王燕碧 趙采芹 唐宏 周磊 韓一帆 張福平 段志強(qiáng)
摘要:【目的】掌握SPOP和MyD88基因分子特征及其在雞不同組織發(fā)育過(guò)程中的表達(dá)特征,為后續(xù)研究其調(diào)控雞組織生長(zhǎng)發(fā)育機(jī)理及開(kāi)展抗病育種提供參考依據(jù)。【方法】通過(guò)RT-PCR克隆雞SPOP和MyD88基因編碼區(qū)(CDS)序列,運(yùn)用ExPASy、SOPMA、SWISS-MODEL及PSORT II Prediction等在線軟件進(jìn)行生物信息學(xué)分析,并以實(shí)時(shí)熒光定量PCR檢測(cè)這2個(gè)基因在雞胚14胚齡(E14 d)及出殼后1 d(H1 d)、7 d(H7 d)和14 d(H14 d)各組織中的表達(dá)情況。【結(jié)果】雞SPOP、MyD88基因CDS序列長(zhǎng)為1125和900 bp,分別編碼374和299個(gè)氨基酸殘基。SPOP蛋白分子式為C1866H2926N496O559S28,相對(duì)分子量為42 kD,理論等電點(diǎn)(pI)為5.58,為相對(duì)不穩(wěn)定蛋白;MyD88蛋白分子式為C1502H2394N410O438S18,相對(duì)分子量為33 kD,pI為5.93,為相對(duì)不穩(wěn)定蛋白。雞SPOP和MyD88蛋白二級(jí)結(jié)構(gòu)以α-螺旋和無(wú)規(guī)則卷曲為主,主要定位于細(xì)胞質(zhì)(占60.9%)。與人類和哺乳動(dòng)物相比,雞SPOP蛋白的3個(gè)功能結(jié)構(gòu)域(MATH、BTB-POZ和BACK)較保守,而MyD88蛋白的2個(gè)功能結(jié)構(gòu)域(Death和TIR)存在多處氨基酸位點(diǎn)變異。SPOP和MyD88基因在雞不同發(fā)育階段各組織中均有表達(dá),但以肺臟中的相對(duì)表達(dá)量最高,且二者間的表達(dá)差異極顯著(P<0.01,下同)。從E14 d發(fā)育至H14 d,SPOP基因在眼球和肺臟中的表達(dá)整體上呈上升趨勢(shì),且至H14 d時(shí)肺臟中的表達(dá)趨于穩(wěn)定,在腦組織、心臟和肌胃中的表達(dá)呈先上升后下降的變化趨勢(shì),在肝臟中的表達(dá)呈先下降后上升再下降的變化趨勢(shì);MyD88基因在眼球、肝臟和肺臟中的表達(dá)均呈先上升后下降再上升的變化趨勢(shì),在肌胃和胸肌中的表達(dá)呈下降趨勢(shì),至H14 d時(shí)降至最低值?!窘Y(jié)論】SPOP和MyD88基因在雞胚不同發(fā)育階段肺臟、眼球和肌胃中的表達(dá)相對(duì)較高,SPOP基因的表達(dá)水平均極顯著高于MyD88基因,且二者的相對(duì)表達(dá)量呈負(fù)相關(guān),即SPOP基因負(fù)調(diào)控MyD88基因的表達(dá)。
關(guān)鍵詞: 雞;SPOP基因;MyD88基因;分子特征;組織表達(dá)
中圖分類號(hào):S831.2? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)11-3111-10
Molecular characteristics and tissue expression analysis of the chicken genes SPOP and MyD88
WANG Yan-bi, ZHAO Cai-qin, TANG Hong, ZHOU Lei, HAN Yi-fan,
ZHANG Fu-ping, DUAN Zhi-qiang*
(College of Animal Sciences,Guizhou University/Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education/Key Laboratory of Animal Genetics, Breeding and
Reproduction in Guizhou, Guiyang? 550025, China)
