后用分光光度計測定其濃度和純度,瓊脂凝膠電泳試驗檢測提取 DNA 的質(zhì)量。之后進行目標片段 PCR 擴增,2%瓊脂糖凝膠電泳試驗對擴增產(chǎn)物進行檢測,之后回收目的片段,使用 AXYGEN公司的凝膠回收試劑盒。參照電泳初步定量結(jié)果,將 PCR 擴增回收產(chǎn)物進行熒光定量。采用 Illumina 公司的 TruSeq Nano DNA LT Libray Prep Kit 制備測序文庫。采用Agilent High Sensitivity DNA Kit對文庫在 Agilent Bioanalyzer上進行上機前質(zhì)檢,質(zhì)檢合格后采用 Quant-iT Pico Green dsDNA Assay Kit 在 Promega QuantiFluo 熒光定量系統(tǒng)上對文庫進行定量。定量結(jié)果根據(jù)所需測序量按一定的比例進行混合,并經(jīng)NaOH變性后進行上機測序;使用 MiSeq 測序儀進行 2×300 bp 的雙端測序,相應(yīng)試劑為 MiSeqReagent Kit V3 (600 cycles)。測序長度為 200—450 bp。選取糞便樣品中的菌群 16S rRNA的 V3 和 V4 可變區(qū)域進行高通量測序和分析。
采用軟件 Trimmomatic、FLASH、Usearch、perl 程序?qū)y序得到的 PE reads 根據(jù)overlap 關(guān)系進行拼接,同時對序列質(zhì)量進行質(zhì)控和過濾,區(qū)分樣本后用軟件平臺 Usearch對 OTU 聚類分析和物種分類學的分析,基于OTU用 mothur 進行Alpha多樣性分析。試驗結(jié)果數(shù)據(jù)以Mean±SE表示。采用SPSS 22.0統(tǒng)計軟件對數(shù)據(jù)進行獨立樣本T檢驗。<0.05作為差異顯著的判斷標準。
2.1.1 斷奶前后健康與腹瀉羔羊腹瀉率與死亡率 對出生后0—75日齡共461只羔羊分段進行臨床散發(fā)的腹瀉羔羊腹瀉只(次)數(shù)觀察記錄,發(fā)現(xiàn)腹瀉羔羊179只(次),總腹瀉率為2.59%,總腹瀉病死率為29.6%。其中,斷奶前31—45日齡階段腹瀉率為2.49%,病死率為40.9%,斷奶后60—75日齡階段腹瀉率為2.27%,病死率為20.6%。各日齡階段腹瀉及死亡羔羊情況見表3所示。
表3 斷奶前后羔羊腹瀉率與病死亡率統(tǒng)計
2.1.2 羔羊體重與生理指標 斷奶前健康與腹瀉羔羊體重差異不顯著(>0.05)。而斷奶后腹瀉羔羊體重極顯著低于健康羔羊(<0.01),且腹瀉羔羊的體溫極顯著低于健康羔羊(<0.01),脈搏和呼吸頻率也均顯著低于健康羔羊(<0.05,表4)。
2.1.3 羔羊血液生理生化指標及炎性因子 斷奶后腹瀉羔羊白細胞總數(shù)極顯著高于健康羔羊(<0.01),其他血液生理指標各組間均無顯著差異(>0.05,表5)。斷奶前腹瀉羔羊的總蛋白、球蛋白、膽固醇、磷均顯著低于健康羔羊(<0.05);而斷奶后腹瀉羔羊血中尿素氮、肌酐和磷均極顯著低于健康羔羊(<0.01),血糖和總膽紅素顯著低于健康羔羊(<0.05)。其他指標各組間無顯著差異(>0.05,表6)。如圖3所示,斷奶前健康和腹瀉羔羊之間炎癥相關(guān)因子均無顯著差異(>0.05),而斷奶后腹瀉羔羊IL-4、IL-6和IL-8顯著高于健康羔羊(<0.05)。
2.2.1 羔羊共有OTU 斷奶前健康羔羊特有OTUs占比50.10%,腹瀉羔羊特有OTUs占比12.46%,共有OTUs占比為37.45%。而斷奶后健康羔羊特有OTUs占比17.36%,腹瀉羔羊特有OTUs占比為10.14%,共有OTUs占比72.49%(圖4)。斷奶后健康組與腹瀉羔羊共有OTUs占比(72.49%)較斷奶前健康組與腹瀉羔羊共有OTUs占比(37.45%)升高近一倍。
