丁茜,趙凱茜,王躍進(jìn)
中國(guó)野生毛葡萄芪合酶基因表達(dá)及對(duì)葡萄抗白粉病的影響
丁茜,趙凱茜,王躍進(jìn)
西北農(nóng)林科技大學(xué)園藝學(xué)院/旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/農(nóng)業(yè)農(nóng)村部西北地區(qū)園藝作物生物與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100
【】克隆中國(guó)野生毛葡萄()‘丹鳳-2’芪合酶(stilbene synthase)基因()并研究其功能,為提高歐洲葡萄()的白粉病抗性及品質(zhì)提供依據(jù)。利用同源克隆法獲得中國(guó)野生毛葡萄‘丹鳳-2’芪合酶基因構(gòu)建植物過表達(dá)載體;用無核白單芽莖段誘導(dǎo)出分生愈傷組織,作為農(nóng)桿菌介導(dǎo)法遺傳轉(zhuǎn)化的受體材料,獲得抗性植株,經(jīng)過不同水平檢測(cè),確定轉(zhuǎn)基因植株;對(duì)野生型和轉(zhuǎn)基因植株葉片人工接種葡萄白粉病菌(),通過顯微技術(shù)觀察葉片受白粉病菌侵染后的情況,比較兩者對(duì)白粉病的抗性;利用實(shí)時(shí)熒光定量PCR(qRT-PCR)分析野生型和轉(zhuǎn)基因植株在自然條件和接種白粉病菌后及其相關(guān)基因的表達(dá),用高效液相色譜法(HPLC)檢測(cè)轉(zhuǎn)基因植株中芪類物質(zhì)的種類與含量。同源序列克隆得到(JQ868689)與(JQ868677)的cDNA序列,長(zhǎng)度為1 179 bp。經(jīng)PCR和Western blot檢測(cè),鑒定出過表達(dá)無核白植株4株和過表達(dá)無核白植株3株。顯微觀察發(fā)現(xiàn),與野生型植株相比,轉(zhuǎn)和植株葉片上的菌絲生長(zhǎng)較慢,表現(xiàn)出對(duì)白粉病的抗性。qRT-PCR結(jié)果表明,自然生長(zhǎng)條件下,與野生型植株相比,轉(zhuǎn)和植株的表達(dá)量提高,上游苯丙氨酸裂解酶基因()、下游白藜蘆醇糖基轉(zhuǎn)移酶基因()、轉(zhuǎn)錄因子基因(、)的表達(dá)量均不同程度上升,而查爾酮合成酶基因()表達(dá)量降低;人工接種白粉病菌后,與野生型植株相比,轉(zhuǎn)基因植株表達(dá)量顯著上調(diào)。高效液相色譜分析表明,自然條件下,芪類物質(zhì)主要以反式云杉新苷形式存在,轉(zhuǎn)基因植株芪類物質(zhì)的含量高于野生型植株;在接種白粉病菌誘導(dǎo)表達(dá)后,除了反式云杉新苷,還產(chǎn)生了反式白藜蘆醇和葡萄素,即轉(zhuǎn)基因植株體內(nèi)芪類物質(zhì)的種類和含量均有所增加。將、轉(zhuǎn)入無核白后,轉(zhuǎn)基因植株的表達(dá)量增高,芪類物質(zhì)的含量與種類增加,并抑制白粉病菌的生長(zhǎng)。因此,中國(guó)野生毛葡萄‘丹鳳-2’攜帶的和能夠增強(qiáng)歐洲葡萄對(duì)白粉病的抗性,‘丹鳳-2’可用作葡萄抗病性育種的種質(zhì)資源。
中國(guó)野生毛葡萄;芪合酶基因;白藜蘆醇;白粉??;遺傳轉(zhuǎn)化;抗病性
【研究意義】葡萄是世界各地廣泛栽培的果樹[1]。據(jù)世界糧農(nóng)組織(FAO)2017年數(shù)據(jù)統(tǒng)計(jì)(http:// www.fao.org/home/zh/),全球葡萄種植面積和總產(chǎn)量分別為693.14萬公頃、7 427.66萬噸。目前,葡萄生產(chǎn)中主栽品種為歐洲葡萄(),但該品種抗病能力差,易感白粉病[2],病菌侵染對(duì)葡萄產(chǎn)量和質(zhì)量造成巨大影響[3]。生產(chǎn)上常用化學(xué)藥劑防治真菌病害,而殺菌劑的使用會(huì)增加生產(chǎn)成本,降低果實(shí)品質(zhì),長(zhǎng)期使用還會(huì)影響環(huán)境[4]。因此,抗病育種是葡萄育種的主要目標(biāo)之一[5]。利用轉(zhuǎn)基因技術(shù)抗病育種,能夠避免常規(guī)雜交育種出現(xiàn)的雜交不親和及周期長(zhǎng)的缺點(diǎn)??共∮N需要有抗病種質(zhì)資源,中國(guó)野生毛葡萄‘丹鳳-2’(accession Danfeng-2)不僅抗病性強(qiáng),并且白藜蘆醇(resveratrol)含量高[6]。因此,將‘丹鳳-2’中的抗病基因轉(zhuǎn)入歐洲葡萄,提高其抗病性,獲得抗病且白藜蘆醇含量高的新品種,具有重要的理論和實(shí)踐意義?!厩叭搜芯窟M(jìn)展】研究表明,葡萄中的白藜蘆醇是其特有的一種植保素[7],不僅可以增強(qiáng)植物抗病性[8],而且果實(shí)中的白藜蘆醇對(duì)人體有抗氧化、抗衰老以及抗癌等作用[9-11]。芪合酶(stilbene synthase,STS)是白藜蘆醇代謝途徑的關(guān)鍵酶。因此,將芪合酶基因()作為提高植物抗病性的目的基因,在葡萄[12]以及其他物種如獼猴桃[13]、蘋果[14]、擬南芥[15]、水稻[16]、白楊[17]、苜蓿[18]等進(jìn)行遺傳轉(zhuǎn)化,研究證明轉(zhuǎn)入外源的過表達(dá)植株對(duì)逆境脅迫的抗性增強(qiáng)并且芪類物質(zhì)積累。筆者所在課題組前期利用轉(zhuǎn)基因技術(shù),獲得了過表達(dá)的無核白和霞多麗植株[19]、過表達(dá)、、、和的無核白植株,人工接種葡萄白粉病菌()后發(fā)現(xiàn),轉(zhuǎn)基因植株芪類物質(zhì)含量和種類增加,并且對(duì)白粉病的抗性也有所增強(qiáng)[12,20-21]?!颈狙芯壳腥朦c(diǎn)】以中國(guó)野生毛葡萄‘丹鳳-2’在成熟果實(shí)中表達(dá)較高的和在幼葉中表達(dá)較高的為目的基因,構(gòu)建植物過表達(dá)載體,用農(nóng)桿菌介導(dǎo)法轉(zhuǎn)入歐洲葡萄無核白(cv. Thompson Seedless),研究基因表達(dá)特性以及抗病功能。【擬解決的關(guān)鍵問題】以無核白的分生愈傷組織為受體材料,通過農(nóng)桿菌介導(dǎo)法獲得過表達(dá)、的無核白植株,比較過表達(dá)植株在接菌前后表達(dá)水平及芪類物質(zhì)含量和種類的差異,研究的表達(dá)特性以及抗病功能,為葡萄抗病育種提供參考。