Abstract:【Objective】To describe the molecular characteristics of SPOP and MyD88 genes and their expression in different tissue during chicken development, and lay the basis for the subsequent study of their regulation of tissue growth and development in chickens and the development of disease-resistance breeding. 【Method】The coding regions (CDS) of chicken SPOP and MyD88 genes were cloned by RT-PCR. ExPASy, SOPMA, SWISS-MODEL and PSORT II Prediction were used for bioinformatics analysis. Real-time quantitative PCR(qRT-PCR) technology was used to detect the expression of SPOP and MyD88 genes in various tissues at 14 embryonic days (E14 d) in chick embryos and at 1-day-old (H1 d), 7-day-old (H7 d), and 14-day-old (H14 d) after shelling. 【Result】The CDS sequences of chicken SPOP and MyD88 genes were 1125 and 900 bp, encoding 374 and 299 amino acid residues, respectively. The molecular formula of the SPOP protein was C1866H2926N496O559S28, and was predicted to have a molecular weight of 42 kD and a isoelectric point (pI) of 5.58. The molecular formula of the MyD88 protein was C1502H2394N410O438S18 and was predicted to have a molecular weight of 33 kD and a pI of 5.93. Both SPOP and MyD88 were relatively unstable proteins. The chicken SPOP and MyD88 proteins, were mainly located in the cytoplasm (60.9%) and their secondary structures mainly consisted of α -helixes and random loops. Compared with humans and mammals, the three functional domains of chicken SPOP (MATH, BTB-POz and BACK) were conserved, while the two functional domains of MyD88 (Death and TIR) had multiple amino acid site variations. SPOP and MyD88 genes were expressed in all tissues of chicken at different developmental stages, but their expression in the lung was relatively the highest. The differences in expression of SPOP and MyD88 was extremely significant(P<0.01, the same below). From E14 d to H14 d, the expression of SPOP gene in the eyeball and lung showed an overall upward trend, but the lung expression of SPOP stabilized before H14 d. The expression of SPOP gene in the brain, heart, stomach muscle and liver showed an upward trend followed by a downward trend. The expression of MyD88 gene in the eyeball, liver and lung was first increased, followed by a decrease and a further increase. The expression of MyD88 gene in stomach and chest muscles decreased and reached the lowest value at H14 d. 