圖2 斷奶前后健康與腹瀉羔羊體重及體溫、脈搏和呼吸參數(shù)
表4 斷奶前后健康與腹瀉羔羊血液生理指標
斷奶前后健康與腹瀉數(shù)據(jù)之間分別進行T-檢驗,標小寫字母表示<0.05,大寫字母表示<0.01。下同
T-test was performed between health and diarrhea data pre- and poster- weaning. Lowercase letters indicate<0.05, uppercase letters indicate<0.01.The same as below
表5 斷奶前后健康與腹瀉羔羊血液生化指標比較
2.2.2 Alpha多樣性分析 Alpha多樣性指數(shù)(圖5)表明,斷奶前健康組與腹瀉組羔羊腸道菌群Alpha多樣性指數(shù)均差異顯著,健康組顯著高于腹瀉組(<0.05)。而斷奶后健康組與腹瀉羔羊腸道菌群Alpha多樣性均無組間差異(>0.05)。
2.2.3 Beta多樣性分析 斷奶前健康和腹瀉羔羊腸道菌群Beta多樣性PCA比較,PC1貢獻率占31.18%,PC2貢獻率占20.21%,健康與腹瀉組間Weighted Unifrac Adonis和Anosim檢驗均達顯著水平(<0.05,圖6);而斷奶后健康與腹瀉羔羊腸道菌群β多樣性PCA比較,PC1的貢獻率占35.38%,PC2的貢獻率占20.91%。健康與腹瀉組間Adonis和Anosim檢驗差異不顯著(>0.05)
圖3 斷奶前后健康與腹瀉羔羊炎癥因子變化
圖4 斷奶前后健康和腹瀉羔羊腸道菌群OTUs Venn分析
斷奶前、后健康與腹瀉羔羊腸道菌群類群數(shù)如表7,斷奶前腹瀉羔羊?qū)偎胶头N水平類群數(shù)顯著少于健康羔羊(<0.05),而斷奶后兩組間各分類水平無組間差異(>0.05)。
2.3.1 門水平 如圖7所示,斷奶前健康與腹瀉羔羊腸道菌群梭桿菌門(Fusobacteria),疣微菌門(Verrucomicrobia)和放線菌門(Actinobacteria)相對豐度存在顯著組間差異,其中,健康羔羊梭桿菌門(Fusobacteria)顯著低于腹瀉羔羊,而疣微菌門(Verrucomicrobia)和放線菌門(Actinobacteria)顯著高于腹瀉羔羊(<0.05)。而斷奶后健康羔羊的黏膠球形菌門(Lentisphaerae)和放線菌門(Actinobacteria)相對豐度顯著高于腹瀉組(<0.05)。
圖5 斷奶前后健康與腹瀉羔羊腸道菌群 Alpha多樣性指數(shù)
圖6 斷奶前后健康與腹瀉羔羊腸道菌群Weighted UniFrac PCA
表7 健康和腹瀉羔羊腸道菌群各分類水平類群數(shù)
圖7 健康和腹瀉羔羊腸道菌群門水平相對豐度及差異菌群
2.3.2 屬水平 如圖8所示,斷奶前健康與腹瀉羔羊腸道菌群在梭桿菌屬()、梭菌屬()、艾克曼菌屬()、脫硫弧菌屬()和丁酸弧菌屬()等5個菌屬的相對豐度存在顯著組間差異(<0.05),其中,健康羔羊的梭桿菌屬()和梭菌屬()顯著低于腹瀉羔羊,而艾克曼菌屬()、脫硫弧菌屬()和丁酸弧菌屬()顯著高于腹瀉羔羊;斷奶后健康和腹瀉羔羊瘤胃球菌屬()和脫硫弧菌屬()存在顯著組間差異(<0.05),其中前者在健康羔羊顯著高于腹瀉組,而后者顯著低于腹瀉羔羊。