試驗(yàn)于2017—2019年在西北農(nóng)林科技大學(xué)旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。
中國(guó)野生毛葡萄‘丹鳳-2’和歐洲葡萄無核白均定植于西北農(nóng)林科技大學(xué)葡萄種質(zhì)資源圃,試驗(yàn)所用葡萄白粉病菌取自此資源圃。在西北農(nóng)林科技大學(xué)旱區(qū)逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室組培室培養(yǎng)無核白組培苗和分生愈傷組織。
在NCBI網(wǎng)站(https://www.ncbi.nlm.nih.gov/)分別下載(GenBank登錄號(hào):JQ868689)、(GenBank登錄號(hào):JQ868677)基因序列,用DNAMAN V6軟件比對(duì)序列與測(cè)序結(jié)果,以此來確定序列;、的基因染色體定位信息登錄歐洲葡萄基因組網(wǎng)(http://www.genoscope.cns.fr/externe/ Genome Browser/Vitis/)獲得;使用MEGA 6軟件聚類分析、與其他物種的氨基酸序列。
提取中國(guó)野生毛葡萄‘丹鳳-2’葉片的總RNA,參考E.Z.N.A Plant RNA kit(Omega)試劑盒說明書進(jìn)行。將RNA反轉(zhuǎn)錄合成cDNA,此過程參照FastKing RT Kit(With gDNase)試劑盒(天根KR116)說明書進(jìn)行。以cDNA為模板,設(shè)計(jì)擴(kuò)增基因的引物(表1),分別在引物5′和3′端添加H I和I酶切位點(diǎn)序列,利用同源序列克隆和,將目標(biāo)條帶大小正確的產(chǎn)物回收,產(chǎn)物連接pGEM-T-easy載體,轉(zhuǎn)入大腸桿菌T0P10感受態(tài)細(xì)胞中,培養(yǎng)至長(zhǎng)出菌斑,挑取單克隆菌斑,菌液PCR檢測(cè),陽性菌液送至奧科生物有限公司測(cè)序。用E.Z.N.A Plasmid Mini Kit I(Omega)質(zhì)粒提取試劑盒提取測(cè)序結(jié)果正確的菌液中的重組質(zhì)粒,重組質(zhì)粒和植物表達(dá)載體pCAMBIA2300分別用HI/I雙酶切,將酶切后的目的基因與表達(dá)載體連接,轉(zhuǎn)入農(nóng)桿菌()GV3101中,構(gòu)建植物表達(dá)載體pCAMBIA35S::::。
表1 本研究所用引物
用無核白組培苗的單芽莖段,在培養(yǎng)基上誘導(dǎo)出用于遺傳轉(zhuǎn)化受體材料的分生愈傷組織,遺傳轉(zhuǎn)化用農(nóng)桿菌介導(dǎo)法。轉(zhuǎn)化的具體步驟:恒溫?fù)u床上二次活化農(nóng)桿菌菌液(180 r/min,28℃),活化好的菌液,室溫下5 500 r/min離心10 min,去上清,菌液重懸液(1/2 MS+20 g·L-1蔗糖,200 μmol·L-1乙酰丁香酮)重懸兩次,180 r/min,28℃恒溫培養(yǎng)2 h,轉(zhuǎn)化用的菌液濃度OD600=0.7—1.0。將培養(yǎng)好的分生愈傷組織切小塊,用活化好的適宜濃度的菌液侵染20 min,置于共培養(yǎng)培養(yǎng)基(IM3+200 μmol·L-1乙酰丁香酮,pH 5.8)上暗培養(yǎng)48 h,之后,用脫菌液(1/2 MS+20 g·L-1蔗糖+200 mg·L-1Carb)洗脫10 min,重復(fù)兩次,再用無菌水4—5次,置于篩選培養(yǎng)基(IM3+300 mg·L-1Cef+75 mg·L-1Kan+200 mg·L-1Carb,pH 5.8)光培養(yǎng),每個(gè)月切去褐化組織并且更換培養(yǎng)基一次,之后將愈傷組織轉(zhuǎn)移至誘導(dǎo)分化培養(yǎng)基上促進(jìn)分化長(zhǎng)芽,將長(zhǎng)至2—5 cm的芽置于生根培養(yǎng)基中進(jìn)行生根成苗培養(yǎng),方法參考文獻(xiàn)[22]。
通過PCR、Western blot對(duì)抗性植株進(jìn)行檢測(cè)鑒定,兩種檢測(cè)結(jié)果均為陽性的抗性苗確定其為轉(zhuǎn)基因植株,對(duì)其進(jìn)行擴(kuò)繁、煉苗移栽。檢測(cè)方法步驟:提取轉(zhuǎn)基因植株葉片DNA(CTAB法),進(jìn)行PCR檢測(cè),引物如表1所示。Western blot檢測(cè),先提取轉(zhuǎn)基因植株葉片的蛋白質(zhì),提取方法:取葉片約0.5 g,在液氮中研磨成粉末,裝于2.0 mL離心管中,加入250 μL蛋白裂解液,混勻,置冰上15 min,離心20 min,吸取上清,加入上樣緩沖液,混勻,沸水中煮5 min,冷卻至室溫后,離心3 min,待用。參考HEART SDS-PAGE凝膠配制試劑盒說明書制備SDS-PAGE膠,將提取好的蛋白質(zhì)點(diǎn)樣跑膠;將帶有蛋白的膠切下用半干轉(zhuǎn)膜法將蛋白膠中的蛋白轉(zhuǎn)至PVDF膜上;用一抗雜交目的蛋白,二抗放大目的蛋白的信號(hào),用帶標(biāo)簽鼠單克隆抗體作為一抗,用HRP-羊抗小鼠IgG(H+L)作為二抗;二抗孵育結(jié)束后,洗掉膜表面的抗體,膜上加顯色液,用BIO RAD Universal Hood II成像。
通過qRT-PCR分析過表達(dá)植株中以及其代謝相關(guān)基因的表達(dá),分別包括與、。qRT-PCR的模板為轉(zhuǎn)基因植株葉片的cDNA,提取方法參照1.3,、1定量引物設(shè)計(jì)參考Shi等[23],其余5個(gè)基因定量引物設(shè)計(jì)參照Cheng等[12],內(nèi)參基因?yàn)椋磻?yīng)體系參考NovoStart?SYBR qPCR SuperMix Plus說明書,用三步法進(jìn)行qRT-PCR分析,3次生物學(xué)重復(fù),每個(gè)生物學(xué)重復(fù)進(jìn)行3次技術(shù)重復(fù)。