【Conclusion】The expression levels of SPOP and MyD88 genes are relatively high in lung, eyeball and stomach muscle of chicken embryo at different developmental stages. The expression levels of SPOP are extremely significantly higher than MyD88 and the relative expression levels of SPOP gene and MyD88 gene are negatively correlated, indicating that SPOP gene regulates the expression of MyD88 gene.
Key words: chicken; SPOP gene; MyD88 gene; molecular characteristics; tissue expression
Foundation item: National Natural Science Foundation of China(31960698,31760732);Science and Technology Foundation of Guizhou (Qiankehejichu〔2020〕1Y134);Joint Project of Local Poultry Industry in Guizhou (Qiancainong〔2020〕175)
0 引言
【研究意義】斑點(diǎn)型鋅指結(jié)構(gòu)蛋白(Speckle-type POZ protein,SPOP)最早發(fā)現(xiàn)于硬皮病患者血清中,因其在細(xì)胞核內(nèi)呈斑點(diǎn)狀分布且含有1個(gè)POZ結(jié)構(gòu)域,因此也被稱為斑點(diǎn)型POZ蛋白(Boysen et al.,2015)。髓系分化因子88(Myeloid differentiation factor 88,MyD88)是髓樣分化蛋白家族中的重要成員之一,其主要生物學(xué)功能需通過(guò)其介導(dǎo)的信號(hào)傳導(dǎo)途徑來(lái)實(shí)現(xiàn)(Wheaton et al.,2007;趙飛等,2019;王菲,2020)。目前,關(guān)于SPOP和MyD88的非降解途徑修飾調(diào)節(jié)分子機(jī)制已有研究報(bào)道(王菲,2020),并證實(shí)SPOP通過(guò)泛素化非降解途徑修飾MyD88表達(dá)以抑制NF-κB信號(hào)通路,進(jìn)而導(dǎo)致促炎性細(xì)胞因子產(chǎn)生。因此,開(kāi)展SPOP和MyD88基因的分子特征及組織表達(dá)特性分析,可為后續(xù)研究SPOP和MyD88基因調(diào)控機(jī)體組織發(fā)育的作用機(jī)制打下基礎(chǔ)?!厩叭搜芯窟M(jìn)展】SPOP是一種表達(dá)于多種組織的E3泛素連接酶銜接蛋白,可影響底物蛋白生物學(xué)功能的發(fā)揮,直接或間接參與多種生物學(xué)過(guò)程(Hernández-Mu?oz et al.,2005),包括X染色體失活(Takahashi et al.,2002)、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)(Geng et al.,2014)、骨骼和神經(jīng)系統(tǒng)發(fā)育(Cai and Liu,2016;Nabais Sá et al.,2020)、基因轉(zhuǎn)錄和表達(dá)調(diào)控(Zhu et al.,2017)及DNA修復(fù)(Hjorth-Jensen et al.,2018)等??梢?jiàn),SPOP在機(jī)體發(fā)育、信號(hào)轉(zhuǎn)導(dǎo)及維持細(xì)胞穩(wěn)態(tài)等過(guò)程中發(fā)揮重要作用。