本試驗發(fā)現(xiàn),在斷奶前階段,健康組和腹瀉羔羊的體重、體溫、脈搏和呼吸頻率(TPR)均無顯著差異;而斷奶后腹瀉羔羊的體重和TPR均顯著低于健康羔羊。在早期斷奶羔羊和斷奶后仔豬研究中,均出現(xiàn)腹瀉羔羊和仔豬體重下降的研究報道[8-11,22]。本試驗發(fā)現(xiàn)斷奶前腹瀉羔羊的血清總蛋白、球蛋白、總膽固醇顯著低于健康組,其他血液生理生化指標兩組間無顯著差異。而斷奶后腹瀉羔羊白細胞顯著高于健康羔羊,且腹瀉羔羊的血清尿素氮和肌酐極顯著低于健康組,血糖和總膽紅素也顯著低于健康羔羊。唯有血磷濃度無論是斷奶前還是斷奶后,均為腹瀉組顯著低于健康組。在感染球蟲發(fā)生腹瀉的斷奶羔羊中也發(fā)現(xiàn)WBC顯著高于健康對照組[23],磷濃度顯著低于健康對照組[7]。蔣莉等人在研究兒童慢性腹瀉合并腸道蛋白丟失的試驗中發(fā)現(xiàn)患兒的總蛋白和球蛋白濃度均顯著低于健康對照組[24]。Salem等[25]在細小病毒感染的腹瀉幼犬血清檢測到總蛋白和白蛋白下降的結(jié)果,與本試驗結(jié)果一致,而甘油三酯和血清尿素氮顯著高于健康幼犬的結(jié)果與本結(jié)果不一致。這些差異可能是由于不同動物,不同年齡段或是不同腹瀉原因所致。本試驗結(jié)果顯示斷奶前腹瀉羔羊主要發(fā)生以蛋白質(zhì)和血脂降低為主的變化,而斷奶后腹瀉羔羊則發(fā)生尿素氮、肌酐和血糖等指標的下降變化,此變化可能與斷奶造成日糧改變有關(guān)。
圖8 健康和腹瀉羔羊腸道菌群屬水平相對豐度及差異菌群
本試驗針對斷奶前和斷奶后兩個階段的健康和腹瀉羔羊血清炎性相關(guān)細胞因子IL-4、IL-6、IL-8、IL-10、IL-18以及IL-1β、IFN-γ和TNF-α進行了比較,發(fā)現(xiàn)斷奶前健康和腹瀉羔羊之間各細胞因子均無顯著差異。而斷奶后腹瀉羔羊的IL-4、IL-6和IL-8顯著高于健康羔羊。Kumar等[26]在羔羊感染副結(jié)核分枝桿菌導致腹瀉的研究中發(fā)現(xiàn)羔羊的IL-4顯著高于健康對照組。但Fernandez等[17]在檢測11—18日齡吮乳期健康與腹瀉羔羊的細胞因子時發(fā)現(xiàn)腹瀉羔羊的血清IL-1β顯著高于健康對照組羔羊。Sakai等[27]采用氟脲嘧啶5誘導發(fā)生腹瀉的小鼠試驗中,也發(fā)現(xiàn)腹瀉小鼠不同段腸道的TNF-α、IL-1β、IL-6、IFN γ 、IL-17和 IL-22 的mRNA水平均顯著升高。Jiang等[19]發(fā)現(xiàn)患輪狀病毒腹瀉兒童的IL-6、IL-10和IFN-γ顯著高于健康對照組兒童。腹瀉疾病過程中的細胞因子變化是由于促炎和抗炎因子的復(fù)雜動態(tài)平衡與互作[28]。本試驗和其他研究在不同動物、不同誘因?qū)е碌母篂a研究中均檢測到血清IL-6和/或其mRNA表達水平的升高,鑒于IL-6在炎癥反應(yīng)中的促炎/抗炎雙向生物學作用,提示IL-6可能在羔羊腹瀉過程中維持機體免疫穩(wěn)態(tài)具有特殊重要作用[29-30]。
斷奶期的日糧改變是引起哺乳動物腸道菌群組成結(jié)構(gòu)發(fā)生劇烈變化的主要環(huán)境因素[31-33]。本研究發(fā)現(xiàn),斷奶后健康與腹瀉羔羊共有OTUs占比(72.49%)較斷奶前健康與腹瀉羔羊共有OTUs占比(37.45%)升高近一倍。斷奶前腹瀉羔羊菌群Alpha多樣性各項指數(shù)均顯著低于健康羔羊,而斷奶后羔羊未呈現(xiàn)顯著的組間差異。Beta多樣性(PCA)結(jié)果顯示斷奶前健康與腹瀉組呈現(xiàn)顯著差異分布,斷奶后健康與腹瀉羔羊腸道菌群分布差異不顯著。Nakamura等[34]在研究11日齡左右健康日本黑牛吮乳期健康犢牛和腹瀉犢牛糞菌組成結(jié)構(gòu)時發(fā)現(xiàn),后者的糞菌群Alpha多樣性指標均顯著低于健康組。