1.7.1 人工接種白粉病菌 用壓片法[24]對(duì)生長(zhǎng)狀態(tài)良好的轉(zhuǎn)基因和野生型(wild type,WT)植株接種白粉病菌。操作方法:選生長(zhǎng)狀態(tài)良好的葉片進(jìn)行接種,首先給葉片表面噴無菌水,然后將有白粉病菌的葡萄葉片在待接種葉片表面上覆蓋輕輕摩擦完成接種。
1.7.2 白粉病菌侵染過程觀察 剪取白粉病菌侵染的葉片置于離心管中,加入臺(tái)盼蘭染液,使葉片完全浸泡在染液中,沸水中煮15 min,室溫冷卻后,倒掉染液,加入水合氯醛溶液浸泡清洗,至葉片無明顯藍(lán)色,在顯微鏡下觀察記錄白粉病菌的生長(zhǎng)情況。
1.7.3 qRT-PCR分析接菌前后植株表達(dá) 在接菌后0、1、2、3、4、5、6、7 d分別取野生型和轉(zhuǎn)基因植株的接菌葉片,提取cDNA,進(jìn)行qRT-PCR分析,方法參照1.6。
1.7.4 高效液相色譜法(HPLC)分析 對(duì)接菌0 d和7 d的野生型和轉(zhuǎn)基因植株葉片,用HPLC檢測(cè)接菌前后植株中芪類物質(zhì)的種類及含量。樣品中的目標(biāo)物質(zhì)通過標(biāo)準(zhǔn)曲線上的保留時(shí)間來確定,含量通過標(biāo)準(zhǔn)峰面積和樣品峰面積的比值來計(jì)算,方法參照ZHOU等[25]。
通過壓片法[24]對(duì)中國(guó)野生毛葡萄‘丹鳳-2’葉片接種白粉病菌,以無菌水作為對(duì)照,在處理后0、12、24、48、72、96、120和144 h取樣,進(jìn)行qRT-PCR分析,方法參照1.6。
原始數(shù)據(jù)采用Microsoft Excel計(jì)算,數(shù)值均表示為“平均值±標(biāo)準(zhǔn)誤”,采用origin8.0軟件作圖,通過spss軟件one-way ANOVA(Tukey test)分析檢驗(yàn)差異結(jié)果(*<0.05,**<0.01)。
、均可以響應(yīng)白粉病菌的誘導(dǎo)表達(dá),在接菌后12 h表達(dá)量達(dá)到最高峰,與未接菌葉片相比,相對(duì)表達(dá)量分別提高了17與12倍。之后下降,120 h表達(dá)量再次上調(diào),之后又有所下降。兩個(gè)基因的表達(dá)模式相似,但表達(dá)水平不同,在接種12 h相對(duì)表達(dá)量高于(圖1)。
利用同源序列法克隆得到和基因序列(圖2-A),經(jīng)序列分析,可得出、CDS序列長(zhǎng)度為 1 179 bp,蛋白質(zhì)分子量為43 kD,編碼392個(gè)氨基酸。以歐洲葡萄‘PN40024’(cv. Pinot Noir)基因組數(shù)據(jù)為參考依據(jù),對(duì)、進(jìn)行染色體定位分析(圖2-B)和氨基酸序列比對(duì)分析(圖2-C)。分析得出反向定位于16號(hào)染色體16 710 284—16 711 818位置,對(duì)應(yīng)歐洲葡萄,與的氨基酸有4個(gè)位點(diǎn)不同。反向定位于16號(hào)染色體16 491 600—16 493 131位置,對(duì)應(yīng)歐洲葡萄,與無氨基酸位點(diǎn)的差異。通過聚類分析不同植物的(圖2-D),發(fā)現(xiàn)與最相似,相似度為98.72%;與最相似,相似度為100%,其次是與不同物種的高粱(),相似度分別為73.26%、73.78%。
圖1 VqSTS9(A)、VqSTS21(B)在白粉病菌誘導(dǎo)下的表達(dá)
利用同源序列法從中國(guó)野生毛葡萄‘丹鳳-2’克隆得到、,構(gòu)建用于本次遺傳轉(zhuǎn)化的植物過表達(dá)載體pCAMBIA35S::::、pCAMBIA35S::::(圖3-A)。HΙ/Ι雙酶切目的基因與表達(dá)載體的重組質(zhì)粒(圖3-B),將重組質(zhì)粒轉(zhuǎn)入農(nóng)桿菌 GV3101中,菌液PCR檢測(cè)(圖3-C)。
2.4.1 遺傳轉(zhuǎn)化 取野生型(WT)無核白組培苗的單芽莖段,在培養(yǎng)基上誘導(dǎo)分生愈傷組織,用此愈傷組織作為轉(zhuǎn)基因的受體材料。將目的基因通過農(nóng)桿菌介導(dǎo)法轉(zhuǎn)入愈傷組織中,通過再生途徑,誘導(dǎo)愈傷組織分化出抗性芽,并通過生根培養(yǎng)長(zhǎng)成抗性植株。其過程如下(圖4-A):生長(zhǎng)狀態(tài)良好的愈傷組織(a);將其切塊,用活化好的農(nóng)桿菌侵染15—20 min,期間不斷搖晃使其與菌液充分接觸,隨后倒掉菌液,多余的菌液用濾紙吸去,愈傷組織放入共培養(yǎng)培養(yǎng)基(b)中,培養(yǎng)48 h;共培養(yǎng)結(jié)束后,脫菌,放入篩選培養(yǎng)基中(c),每20—25 d繼代一次,切除褐色部分,保留綠色部分繼續(xù)進(jìn)行培養(yǎng),培養(yǎng)50—60 d后(d),放入篩選誘導(dǎo)分化培養(yǎng)基中,誘導(dǎo)愈傷組織長(zhǎng)出抗性芽(e);將抗性芽切下放入生根培養(yǎng)基中誘導(dǎo)生根(f);生根的抗性芽繼續(xù)在培養(yǎng)基中長(zhǎng)大成苗(g);抗性苗檢測(cè)結(jié)果為陽性的,剪取單芽莖段大量擴(kuò)繁(h),長(zhǎng)至成苗(i),練苗移栽(j)。
2.4.2 抗性植株檢測(cè) 遺傳轉(zhuǎn)化共獲得無核白抗性植株419株,轉(zhuǎn)的抗性植株分別有223和196株。用PCR檢測(cè)外源、內(nèi)源和Western blot檢測(cè)融合蛋白在植株中的表達(dá)(圖4-B)。兩種水平的檢測(cè)結(jié)果均為陽性的植株有7株,過表達(dá)的無核白植株分別有4和3株,轉(zhuǎn)化的陽性率分別為1.79%、1.53%。