MyD88不僅在信號(hào)通路上起核心作用,還參與多種疾病的發(fā)生和發(fā)展過(guò)程,包括炎癥和自身免疫性疾?。–asanova et al.,2011)、神經(jīng)性疾?。≧occa et al.,2017)及代謝類疾?。∕ahmassani et al.,2020)等。MyD88作為通用的信號(hào)銜接蛋白,調(diào)節(jié)大多數(shù)Toll樣受體(TLR)和白細(xì)胞介素1受體(IL-1R)級(jí)聯(lián)的信號(hào)轉(zhuǎn)導(dǎo),在機(jī)體先天免疫及獲得性免疫的調(diào)節(jié)中發(fā)揮關(guān)鍵作用(Li et al.,2017)。因此,MyD88在先天免疫中介導(dǎo)許多生物學(xué)上重要的信號(hào)轉(zhuǎn)導(dǎo)途徑。已有研究發(fā)現(xiàn),SPOP能泛素化修飾MyD88,促進(jìn)MyD88進(jìn)入蛋白酶體途徑降解,從而調(diào)控緊急造血程序向穩(wěn)態(tài)造血程序的轉(zhuǎn)換,限制全身炎癥反應(yīng);而SPOP突變后,MyD88無(wú)法正常降解,導(dǎo)致IRAK4激酶過(guò)多,異常激活MyD88-IRAK4下游的炎癥反應(yīng)因子NF-κB和AP-1,促進(jìn)腫瘤細(xì)胞的侵襲與轉(zhuǎn)移(Guillamot et al.,2019)。SPOP還充當(dāng)TLR觸發(fā)炎癥的負(fù)調(diào)節(jié)因子,通過(guò)泛素化非降解途徑修飾MyD88以調(diào)節(jié)其下游信號(hào)通路,觸發(fā)天然免疫反應(yīng)并啟動(dòng)下游信號(hào)通路,促進(jìn)促炎細(xì)胞因子和I型干擾素的產(chǎn)生(Hu et al.,2020)。此外,SPOP過(guò)表達(dá)能破壞MyD88自我聚合,減少M(fèi)yD88聚集及其下游IRAK激酶的募集,抑制NF-κB通路,降低TLR激活時(shí)炎癥細(xì)胞因子的表達(dá);SPOP缺失則促進(jìn)MyD88聚集及其下游IRAK激酶的募集,增強(qiáng)TLR激活時(shí)炎癥細(xì)胞因子的表達(dá)(林婷等,2021)?!颈狙芯壳腥朦c(diǎn)】SPOP可負(fù)調(diào)控MyD88表達(dá),且二者間的相互作用在機(jī)體先天性免疫方面發(fā)揮重要作用,但至今有關(guān)SPOP和MyD88基因在不同組織中的表達(dá)特性尚未清楚。【擬解決的關(guān)鍵問(wèn)題】通過(guò)RT-PCR克隆雞SPOP和MyD88基因,運(yùn)用在線軟件進(jìn)行生物信息學(xué)分析,并以實(shí)時(shí)熒光定量PCR檢測(cè)這2個(gè)基因在雞生長(zhǎng)發(fā)育過(guò)程不同組織中的表達(dá)情況,掌握其在雞不同組織發(fā)育過(guò)程中的表達(dá)特征,為后續(xù)研究SPOP和MyD88基因調(diào)控雞組織生長(zhǎng)發(fā)育機(jī)理及開(kāi)展抗病育種提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
大腸桿菌(Escherichia coli)DH5α感受態(tài)細(xì)胞和雞胚成纖維細(xì)胞系(DF-1)由高原山地動(dòng)物遺傳育種與繁殖教育部重點(diǎn)實(shí)驗(yàn)室保存提供。在相同孵化和飼養(yǎng)條件下,分別采集貴州黃雞雞胚(14胚齡)及出殼后1、7和14 d的眼球、腦組織、心臟、肝臟、肺臟、肌胃、胸肌及腿肌等組織樣品,置于裝有RNA保存液的EP管中,-80 ℃保存?zhèn)溆?。Total RNA Kit II 200試劑盒及膠回收試劑盒購(gòu)自O(shè)MEGA公司,Star-Script Ⅱ逆轉(zhuǎn)錄試劑盒購(gòu)自GenStar公司,QuantiFast SYBR Green PCR Kit購(gòu)自APE×BIO公司,DL5000 DNA Marker購(gòu)自Thermo Fisher公司,2×Es Taq MasterMix購(gòu)自北京康為世紀(jì)生物科技有限公司,pMD19-T載體及氨芐青霉素購(gòu)自TaKaRa公司;其他試劑均為國(guó)產(chǎn)分析純。
1. 2 引物設(shè)計(jì)與合成