健康組和腹瀉組無論是瘤胃菌群還是糞菌群的Beta多樣性的相似程度都較低。與本研究健康和腹瀉羔羊糞菌群的組成結(jié)構(gòu)結(jié)果基本一致。Sakaitani等[35]研究表明,動物腸道菌群會隨著年齡的增加和飲食習慣的改變而逐漸發(fā)生變化。Thompson等[36]研究發(fā)現(xiàn)。3—36日齡仔豬糞便菌群多樣性隨著日齡的變化而呈現(xiàn)升高趨勢,直到仔豬斷奶后糞便菌群多樣性才基本趨于穩(wěn)定。因此,本試驗中斷奶前健康與腹瀉羔羊腸道菌群多樣性均呈現(xiàn)出顯著差異,而斷奶后健康與腹瀉羔羊腸道菌群多樣性則無顯著性差異,可能斷奶后羔羊腸道菌群多樣性已基本處于相對穩(wěn)態(tài),腹瀉對其影響程度較低。
本研究發(fā)現(xiàn),斷奶前腹瀉羔羊的梭桿菌門(Fusobacteria)相對豐度顯著高于健康羔羊,而疣微菌門(Verrucomicrobia)和放線菌門(Actinobacteria)顯著低于健康羔羊。屬水平差異為:腹瀉羔羊的梭桿菌屬()和梭菌屬()均顯著高于健康羔羊,而艾克曼菌屬()、脫硫弧菌屬()和丁酸弧菌屬()顯著低于健康羔羊。而斷奶后,腹瀉羔羊低豐度的黏膠球形菌門(Lentisphaerae)和放線菌門(Actinobacteria)相對豐度顯著低于健康羔羊。而腹瀉羔羊的瘤胃球菌屬()顯著低于健康羔羊;脫硫弧菌屬()則顯著高于健康羔羊。與斷奶前相比,斷奶后腹瀉羔羊腸道菌群呈現(xiàn)不同的腸道菌群變化譜。梭桿菌屬是革蘭氏陰性無芽孢專性厭氧桿菌屬,含有多種與消化道炎性疾病發(fā)生密切相關(guān)的致病菌[37]。梭菌屬是革蘭氏陽性梭狀芽孢桿菌屬,該屬中主要的致病性厭氧芽孢梭菌可引起人和動物的破傷風、氣性壞疽、壞死性腸炎、食物中毒以及艱難梭菌性腸炎等疾病[38]。Tan等[39]在比較感染流行性腹瀉的吮乳仔豬和健康仔豬結(jié)腸組成時發(fā)現(xiàn)梭桿菌門(Fusobacteria)和梭桿菌屬()菌群均顯著高于健康仔豬。脫硫弧菌屬()、丁酸弧菌屬(),均為反芻動物瘤胃中的共生革蘭氏陰性厭氧菌。前者的一些致病菌可引起以慢性腹瀉為臨床特征之一的增殖性腸病[40-41],后者可引起菌血癥等感染性疾病[42-43]。疣微菌門(Verrucomicrobia)屬于PVC超級菌門(superphylum:Planctomycetes,Verrucomicrobia,Chlamydia)家族成員之一,艾克曼菌屬()是疣微菌門(Verrucomicrobia)在腸道中發(fā)現(xiàn)的重要菌屬,該菌屬中的A.具有黏液降解作用,對于維持腸黏膜完整性具有重要作用[44]。Zhao等[45]用飼喂小鼠,研究前者和小鼠炎性變化的關(guān)系。結(jié)果顯示日糧添加可顯著改善小鼠的炎癥狀態(tài)。本研究發(fā)現(xiàn)斷奶前后腹瀉羔羊呈現(xiàn)出不同的腸道菌群變化特點,斷奶前腹瀉羔羊的腸道菌群失調(diào)變化較斷奶后明顯。但由于本試驗主要針對臨床散發(fā)的非特異病原性腹瀉癥狀為主進行了腸道菌群的比較研究,未對特異病原進行檢測。因此,導致斷奶前后腹瀉羔羊腸道菌群差異性的原因與機理尚需進一步探索。
斷奶前腹瀉羔羊的生長狀況、生理生化及炎性反應(yīng)變化以及腸道菌群組成結(jié)構(gòu)變化與斷奶后腹瀉羔羊的變化具有顯著的差異性。斷奶前腹瀉羔羊主要表現(xiàn)以蛋白質(zhì)和血脂降低為主;而斷奶后腹瀉羔羊以尿素氮、肌酐和血糖指標的下降為主。斷奶前腹瀉羔羊腸道菌群失調(diào)變化明顯;而斷奶后腹瀉羔羊炎癥反應(yīng)等變化明顯。這些差異變化可能與斷奶所引起的日糧組成結(jié)構(gòu)和環(huán)境因素改變密切相關(guān)。其背后的菌群-宿主互作機理值得進一步研究。