和分別在轉(zhuǎn)基因株系中表達(dá)上調(diào),其中OE-L2和OE-L2表達(dá)量最高,分別是野生型的5.6、12.3倍;表達(dá)上調(diào),其中OE-L3和OE-L1表達(dá)量最高,分別是野生型的4.3、25.0倍;表達(dá)顯著上調(diào),其中OE-L2表達(dá)量最高,是野生型的16.8倍;表達(dá)量下調(diào)。、、、、在大部分植株中表達(dá)量均上調(diào),其中OE植株中,和表達(dá)量高,而在OE植株中,、表達(dá)量高,表達(dá)量最高的是OE-L2植株中的。上述結(jié)果表明過表達(dá)后,及其相關(guān)基因中正向調(diào)控芪類物質(zhì)合成的轉(zhuǎn)錄因子均不同程度上調(diào)表達(dá),而與芪合酶存在底物競(jìng)爭(zhēng)關(guān)系的下調(diào)表達(dá)(圖5)。
A:VqSTS9、VqSTS21目的基因克隆VqSTS9 and VqSTS21 gene cloning;B:VqSTS9、VqSTS21的染色體定位Chromosome localization of VqSTS9, VqSTS21;C:VqSTS9、VqSTS21與歐洲葡萄氨基酸序列比對(duì)Amino acid sequence alignment of VqSTS9, VqSTS21 and STS from V. vinifera;D:VqSTS9、VqSTS21與不同物種STS氨基酸序列聚類分析,包括歐洲葡萄、松葉蘭、樟子松、云杉、高粱、花生、桑、何首烏、大黃Cluster analysis of amino acid sequence of VqSTS9, VqSTS21 and STS from V. vinifera, Psilotum nudum, Pinus sylvestris, Picea abies, Sorghum bicolor, Arachis hypogaea, Morus alba, Fallopia multiflora, Rheum palmatum。登錄號(hào)The accession number:VqSTS9(AFM56666.1)、VqSTS21(AFM56657.1)、VvSTS6(NP_001267934.1)、VvSTS2(XP_003634068.1)、PnSTS(BAA87924)、PsylSTS(CAA43165)、PaSTS(AEN84236.1)、SbSTS(AAL49965)、AhSTS(BAA78617)、MaSTS(ARM20004.1)、FmSTS(AFP97667.1)、RpSTS(AFX68803.1)
A:兩個(gè)表達(dá)載體示意圖schematic diagram of two expression vectors。B:VqSTS9、VqSTS21基因連接表達(dá)載體pCAMBIA2300的雙酶切檢測(cè)VqSTS9, VqSTS21 genetic connection expression vector pCAMBIA2300 double enzyme detection,M:DNA Marker;1:BamH Ι單酶切表達(dá)載體質(zhì)粒The BamH Ι single enzyme expression vector plasmid;2:Sal Ι單酶切表達(dá)載體質(zhì)粒the Sal Ι single enzyme expression vector plasmid;P:pCAMBIA2300的空載體質(zhì)粒對(duì)照Empty vector pCAMBIA2300 as control;CK:空白對(duì)照Blank control (ddH2O);3—5:BamH Ι和Sal Ι雙酶切植物表達(dá)載體pCAMBIA35S::VqSTS9::GFP,3個(gè)重復(fù)double enzyme of BamH Ι and Sal Ι plant expression vector pCAMBIA35S: :VqSTS9: :GFP, three repeats;6—8:BamH Ι和Sal Ι雙酶切植物表達(dá)載體pCAMBIA35S::VqSTS21::GFP,3個(gè)重復(fù)Double enzyme of BamH Ι and Sal Ι plant expression vector pCAMBIA35S::VqSTS21::GFP, three repeats。C:過表達(dá)載體轉(zhuǎn)化農(nóng)桿菌的菌液PCR檢測(cè)PCR detection of Agrobacterium-transformed by overexpression vector,M:DNA Marker;P:陽性質(zhì)粒對(duì)照positive plasmid control;1—3:農(nóng)桿菌轉(zhuǎn)化pCAMBIA35S::VqSTS9::GFP載體,3個(gè)重復(fù)agrobacterium-transformed pCAMBIA35S::VqSTS9::GFP vector, three repeats;4—6:農(nóng)桿菌轉(zhuǎn)化pCAMBIA35S::VqSTS21::GFP載體, 3個(gè)重復(fù)Agrobacterium-transformedpCAMBIA35S::VqSTS21::GFP vector, three repeats
2.6.1 人工接種白粉病菌后轉(zhuǎn)基因植株的抗病性表現(xiàn) 為了研究轉(zhuǎn)基因植株對(duì)白粉病的抗性,對(duì)轉(zhuǎn)和無核白與野生型植株接種白粉病菌(圖6-A),顯微鏡觀察并統(tǒng)計(jì)接菌后 1—3 d每100個(gè)孢子的萌發(fā)數(shù)、初級(jí)菌絲與次級(jí)菌絲的數(shù)量,以及接菌7 d后分生孢子梗的數(shù)量(表2),染色結(jié)果(圖6-B)顯示在接種白粉病菌1 d后,植株葉片觀察到接種的分生孢子,與野生型相比,轉(zhuǎn)基因植株葉片孢子數(shù)量較少;接菌2 d和3 d后,轉(zhuǎn)基因植株葉片初級(jí)、次級(jí)菌絲數(shù)少于野生型植株;在接菌7 d后,與野生型植株相比,轉(zhuǎn)基因植株分生孢子梗的數(shù)量少。上述結(jié)果表明過表達(dá)和無核白植株對(duì)白粉病的抗性增強(qiáng)。