根據(jù)GenBank已發(fā)布的雞SPOP基因序列(XM_015299467.2)和MyD88基因序列(NM_001030962.4),利用Primer Premier 5.0分別設(shè)計(jì)擴(kuò)增雞SPOP和MyD88基因編碼區(qū)(CDS)的引物(表1),并委托擎科生物技術(shù)有限公司合成。
1. 3 雞SPOP和MyD88基因克隆與測(cè)序
利用Total RNA Kit II 200試劑盒提取DF-1細(xì)胞總RNA,以超微量紫外分光光度計(jì)測(cè)定其濃度及OD,然后取5 μg總RNA反轉(zhuǎn)錄合成cDNA第一鏈。以cDNA第一鏈為模板,PCR擴(kuò)增目的基因(SPOP和MyD88)的CDS序列。擴(kuò)增程序:94 ℃預(yù)變性5 min;94 ℃ 40 s,退火50 s,72 ℃ 1 min,進(jìn)行25個(gè)循環(huán);72 ℃延伸10 min。PCR擴(kuò)增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè)后采用膠回收試劑盒回收瓊脂糖凝膠上的目的條帶,與pMD19-T載體連接(金屬浴16 ℃,12 h)并轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,挑取白斑接種至含氨芐青霉素的LB液體培養(yǎng)基中,37 ℃下?lián)u床(200 r/min)培養(yǎng)12~16 h,渾濁后進(jìn)行菌液PCR鑒定,1.0%瓊脂糖凝膠電泳檢測(cè)正確的陽(yáng)性菌液送至擎科生物技術(shù)有限公司測(cè)序。
1. 4 雞SPOP和MyD88基因分子特征分析
利用NCBI分析雞SPOP和MyD88基因開(kāi)放閱讀框(ORF),應(yīng)用ExPASy(https://web.expasy.org/protparam/)預(yù)測(cè)雞SPOP和MyD88基因編碼蛋白理化性質(zhì),運(yùn)用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/ npsa_automat.pl?page=npsa_sopma.html)和SWISS-MODEL(https://swissmodel.expasy.org/interactive)分別預(yù)測(cè)蛋白的二、三級(jí)結(jié)構(gòu),利用PSORT II Prediction(https://psort.hgc.jp/form2.html)對(duì)SPOP和MyD88蛋白進(jìn)行亞細(xì)胞定位,以CDART預(yù)測(cè)雞SPOP和MyD88蛋白功能結(jié)構(gòu)域,同時(shí)比對(duì)分析不同物種間功能結(jié)構(gòu)域的保守性。
1. 5 實(shí)時(shí)熒光定量PCR檢測(cè)
在熒光定量PCR儀上采用SYBR Green熒光染料法進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。反應(yīng)體系20.0 μL:2×SYBR Green qPCR MasterMix 10.0 μL,上、下游引物各0.5 μL,DNA模板0.5 μL,ddH2O 8.1 μL。擴(kuò)增程序:95 ℃預(yù)變性2 min;95 ℃ 15 s,退火30 s,經(jīng)39個(gè)循環(huán)后進(jìn)行融解曲線分析,以5 s增加0.5 ℃擴(kuò)增至95 ℃,每個(gè)樣品檢測(cè)設(shè)3個(gè)重復(fù)。
1. 6 統(tǒng)計(jì)分析
采用Excel 2016對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理,通過(guò)2-ΔΔCt法換算目的基因相對(duì)表達(dá)量,并以SPSS 19.0進(jìn)行配對(duì)樣本 t 檢驗(yàn)。
2 結(jié)果與分析
2. 1 雞SPOP和MyD88基因擴(kuò)增結(jié)果
以反轉(zhuǎn)錄合成的cDNA第一鏈為模板,對(duì)雞SPOP和MyD88基因CDS序列進(jìn)行PCR擴(kuò)增,經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè),擴(kuò)增獲得的目的基因條帶清晰單一,其中,SPOP基因條帶(圖1-A)為1145 bp,MyD88基因條帶(圖1-B)為919 bp,與預(yù)期結(jié)果相符。