[1] 柴建民. 斷母乳日齡對羔羊生長性能與胃腸道發(fā)育的影響[D]. 北京:中國農(nóng)業(yè)科學院, 2015.
CHAI J M. Effect of weaned milk age on growth performance and gastrointestinal development of lambs[D]. Beijing:Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[2] 宋代軍, 張家驊, 楊游, 喬艷芳, 田茂春. 羔羊不同斷奶日齡對小腸黏膜形態(tài)的影響. 動物營養(yǎng)學報, 2007(4): 344-349.
SONG D J, ZHANG J H, YANG Y, QIAO Y F, TIAN M C. Effects of different weaning ages of lambs on morphology of small intestine. Journal of Animal Nutrition, 2007 (04): 344-349. (in Chinese)
[3] 郭江鵬, 郝正里, 李發(fā)弟, 馬友記, 潘建忠, 張元興. 早期斷奶對舍飼肉用羔羊消化器官發(fā)育的影響. 畜牧獸醫(yī)學報, 2013, 44(7): 1078-1089.
GUO J P, HAO Z L, LI F D, MA Y J, PAN J Z, ZHANG Y X. Effects of early weaning on the development of digestive organs of lambs for house feeding. Journal of Animal Husbandry and Veterinary Medicine, 2013, 44(7): 1078-1089. (in Chinese)
[4] 妥鑫, 劉永明, 黃美州, 崔東安, 王慧, 王勝義, 齊志明. 羔羊腹瀉細菌和病毒病原的研究進展. 中國畜牧獸醫(yī), 2016, 43(3): 831-836.
TUO X, LIU Y M, HUANG M Z, CUI D A, WANG H, WANG S Y, QI Z M. Research progress of lamb diarrhea bacterial and viral pathogens. China Animal Husbandry and Veterinary Medicine, 2016, 43(3): 831-836. (in Chinese)
[5] 王治才, 劉崇向, 沙吾列, 黃增英. 羔羊輪狀病毒性腹瀉的調(diào)查. 中國獸醫(yī)雜志, 1992(1): 11-12.
WANG Z C, LIU C X, SHA W L, HUANG Z Y. Survey of rotavirus diarrhea in lambs. China Veterinary Journal, 1992(1): 11-12. (in Chinese)
[6] AHMED A, EGWU G O, GARBA H S, MAGAJI A A. Prevalence of bacterial pathogens and serotyping ofisolates from diarrhoeic lambs in Sokoto state, Nigeria. Sokoto Journal of Veterinary Sciences, 2010,8(1-2).