2.6.2 白粉病菌誘導(dǎo)下轉(zhuǎn)基因植株的表達(dá)與產(chǎn)物分析 對(duì)轉(zhuǎn)基因植株與野生型植株接種白粉病菌,通過qRT-PCR分析接菌前后表達(dá)量的變化(圖7-A、7-B)。結(jié)果表明在白粉病菌誘導(dǎo)后,響應(yīng)其誘導(dǎo)表達(dá)上調(diào),轉(zhuǎn)基因植株中表達(dá)量顯著升高,且與同時(shí)期的野生型植株相比始終保持較高水平。在OE-L1和OE-L2株系中,相對(duì)表達(dá)量分別在接菌后3 d和4 d達(dá)到峰值,是同時(shí)期野生型表達(dá)量的15.8倍與13.8倍;在OE-L2和OE-L3株系中,相對(duì)表達(dá)量分別在接菌后5 d和3 d達(dá)到峰值,是同時(shí)期野生型表達(dá)量的18.6倍與45.8倍。
接菌0 d和7 d,分析轉(zhuǎn)基因植株與野生型植株中芪類物質(zhì)含量與種類的變化(圖7-C、7-D)。結(jié)果表明接菌前過表達(dá)無核白植株中檢測(cè)到反式云杉新苷和反式白藜蘆醇,而野生型植株只檢測(cè)到反式云杉新苷;接菌7 d后,野生型植株的芪類物質(zhì)種類在反式云杉新苷基礎(chǔ)上增加了白藜蘆醇(13.14 μg·g-1DW),一些過表達(dá)植株中檢測(cè)到葡萄素。與接菌前相比,接菌 7 d 后芪類物質(zhì)總含量顯著提高,其中OE-L1植株比OE-L2芪類物質(zhì)的含量和種類多,OE-L1的糖苷和白藜蘆醇含量分別為接菌前的2.7倍和2.4倍,葡萄素含量為8.2 μg·g-1DW;植株OE-L2比OE-L3芪類物質(zhì)含量多,OE-L2的糖苷和白藜蘆醇含量分別為接菌前的1.6倍和2.1倍,葡萄素含量為18.3 μg·g-1DW。
A:無核白遺傳轉(zhuǎn)化過程The genetic transformation of Thompson Seedless,a:無核白分生愈傷組織meristem callus;b:侵染后的愈傷組織與農(nóng)桿菌共培養(yǎng)the infected callus was co-cultured with a. tumefaciens;c:轉(zhuǎn)化后的愈傷組織篩選培養(yǎng)callus screening culture after transformation;d:篩選60 d后的愈傷組織callus screening culture after 60 days;e:愈傷組織誘導(dǎo)出抗性芽callus induced resistant buds;f:抗性芽生根培養(yǎng)rooting culture of resistant bud;g:抗性芽長(zhǎng)成植株resistant buds grow into plants;h:抗性植株的繼代擴(kuò)繁secondary propagation of resistant plants;i:繼代后長(zhǎng)成植株plant growth after succession;j:轉(zhuǎn)基因植株移栽transplanting of transgenic plants。B:轉(zhuǎn)基因植株的鑒定Identification of transgenic plants,a:轉(zhuǎn)基因植株transgenic plants;b:PCR檢測(cè)抗性植株P(guān)CR was used to detect resistant plants,M為marker,P為質(zhì)粒M was marker, and P was plasmid;c:Western blot檢測(cè)抗性植株Western blot was used to detect resistant plants
A:4個(gè)轉(zhuǎn)VqSTS9株系的qRT-PCR 分析qRT-PCR analysis of 4 VqSTS9 transgenic lines;B:3個(gè)轉(zhuǎn)VqSTS21株系的qRT-PCR分析qRT-PCR analysis of three VqSTS21 transgenic lines;OEVqSTS-Ls為轉(zhuǎn)基因株系OEVqSTS-Ls were different transgenic lines
表2 每100個(gè)孢子萌發(fā)數(shù)、初級(jí)菌絲數(shù)、次級(jí)菌絲數(shù)和分生孢子梗數(shù)統(tǒng)計(jì)
數(shù)據(jù)表示為平均值±SE(=3)。同列數(shù)據(jù)后標(biāo)有不同小寫字母表示差異顯著(<0.05)
The data are shown as average±SE (=3). The lowercases after the data in the same column indicate significantly different (<0.05)
要解決歐洲葡萄不抗病的問題,需要培育抗病品種,而抗病育種中抗病種質(zhì)資源尤為關(guān)鍵。早期,研究者試圖從歐洲葡萄品種中尋找抗病物質(zhì)。1976、1979年,LANGCAKE等相繼鑒定出葡萄中的白藜蘆醇及衍生物[26-27];1984年,Sch?ppner等首次分離與純化了合成白藜蘆醇的關(guān)鍵酶芪合酶[28]。關(guān)于葡萄轉(zhuǎn)芪合酶基因,最早研究是在1990年,轉(zhuǎn)花生的煙草原生質(zhì)體在紫外燈誘導(dǎo)下檢測(cè)到白藜蘆醇[29];研究表明,白藜蘆醇不僅作為植保素具有抗病性,還具有生物學(xué)保健功能如抗癌、抗氧化、抗衰老等[8-10]。而芪合酶是白藜蘆醇合成途徑中的關(guān)鍵酶,可以響應(yīng)并提高植物的抗病性[30]。因此,轉(zhuǎn)芪合酶基因到其他植物成了研究的熱點(diǎn)與重要領(lǐng)域,作為轉(zhuǎn)基因受體的如番茄[31]、豌豆[32]、油菜[33]、大麥[34]、小麥[35]、葡萄[12]、番木瓜[36]等。筆者所在課題組前期也獲得過表達(dá)的無核白植株[12,20-21]。研究證明轉(zhuǎn)入外源,過表達(dá)植株對(duì)逆境脅迫的耐性增強(qiáng)并且使芪類物質(zhì)積累。葡萄已被作為轉(zhuǎn)基因及其產(chǎn)物白藜蘆醇研究的模式植物,被廣泛地用作抗性候選基因研究。將葡萄中作為改良植物抗性能力的目的基因,利用轉(zhuǎn)基因技術(shù)在葡萄植物種內(nèi)以及其他物種間進(jìn)行遺傳轉(zhuǎn)化,從而提高植株抗病性。