2. 2 雞SPOP和MyD88基因測(cè)序分析結(jié)果
經(jīng)DNAStar序列拼接分析,結(jié)果顯示擴(kuò)增獲得的SPOP基因(圖2-A)和MyD88基因(圖2-B)CDS序列與GenBank已公布的相應(yīng)基因序列一致,尚未發(fā)生核苷酸序列突變,表明雞SPOP和MyD88基因的重組質(zhì)粒pMD19-T-SPOP和pMD19-T-MyD88構(gòu)建成功。
2. 3 雞SPOP和MyD88基因生物信息學(xué)分析結(jié)果
2. 3. 1 編碼蛋白理化性質(zhì) 雞SPOP基因CDS序列長(zhǎng)1125 bp,共編碼374個(gè)氨基酸殘基;EsPASy預(yù)測(cè)結(jié)果顯示,SPOP蛋白分子式為C1866H2926N496O559S28,相對(duì)分子量為42 kD,理論等電點(diǎn)(pI)為5.58;該蛋白中亮氨酸(Leu)含量最高,占9.4%,色氨酸(Trp)和組氨酸(His)含量最低,均占1.6%;SPOP蛋白不穩(wěn)定性指數(shù)為41.66,提示其可能為相對(duì)不穩(wěn)定蛋白。MyD88基因CDS序列長(zhǎng)900 bp,共編碼299個(gè)氨基酸殘基,其分子式為C1502H2394N410O438S18,相對(duì)分子量為33 kD,pI為5.93;該蛋白中也是以Leu含量最高,占13.0%,而天冬氨酸(Asn)和His含量最低,各占1.3%;MyD88蛋白不穩(wěn)定性指數(shù)為50.55,推測(cè)其為相對(duì)不穩(wěn)定蛋白。
2. 3. 2 蛋白二、三級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果 運(yùn)用SOMPA和SWISS-MODEL分別對(duì)雞SPOP和MyD88蛋白進(jìn)行二、三級(jí)結(jié)構(gòu)預(yù)測(cè),結(jié)果顯示:SPOP蛋白二級(jí)結(jié)構(gòu)中α-螺旋占45.99%、無(wú)規(guī)卷曲占36.90%、延伸鏈占13.10%、β-轉(zhuǎn)角占4.01%;MyD88蛋白二級(jí)結(jié)構(gòu)中無(wú)規(guī)卷曲占43.81%、α-螺旋占41.14%、延伸鏈占12.04%、β-轉(zhuǎn)角占3.01%。可見(jiàn),雞SPOP和MyD88蛋白二級(jí)結(jié)構(gòu)主要是α-螺旋和無(wú)規(guī)卷曲,β-轉(zhuǎn)角所占比例最低。雞SPOP蛋白三級(jí)結(jié)構(gòu)(圖3-A)和MyD88蛋白三級(jí)結(jié)構(gòu)(圖3-B)與其二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果相符,均以無(wú)規(guī)卷曲和α-螺旋為主。
2. 3. 3 亞細(xì)胞定位分析結(jié)果 采用PSORT II Prediction對(duì)雞SPOP和MyD88蛋白進(jìn)行亞細(xì)胞定位分析,結(jié)果表明,SPOP蛋白主要定位于細(xì)胞質(zhì),占60.9%,定位于細(xì)胞核、線粒體的分別占13.0%和8.7%;MyD88蛋白也主要定位于細(xì)胞質(zhì)(占60.9%),其次是細(xì)胞核(占13.0%),定位于液泡、線粒體和高爾基體的各占4.3%。
2. 3. 4 蛋白功能結(jié)構(gòu)域預(yù)測(cè)結(jié)果 采用CDART對(duì)雞SPOP和MyD88蛋白功能結(jié)構(gòu)域進(jìn)行預(yù)測(cè),結(jié)果發(fā)現(xiàn),SPOP蛋白存在MATH、BTB-POZ和BACK結(jié)構(gòu)域,分別位于第28~166位、第182~301位和第297~367位氨基酸處(圖4-A);而MyD88蛋白主要存在Death和TIR結(jié)構(gòu)域,分別位于第31~110位和第163~296位氨基酸處(圖4-B)。
通過(guò)MegAlign比對(duì)雞、人類、小鼠和豬4個(gè)物種的SPOP和MyD88氨基酸序列,結(jié)果(圖5)發(fā)現(xiàn),雞SPOP蛋白3個(gè)功能結(jié)構(gòu)域中僅BACK結(jié)構(gòu)域出現(xiàn)1個(gè)氨基酸突變位點(diǎn)(333L→M),說(shuō)明SPOP蛋白在不同物種中高度保守;而雞MyD88蛋白的2個(gè)功能結(jié)構(gòu)域中存在多處氨基酸突變,其保守性遠(yuǎn)低于SPOP蛋白。