[7] KOCKAYA M, OZ?ENSOY, YUSUF. Determination of some blood parameters and macro elements in coccidiosis affected akkaraman kangal lambs. Journal of Asian Scientific Research2016, 6(9): 138-142.
[8] Diarrhea in Neonatal Ruminants. https://www.merckvetmanual.com/. 2014-08
[9] Diarrhea in Lambs and Kids. http://infovets.com/books/smrm/F/F156. htm. 2008-12-7
[10] WANG S Q, MA T, ZHAO G H, ZHANG N F, TU Y, LI F D, CUI K, BI Y L, DING H B, DIAO Q Y. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe–lamb interaction. Animals2019, 9(825): 1-12.
[11] HOOPER L V. Bacterial contributions to mammalian gut development. Trends in Microbiology, 2004, 12(3): 129-134.
[12] TAN Z, DONG W T, DING Y Q, DING X D, ZHANG Q, JIANG L. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One, 2019, 14(7).
[13] HUANG A, CAI R J, WANG Q, SHI L, LI C L, YAN H. Dynamic change of gut microbiota during porcine epidemic diarrhea virus infection in suckling piglets. Frontiers in Microbiology, 2019, 10: 322.
[14] 歐陽欽. 慢性腹瀉與常見相關(guān)疾病. 中國實用內(nèi)科雜志, 2003, 23 (10): 577-578.
OUYANG Q. Chronic diarrhea and related diseases. Chinese Journal of Practical Internal Medicine, 2003, 23(10): 577-578. (in Chinese)
[15] REISINGER E C, FRITZSCHE C, KRAUSE R, KREJS G J. Diarrhea caused by primarily non-gastrointestinal infections. Nature Clinical Practice Gastroenterology & Hepatology, 2005, 2(5): 216-222.
[16] 石云峰, 吳本權(quán). 炎性細胞因子在細菌感染中的作用. 國際內(nèi)科學雜志, 2009, 36(2): 112-115.
SHI Y F, WU B Q. The role of inflammatory cytokines in bacterial infections. International Journal of Internal Medicine, 2009, 36(2): 112-115. (in Chinese)
[17] FERNáNDEZ A, MARTELES D, RUIZ A, LACASTA D, CONDE T, LOSTE1 A. Relationship between Pro-Inflammatory Cytokines, IL-10 Anti-Inflammatory Cytokine and Serum Proteins in Healthy Lambs and with Diarrhea. Pakistan Veterinary Journal, 2016, 36(1): 63-67.
[18] OZLEM O, ADANIR R, HALIGUR M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Ruminant Research, 105: 345-350.
[19] JIANG B, SNIPES-MAGALDI L, DENNEHY P, KEYSERLING H, HOLMAN R C, BRESEE J, GENTSCH J, GLASS R I. Cytokines as mediators for or effectors against rotavirus disease in children. Clinical and Diagnostic Laboratory Immunology, 2003, 10(6): 995-1001.
[20] 楊立華, 傅曉鳳, 潘傳四, 李黑大,揭羽青. 細胞炎前因子測定對感染性腹瀉診斷的價值. 實用兒科臨床雜志, 2007 (1): 15+44.
YANG L H, FU X F, PAN C S, LI H D,JIE Y Q. The value of the determination of pre-inflammatory factors in the diagnosis of infectious diarrhea. Journal of Practical Pediatrics, 2007 (1): 15+44. (in Chinese)
[21] MARQUARDT R R, JIN L Z, KIM J W, FANG L, FROHLICH A A, BAIDOO S K. Passive protective effect of egg-yolk antibodies against enterotoxigenicK88+infection in neonatal and early-weaned piglets. FEMS Immunology and Medical Microbiology, 1999, 23(4): 283-288.
[22] FAIRBROTHER J M, NADEAU, éRIC, GYLES C L.in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 2005, 6(1): 17-39.
[23] ABDEL-SAEED H, SALEM N Y. Clinical, Hematologic, sero- biochemical and IgE response in lambs with diarrhea caused by eimeria. International Journal of Veterinary Science, 2019, Vol.8 (No.1): 10-13.
[24] 蔣莉, 王麗娟, 胡云海, 張琪琛. 兒童慢性腹瀉合并腸道蛋白丟失的臨床研究. 胃腸病學和肝病學雜志, 2014, 23(6):657-660.