A:用于接種白粉病菌的野生型無核白和轉(zhuǎn)基因植株、與接種白粉病菌7 d的野生型和轉(zhuǎn)基因的葡萄葉片wildtype Thompson Seedless and transgenic plants used for U. necator induction and leaves with induction 7 dpi;B:顯微觀察葡萄葉片上白粉病菌的生長(zhǎng)。標(biāo)尺=100 μm The growth progress of U. necator on grape leaves was observed microscopically. Scale bar=100 μm
有研究表明,在植物體內(nèi),芪類物質(zhì)有白藜蘆醇、云杉新苷、葡萄素和紫檀芪[37],這些衍生物具有與白藜蘆醇相似的作用[38],如葡萄素等能抑制霜霉菌菌絲生長(zhǎng)[39]。本研究中,隨著接種時(shí)間的增長(zhǎng),轉(zhuǎn)植株芪類物質(zhì)的量和種類均有所增加,特別是葡萄素的積累,說明轉(zhuǎn)入的基因與獲得的轉(zhuǎn)基因植株具有抗病性。這與筆者課題組前期研究結(jié)果一致[12,40]。
在植物體內(nèi),通過苯丙氨酸代謝途徑合成白藜蘆醇[41]。合成包括一系列的酶反應(yīng),其中芪類化合物合成的關(guān)鍵酶是STS,它能夠催化香豆酰-CoA和丙二酰-CoA合成白藜蘆醇[42]。本研究通過qRT-PCR技術(shù)對(duì)轉(zhuǎn)基因植株中與白藜蘆醇合成相關(guān)的轉(zhuǎn)錄因子基因(、)、苯丙氨酸解氨酶基因()、白藜蘆醇糖基轉(zhuǎn)移酶基因()和查爾酮合成酶基因()進(jìn)行了表達(dá)分析。結(jié)果表明在轉(zhuǎn)基因株系中,在攜帶CaMV35S啟動(dòng)子植物表達(dá)載體增強(qiáng)基因表達(dá)情況下,與野生型相比,不同程度地表達(dá)上調(diào),這與CHENG等[12]研究結(jié)果一致。CaMV35S屬于組成型啟動(dòng)子,其整合到雙子葉植物基因組后,能夠啟動(dòng)在不同器官、發(fā)育時(shí)期外源基因高強(qiáng)度的表達(dá),但其活性在單子葉植物中受到限制[43]。PAL作為苯丙氨酸代謝途徑中的第一個(gè)關(guān)鍵酶,能夠催化合成香豆酸輔酶A,在轉(zhuǎn)的植株中表達(dá)上調(diào),可能是由于表達(dá)上調(diào)增加了對(duì)香豆酸輔酶A的消耗。轉(zhuǎn)基因植株中表達(dá)上調(diào),其可催化白藜蘆醇糖基化,轉(zhuǎn)化為云杉新苷,由于表達(dá)上調(diào)使得白藜蘆醇合成增加,導(dǎo)致表達(dá)上調(diào)。與有共同的前體底物香豆酰輔酶A,轉(zhuǎn)基因植株中表達(dá)下調(diào),可能是因?yàn)閮烧叽嬖诘孜锔?jìng)爭(zhēng)關(guān)系[44]。H?LL等[45]研究發(fā)現(xiàn),和能夠正調(diào)控芪類物質(zhì)的合成。本研究中,和不同程度地上調(diào)。因此,過表達(dá)和不僅提高了轉(zhuǎn)基因植株的表達(dá),還引起白藜蘆醇合成途徑中其他酶基因(、)和相關(guān)轉(zhuǎn)錄因子基因(、)的上調(diào)表達(dá),從而促進(jìn)芪類物質(zhì)的積累。
A、B:接菌后STS相對(duì)表達(dá)量Relative expression of STS after inoculation;C、D:接菌0 d和7 d后芪類物質(zhì)含量和種類檢測(cè)The contents and types of stilbenes after inoculation 0 d and 7 d
轉(zhuǎn)基因技術(shù)是一種的重要分子育種手段,在葡萄中已有轉(zhuǎn)化成功的例子。一般葡萄用于遺傳轉(zhuǎn)化的受體材料主要包括通過體細(xì)胞胚發(fā)生途徑誘導(dǎo)的胚性愈傷組織和器官發(fā)生途徑誘導(dǎo)的分生愈傷組織。胚性愈傷組織起源于單細(xì)胞,可避免嵌合體的形成,但其誘導(dǎo)時(shí)間較長(zhǎng),誘導(dǎo)率低,受季節(jié)影響,使得轉(zhuǎn)基因效率較低;而器官再生是由多個(gè)細(xì)胞共同發(fā)育分化形成的,在遺傳轉(zhuǎn)化時(shí)會(huì)有嵌合體形成但其誘導(dǎo)時(shí)間短,再生成苗率高,受季節(jié)影響較小[46]。本研究基于課題組前期遺傳轉(zhuǎn)化體系進(jìn)行。通過構(gòu)建攜帶目的基因的植物過表達(dá)載體,轉(zhuǎn)入歐洲葡萄無核白中,獲得抗性植株。轉(zhuǎn)基因定向改良性狀是今后精準(zhǔn)育種的重要途徑之一,但葡萄遺傳轉(zhuǎn)化效率受多方面因素的影響,包括基因型、受體材料(類型、狀態(tài))、侵染菌液濃度、共培養(yǎng)時(shí)間、抗生素篩選濃度等。因此,優(yōu)化遺傳轉(zhuǎn)化體系與提高遺傳轉(zhuǎn)化效率是今后葡萄轉(zhuǎn)基因定向改良目標(biāo)性狀的瓶頸技術(shù)問題。
中國(guó)野生毛葡萄‘丹鳳-2’芪合酶基因、具有抗白粉病的功能,將、利用農(nóng)桿菌轉(zhuǎn)入歐洲葡萄無核白中,芪合酶基因表達(dá)產(chǎn)物種類與含量積累增加,表現(xiàn)出轉(zhuǎn)基因植株對(duì)白病菌的抗性。因此,中國(guó)野生葡萄毛葡萄‘丹鳳-2’是進(jìn)行抗病育種的重要種質(zhì)資源,、是重要的抗病基因資源,可進(jìn)一步用作雜交親本與歐洲葡萄品種雜交改進(jìn)歐洲葡萄品種抗病性。
[1] ALLEWELDT G, POSSINGHAM J V. Progress in grapevine breeding. Theoretical and Applied Genetics, 1988, 75(5): 669-673.