2. 4 雞SPOP和MyD88基因的組織表達(dá)特征
以實(shí)時(shí)熒光定量PCR檢測(cè)SPOP和MyD88基因在雞不同發(fā)育階段各組織中的表達(dá)規(guī)律,結(jié)果(圖6)顯示,以腿肌為目標(biāo)對(duì)照,在雞胚14胚齡(E14 d)及出殼后1 d(H1 d)、7 d(H7 d)和14 d(H14 d)各組織中均能檢測(cè)到SPOP和MyD88基因表達(dá),且以在肺臟中的相對(duì)表達(dá)量最高,二者間的表達(dá)差異極顯著(P<0.01,下同)。在E14 d各組織中,SPOP和MyD88基因在腦組織中的相對(duì)表達(dá)量最低,二者差異顯著(P<0.05,下同);SPOP基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>肌胃>眼球>胸肌>肝臟>腿肌>心臟>腦組織,MyD88基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>心臟>肌胃>腿肌>胸肌>肝臟>眼球>腦組織。在H1 d各組織中,也是以腦組織中的SPOP和MyD88基因相對(duì)表達(dá)量最低,其次是眼球和肌胃;SPOP基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>肌胃>眼球>心臟>腿肌>胸肌>肝臟>腦組織,MyD88基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>眼球>肌胃>肝臟>腿肌>心臟>胸肌>腦組織。在H7 d各組織中,SPOP和MyD88基因在胸肌中的相對(duì)表達(dá)量最低,二者差異不顯著(P>0.05,下同);SPOP基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>肌胃>眼球>腦組織>肝臟>心臟>腿肌>胸肌,MyD88基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>腿肌>眼球>肌胃>心臟>肝臟>腦組織>胸肌。在H14 d各組織中,SPOP基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>眼球>腦組織>肌胃>胸肌>腿肌>心臟>肝臟,MyD88基因組織相對(duì)表達(dá)量排序?yàn)椋悍闻K>心臟>眼球>肝臟>腿肌>肌胃>腦組織>胸肌。
對(duì)SPOP和MyD88基因在雞不同發(fā)育階段各組織中的表達(dá)規(guī)律進(jìn)行分析,結(jié)果(圖7)表明,從E14 d發(fā)育到H14 d,SPOP基因在眼球和肺臟中的表達(dá)整體上呈上升趨勢(shì),且至H14 d肺臟中的表達(dá)趨于穩(wěn)定;在腦組織、心臟和肌胃中的表達(dá)呈先上升后下降的變化趨勢(shì);在肝臟中的表達(dá)呈先下降后上升再下降的變化趨勢(shì),至H14 d時(shí)降至最低值。MyD88基因在眼球、肝臟和肺臟中的表達(dá)均呈先上升后下降再上升的變化趨勢(shì),整體上呈N形表達(dá)模式;在肌胃和胸肌中的表達(dá)呈下降趨勢(shì),至H14 d時(shí)降至最低值。
3 討論
最先在以雞為模式動(dòng)物中發(fā)現(xiàn)SPOP與先天免疫通路接頭蛋白MyD88存在蛋白互作關(guān)系,隨后進(jìn)一步拓展至人類和小鼠等模式動(dòng)物細(xì)胞,發(fā)現(xiàn)SPOP和MyD88互作在物種間高度保守,并證實(shí)SPOP基因在雞等多個(gè)物種中通過(guò)蛋白酶體途徑負(fù)調(diào)控TLRs先天免疫通路活性及白細(xì)胞介素-1β等炎性細(xì)胞因子產(chǎn)生(Li et al.,2020)。Jin等(2020)通過(guò)研究SPOP與MyD88的互作機(jī)制,發(fā)現(xiàn)在淋巴瘤中SPOP通過(guò)非降解型泛素化修飾MyD88。近年來(lái),關(guān)于MyD88介導(dǎo)的MyD88/NF-κB信號(hào)通路研究報(bào)道越來(lái)越多,包括TLR4/MyD88/NF-κB、Nrf2/TLR4/MyD88、TLR4/MyD88/MEK/ERK/mTORC1等(Ma et al.,2020;Wu et al.,2020;Yang et al.,2020)。