JIANG L, WANG L J, HU Y H, ZHANG Q C. Clinical study on chronic diarrhea in children with intestinal protein loss. Journal of Gastroenterology and Hepatology, 2014, 23(6): 657-660. (in Chinese)
[25] SALEM N Y, YEHIA S G, FARAG H S, SOLIMAN S M. Evaluation of Hepcidin level and clinico-pathological modifications in canine parvovirus enteritis. International Journal of Veterinary Science, 2018, 7(2): 93-96.
[26] KUMAR A A, TRIPATHI B N, SHARMA B. Cytokine profile in tissues and blood of sheep experimentally infected withsubsp. Journal of Applied Animal Research, 2010, 38(2): 185-189.
[27] SAKAI H, SAGARA A, MATSUMOTO K, HASEGAWA S, SATO K, NISHIZAKI M, SHOJI T, HORIE S, NAKAGAWA T, TOKUYAMA S, NARITA M. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One, 2013, 8(1): e54788.
[28] lifetechnologies.com. When inflammatory cytokines are unbalanced. Bioprobes, 2012, 67: 30-32.
[29] CHRISTOPHER A H, SIMON A J. IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015, 16(5): 448-455.
[30] KIMURA A, KISHIMOTO T. IL-6: Regulator of Treg/Th17 balance. European Journal of Immunology, 2010, 40(7): 1830-1835.
[31] RYAN T, GRIEBEL P J. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012, 13(1): 129-141.
[32] MEALE S J, SHUCONG L, PAULA A, HOOMAN D, PLAIZIER J C, EHSAN K, STEELE M A. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Frontiers in Microbiology, 2016: 582.
[33] MEALE S J, LI S C, AZEVEDO P, DERAKHSHANI H, DEVRIES T J, PLAIZIER J C, STEELE M A, KHAFIPOUR E. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Scientific Reports, 2017, 7: 198.
[34] NAKAMURA S I, KIM Y H, TAKASHIMA K, KIMURA A, NAGAI K, ICHIJO T, SATO S. Composition of the microbiota in forestomach fluids and feces of Japanese Black calves with white scours. Journal of Animal Science, 2017, 95(9): 3949-3960.
[35] SAKAITANI Y, YUKI N, NAKAJIMA F, NAKANISHI S. Coloni-zation of intestinal microflora in new born foals. Journal of Intestinal Microbiology, 1999, 13(1): 9-14.
[36] THOMPSON C L, WANG B, HOLMES A J. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. Isme Journal, 2008, 2(7): 739-748.
[37] STRAUSS J. Fusobacterium nucleatum: An emerging gut pathogen? Gut Microbes, 2011, 2(5): 294-298.
[38] BIEN J, PALAGANI V, BOZKO P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therapeutic Advances In Gastroenterology, 2013, 6(1): 53-68.
[39] TAN Z, DONG W T, DING Y Q, DING X D, ZHANG Q, JIANG L. Porcine epidemic diarrhea altered colonic microbiota communities in suckling piglets. Genes, 2020, 11(1): 44.
[40] HOWARD B H, HUNGATE R E. Desulfovibrio of the sheep rumen. Applied and Environmental Microbiology, 1976, 32(4): 598-602.
[41] GOLDSTEIN E J C, CITRON D M, PERAINO V A, CROSS S A. Desulfovibrio desulfuricans bacteremia and review of human desulfovibrio infections. Journal of Clinical Microbiology, 2003, 41(6): 2752-2754.
[42] FERRY T, LAURENT F, RAGOIS P, CHIDIAC C, LYON BJI STUDY GROUP. Post-traumatic chronic bone and joint infection caused by Butyricimonas spp, and treated with high doses of ertapenem administered subcutaneously in a 30-year-old obese man. BMJ Case Reports, 2015, 1-2. DOI:10.1136/bcr-2015-212359
[43] ULGER T N, BOZAN T, BIRKAN Y, ISBIR S, SOYLETIR G. Butyricimonas virosa: The first clinical case of bacteraemia . New Microbes and New Infections, 2015, 4: 7-8.