[2] QIU W, FEECHAN A, DRY I. Current understanding of grapevine defense mechanisms against the biotrophic fungus (), the causal agent of powdery mildew disease. Horticulture Research,2015, 2: 15020.
[3] GLAWE D A. The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology, 2008, 46: 27-51.
[4] TAKSONYI P, KOCSIS L, MáTYAS K K, TALLER J. The effect of quinone outside inhibitor fungicides on powdery mildew in a grape vineyard in Hungary. Scientia Horticulturae, 2013, 161: 233-238.
[5] BISSON L F, WATERHOUSE A L, EBELER S E, WALKER M A, LAPSLEY J T. The present and future of the international wine industry.Nature, 2002, 418(6898): 696-699.
[6] Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y. A circulatory system useful both for long-term somatic embryogenesis and genetic transformation inL. cv. Thompson Seedless. Plant Cell, Tissue and Organ Culture, 2014, 118: 157-168.
[7] LANGCAKE P, PRYCE R J. A new class of phytoalexins from grapevines. Experientia, 1977, 33(2): 151-152.
[8] HAIN R, REIF H J, KRAUSE E, LANGEBARTELS R, KINDL H, VORNAM B, WIESE W, SCHMELZER E, SCHREIER P H, ST?CKER R H, STENZEL K. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 1993, 361(6408): 153-156.
[9] JANG M, CAI L, UDEANI G O, SLOWING K V, THOMAS C F, BEECHER C W, FONG H H, FARNSWORTH N R, KINGHORN A D, MEHTA R G, Moon R C, Pezzuto J M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297): 218-220.
[10] BAUR J A, SINCLAIR D A. Therapeutic potential of resveratrol: theevidence. Nature Reviews Drug Discovery, 2006, 5: 493-506.
[11] SIREROL J A, RODRíGUEZ M L, MENA S, ASENSI M A, ESTRELA J M, ORTEGA A L. Role of natural stilbenes in the prevention of cancer. Oxidative medicine and cellular longevity, 2016, 2016: 3128951.
[12] CHENG S, XIE X, XU Y, ZHANG C, WANG X, ZHANG J, WANG Y. Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild. Planta, 2016, 243(4): 1041-1053.
[13] KOBAYASHI S, DING C K, NAKAMURA Y, NAKAJIMA I, MATSUMOTO R. Kiwifruits () transformed with astilbene synthase gene produce piceid (resveratrol-glucoside). Plant cell reports, 2000, 19: 904-910.
[14] RüHMANN S, TREUTTER D, FRITSCHE S, BRIVIBA K, SZANKOWSKI I. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. Journal of Agricultural and Food Chemistry, 2006, 54(13): 4633-4640.
[15] YU C K, Lam C N, SPRINGOB K, SCHMIDT J, CHU I K, LO C. Constitutive accumulation of-piceid in transgenicoverexpressing a sorghum stilbene synthase gene.Plant and Cell Physiology,2006, 47(7): 1017-1021.
[16] BAEK S H, SHIN W C, RYU H S, LEE D W, MOON E, SEO C S, HWANG E, LEE H S, AHN M H, JEON Y,. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS one, 2013, 8(3): e57930.
[17] GIORCELLI A, SPARVOLI F, MATTIVI F, TAVA A, BALESTRAZZI A, VRHOVSEK U, CALLIGARI P, BOLLINI R, CONFALONIERI M. Expression of the stilbene synthase () gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic research, 2004, 13: 203-214.
[18] HIPSKIND J D, PAIVA N L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to. Molecular Plant-Microbe Interactions, 2000, 13(5): 551-562.
[19] DAI L, ZHOU Q, LI R, DU Y, HE J, WANG D, CHENG S, ZHANG J, WANG Y. Establishment of a picloram-induced somatic embryogenesis system incv.and genetic transformation of a stilbene synthase gene from wild-growingspecies.Plant Cell, Tissue and Organ Culture, 2015, 121: 397-412.
[20] 劉夢(mèng)琦, 吳鳳穎, 王躍進(jìn). 中國(guó)野生毛葡萄芪合成酶基因表達(dá)與抗白粉病分析. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(14): 2436-2449.
LIU M Q, WU F Y, WANG Y J. Expression of stilbene synthase gene and resistance to powdery mildew analysis of Chinese wildScientia Agricultura Sinica,2019, 52(14): 2436-2449. (in Chinese)
[21] 吳鳳穎, 劉夢(mèng)琦, 王躍進(jìn). 中國(guó)野生毛葡萄芪合酶基因抗白粉病功能分析. 園藝學(xué)報(bào), 2020, 47(2): 205-219.
WU F Y, LIU M Q, WANG Y J. Function analysis of stilbene synthase genesandof the resistance to powdery mildew inActa Horticulturae Sinica, 2020, 47(2): 205-219. (in Chinese)
[22] XIE X, AGOERO C B, WANG Y, WALKER M A. Genetic transformation of grape varieties and rootstocks via organogenesis.Plant Cell, Tissue and Organ Culture, 2016, 126: 541-552.
[23] SHI J, HE M, CAO J, WANG H, D1NG J, JIAO Y, LI R, HE J, WANG D, WANG Y. The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (and). Plant Physiology and Biochemistry, 2014, 74: 24-32.
[24] WANG Y, LIU Y, HE P, CHEN J, LAMIKANRAZ O, Lu J. Evaluation of foliar resistance toin Chinese wildspp. species. Vitis, 1995, 34(3): 159-164.
[25] ZHOU Q, DU Y, CHENG S, LI R, ZHANG J, WANG Y. Resveratrol derivatives in four tissues of six wild Chinese grapevine species. New Zealand Journal of Crop and Horticultural Science, 2015, 43(3): 204-213.
[26] LANGCAKE P, PRYCE R J. The production of resveratrol byand other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 1976, 9: 77-86.
[27] LANGCAKE P, MCCARTHY W V. The relationship of resveratrol production to infection of grapevine leaves by.Vitis, 1979, 18: 244-253.
[28] SCH?PPNER A, KINDL H. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut. The Journal of Biological Chemistry, 1984, 259(11): 6806-6811.
[29] HAIN R, BIESELER B, KINDL H, SCHR?DER G, ST?CKER R. Expression of a stilbene synthase gene inresults in synthesis of the phytoalexin resveratrol.Plant molecular biology, 1990, 15: 325-335.