[44] GEERLINGS S Y, KOSTOPOULOS I, DE VOS W M, BELZER C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms, 2018, 6(75): 1-26.
[45] ZHAO S Q, LIU W, WANG J Q, SHI J, SUN Y K, WANG W Q, NING G, LIU R X, HONG J. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. Journal of Molecular Endocrinology, 2017, 58(1): 1-14.
Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period
1College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052;2Institute of Animal Science, Academy of Animal Science and Veterinary Medicine, Urumqi 830026
【】Lamb diarrhea is one of the common clinical diseases caused by the certain pathogens or the interaction with malnutrition, abnormal management, and environmental stress during newborn and weaning periods, which hazards the lamb production. There is lack of enough investigation about the differences of lambs' physio-biochemistry with their gut microbiota caused by diarrhea between suckling and weaned periods. Therefore, this study was intended to compare the growth physiology with gut microbiota of diarrheic lambs in pre-and post-weaning period, so as to lay a scientific foundation for prevention and treatment of lamb diarrhea occurred at different growth stages precisely and effectively. 【】10 suckling healthy lambs and 10 diarrheic lambs at age of 31-45 day, and another 10 weaned healthy lambs and 10 diarrheic lambs at age of 60-75 day were selected and paired to check the growth status, blood physio-biochemistry and inflammatory factors. The rectal fecal samples were used to analyze gut microbiota composition and structure using 16S rRNA. 【】1. There was no significant difference in body weight between healthy and diarrhea lambs before weaning, but after weaning, the body weight of diarrheic lambs was extremely lower than that of healthy lambs (<0.01), and the body temperature, pulse and respiratory rate of diarrheic lambs were also significantly lower than those of healthy lambs (<0.05). 2. Before weaning, the total protein, globulin, and cholesterol in diarrheic lambs were significantly lower than those in healthy lambs (<0.05). After weaning, the total number of leukocytes in diarrheic lambs was extremely higher than that of healthy lambs (<0.01). And the blood urea, nitrogen, creatinine, phosphorus, glucose and total bilirubin in diarrheic lambs were significantly lower than those in healthy lambs (<0.05). After weaning, IL-4, IL-6 and IL-8 in diarrheic lambs were significantly higher than those in healthy lambs (<0.05). 3. The percentage of common OTUs in the gut of healthy and diarrheic lambs after weaning was almost as doubled as that before weaning. Alpha diversity of the gut microbiota in diarrheic lambs before weaning was significantly reduced as compared to their healthy counterpart (<0.05). And Beta diversity of the gut microbiota weightedCoA in diarrheic lambs before weaning was significantly different from that in the healthy lambs (Weighted UniFrac Adonis and Anosim tests,<0.05). At phylum level: before weaning, the relative abundance ofwas significantly increased (<0.05), whereas that ofand Actinobacteria was significantly decreased in the gut of diarrheic lambs as compared to their healthy counterpart (<0.05). After weaning, the relative abundance ofandwas significantly reduced as compared to their healthy counterpart (<0.05). At genus level: before weaning, the relative abundance ofandwere significantly increased, while,andwere significantly decreased in the gut of diarrheic lambs as compared to their healthy counterpart (<0.05). After weaning, the relative abundance ofwas significantly decreased, whilesignificantly was increased in the gut of diarrheic lambs as compared to their healthy counterpart (<0.05). 【】It was concluded that before weaning the content of blood proteins and the blood fat decreased significantly, whereas after weaning, the elevation of white blood cells and the decrease of CREA, UREA and the blood glucose was significant in diarrheic lambs. Before weaning, the more obvious gut microbiota dysbiosis was observed, whereas after weaning more significant gut inflammatory activity was observed in diarrheic lambs. The ration structure and the environment during weaning time could be the crucial factors for shifting aforementioned differences.
lamb; weaning; diarrhea; physio-biochemical and inflammatory factor; gut microbiota
10.3864/j.issn.0578-1752.2021.02.017
2020-03-08;
2020-07-10
新疆自治區(qū)重點研發(fā)計劃項目(82017B01005‐2‐4)
楊檸芝,E-mail:yangningzhi1@126.com,通信作者姚剛,E-mail:yg@xjau.edu.cn
(責任編輯 林鑒非)