[30] MALACARNE G, VRHOVSEK U, ZULINI L, CESTARO A, STEFANINI M, MATTIVI F, DELLEDONNE M, VELASCO R, MOSER C. Resistance toin a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biology, 2011, 11: 114.
[31] GIOVINAZZO G, D’AMICO L, PARADISO A, BOLLINI R, SPARVOLI F, DEGARA L. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant biotechnology journal, 2005, 3: 57-69.
[32] RICHTER A, De KATHEN A, De LORENZO G, BRIVIBA K, HAIN R, RAMSAY G, JACOBSEN H J, KIESECKER H. Transgenic peas () expressing polygalacturonase inhibiting protein from raspberry () and stilbene synthase from grape (). Plant cell reports, 2006, 25: 1166-1173.
[33] HüSKEN A, BAUMERT A, MILKOWSKI C, BECKER H C, STRACK D, M?LLERS C. Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (L.). Theoretical and Applied Genetics, 2005, 111: 1553-1562.
[34] LECKBAND G, L?RZ H. Transformation and expression of a stilbene synthase gene ofL.in barley and wheat for increased fungal resistance. Theoretical and Applied Genetics, 1998, 96: 1004-1012.
[35] SERAZETDINOVA L, OLDACH K H, L?RZ H. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. Journal of Plant Physiology, 2005, 162: 985-1002.
[36] ZHU Y J, AGBAYANI R, JACKSON M C, TANG C S, MOORE P H. Expression of the grapevine stilbene synthase gene. Planta, 2004, 220(2): 241-250.
[37] PEZET R, GINDRO K, VIRET O, SPRING J L. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiological and Molecular Plant Pathology, 2004, 65(6): 297-303.
[38] NICOTRA S, CRAMAROSSA M R, MUCCI A, PAGNONI U M, RIVA S, FORTI L. Biotransformation of resveratrol: Synthesis of-dehydrodimers catalyzed by laccases fromand from. Tetrahedron, 2004, 60(3): 595-600.
[39] GINDRO K, SPRING J L, PEZET R, RICHTER H, VIRET O. Histological and biochemical criteria for objective and early selection of grapevine cultivars resistant to. Vitis, 2006, 45(4): 191-196.
[40] XU W, YU Y, ZHOU Q, DING J, DAI L, XIE X, XU Y, ZHANG C, WANG Y. Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild. Journal of Experimental Botany, 2011, 62(8): 2745-2761.
[41] CHONG J, POUTARAUD A, HUGUENEY P. Metabolism and roles of stilbenes in plants. Plant Science, 2009, 177(3): 143-155.
[42] VANNOZZI A, DRY I B, FASOLI M, ZENONI S, LUCCHIN M. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biology, 2012, 12: 130.
[43] ZHENG X, DENG W, LUO K, DUAN H, CHEN Y Q, MCAVOY R, SONG S Q, PEI Y, Li Y. The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Reports, 2007, 26(8): 1195-1203.
[44] FERRER J L, AUSTIN M B, STEWART C, NOEL J P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 2008, 46: 356-370.
[45] H?LL J, VANNOZZI A, CZEMMEL S, D’ONOFRIO C, WALKER A R, RAUSCH T, LUCCHIN M, BOSS P K, DRY I B, BOGS J. The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in.The Plant Cell, 2013, 25(10): 4135-4149.
[46] ALTAMURA M M, CERSOSIMO A, MAJOLI C, CRESPAN M. Histological study of embryogenesis and organogenesis from anthers ofrupestris du Lot cultured. Protoplasma, 1992, 171: 134-141.
Expression of Stilbene Synthase Genes from Chinese Wildand Its Effect on Resistance of Grape to Powdery Mildew
DING Xi, ZHAO KaiXi, WANG YueJin
College of Horticulture, Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
【】Two stilbene synthase () genes from Chinese wild‘Danfeng-2’ (and) were cloned and functionally investigated with the aim to provide a theoretical basis for improving the disease-resistance and quality of.【】Homologous cloning was applied to obtainandand their overexpression vectors under the control of CaMV35 promoter were constructed, respectively. The calluses were induced from single bud segment ofcv. ‘Thompson seedless’, which were used as the receptor materials. The resistant ‘Thompson seedless’ plants were obtained via-mediated genetic transformation. Furthermore, the disease-resistant transgenic plants were determined by different levels of detection. The leaves of wild-type (WT) and transgenic plants were inoculated with, the pathogenic conditions of leaves infected withwere observed by microscope to compare their resistance. The expressions ofand other genes in the metabolic pathway of resveratrol synthesis were analyzed by quantitative real-time PCR (qRT-PCR) in WT and transgenic plants under natural conditions and after inoculation with. The types and contents of stilbenoids in transgenic plants were determined by HPLC.【】The cDNA sequences of(JQ868689) and(JQ868677) from the Chinese wildaccession‘Danfeng-2’ were cloned, and both were 1 179 bp in length. Four-overexpressing and threeoverexpressing plants were confirmed by PCR and Western blot analysis. These transgenic plants enhanced resistance to powdery mildew and reduced hyphae growth compared with WT plants through observing the growth of. The qRT-PCR results indicated thatandtransgenic plants increased the expressions of, its upstream, the downstream, and transcription factor genes,under the natural conditions when compared with WT plants. However, the expression ofwas down-regulated. After inoculation, the expression ofin transgenic plants was significantly up-regulated compared to WT. HPLC determination demonstrated that the stilbenoids mainly existed as the form of-piceid, and its content in transgenic plants was higher than that in WT under natural conditions. After inoculation, the expression ofwas induced, and-piceid,-resveratrol and viniferin were also produced. Compared with WT plants, the types and contents of stilbenoids in transgenic plants increased.【】Overexpression ofand, increase the types and contents of stilbenoids, and further inhibit the growth of. Therefore, ‘Danfeng-2’ is an important germplasm resource for disease-resistant breeding and quality improvement of. Stilbene synthase genesandcan improve resistance to powdery mildew of
Chinese wild; stilbene synthase gene (); resveratrol; powdery mildew; genetic transformation; disease-resistance
10.3864/j.issn.0578-1752.2021.02.007
2020-04-20;
2020-06-05
國(guó)家自然科學(xué)基金(31872055)
丁茜,E-mail:903735326@qq.com。通信作者王躍進(jìn),E-mail:wangyj@nwsuaf.edu.cn
(責(zé)任編輯 岳梅)