此外,SPOP通過(guò)抑制MyD88/NF-κB信號(hào),進(jìn)而抑制DLBCL細(xì)胞體外生長(zhǎng)及體內(nèi)腫瘤異種移植(Jin et al.,2020)。Hu等(2020)研究報(bào)道,SPOP參與TLR介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo),通過(guò)泛素化非降解途徑修飾MyD88調(diào)節(jié)其下游信號(hào)通路,進(jìn)而對(duì)TLR引發(fā)的炎癥起負(fù)調(diào)節(jié)作用。值得注意的是,SPOP在這些信號(hào)通路的上游發(fā)揮作用,通過(guò)k48介導(dǎo)的泛素化特異性靶向MyD88關(guān)閉炎癥反應(yīng)。
目前,針對(duì)SPOP的研究主要集中在與癌癥發(fā)生間的關(guān)系方面,尤其是前列腺癌和腎癌。最近有研究報(bào)道,SPOP的MATH結(jié)構(gòu)域介導(dǎo)其與MyD88互作,通過(guò)互作關(guān)系促進(jìn)MyD88泛素化和降解,且這種調(diào)控機(jī)制在鳥(niǎo)類和哺乳動(dòng)物中高度保守(王菲,2020)。本研究通過(guò)對(duì)SPOP和MyD88蛋白的功能結(jié)構(gòu)域進(jìn)行預(yù)測(cè),結(jié)果發(fā)現(xiàn)SPOP蛋白存在MATH、BTB-POZ和BACK等3個(gè)功能結(jié)構(gòu)域,MyD88蛋白存在Death和TIR結(jié)構(gòu)域。其中,MATH結(jié)構(gòu)域含有結(jié)合12個(gè)底物氨基酸的卡槽,可結(jié)合不同蛋白的SPOP結(jié)合保守結(jié)構(gòu)域(SPOP-binding consensus motif,SBC motif),從而決定其與底物的親和力及特異性(Zhuang et al.,2009);SPOP通過(guò)高度保守的BTB-POZ結(jié)構(gòu)域與Cullin 3-RING連接酶復(fù)合物結(jié)合,還能促進(jìn)SPOP二聚體的形成(El-Gebali et al.,2019);TIR結(jié)構(gòu)域則介導(dǎo)MyD88與含該結(jié)構(gòu)域的其他蛋白互作。SPOP和MyD88蛋白氨基酸位點(diǎn)變異分析結(jié)果表明,SPOP蛋白在不同物種中高度保守;而MyD88蛋白存在一定程度的變異,其保守性遠(yuǎn)低于SPOP蛋白,但在這些序列中存在符合SBC的特點(diǎn)序列,且位于MyD88蛋白的INT結(jié)構(gòu)域。Li等(2020)研究發(fā)現(xiàn),雞MyD88通過(guò)其INT結(jié)構(gòu)域與SPOP互作,故推測(cè)是這些變異位點(diǎn)介導(dǎo)了二者的互作關(guān)系,與Reiling等(2008)的研究結(jié)論相吻合。
基因組織表達(dá)譜分析對(duì)開(kāi)展基因表達(dá)、蛋白分泌、基因作用靶組織、受體表達(dá)及功能部位研究具有重要意義。已有研究表明,SPOP基因在人體腎癌、子宮及子宮內(nèi)膜癌及睪丸癌組織中具有較高的陽(yáng)性表達(dá)率(陳碩,2018);MyD88基因的表達(dá)分布非常廣泛,在肝臟、肺臟和脾臟中的表達(dá)量較高,在腦、骨骼肌、腎臟、心臟、腸道、皮膚和睪丸等組織均有表達(dá),但表達(dá)量相對(duì)較低(匡文華,2012;王榮華等,2016)。本研究結(jié)果表明,SPOP和MyD88基因在雞不同發(fā)育階段各組織中均有不同程度的表達(dá),但其相對(duì)表達(dá)量存在明顯差異,與Hardiman等(1997)、李強(qiáng)等(2009)、匡文華(2012)的研究結(jié)果相同,在不同發(fā)育階段組織中均以肺臟中的相對(duì)表達(dá)量最高,且2個(gè)基因的表達(dá)差異極顯著,提示SPOP和MyD88基因可能主要由雞肺臟合成,與羅潔(2018)、趙陸璐等(2020)的研究結(jié)果一致。此外,有新的研究表明SPOP基因在不同肺癌細(xì)胞系中廣泛表達(dá)。在肺癌細(xì)胞中,由shRNA敲除SPOP基因能導(dǎo)致DNA損傷修復(fù)缺陷,增加細(xì)胞凋亡和在DNA損傷條件下對(duì)輻射的敏感性(Song et al.,2020)。在本研究中,從E14 d發(fā)育至H14 d,雞SPOP和MyD88基因在眼球、肺臟及肌胃中的相對(duì)表達(dá)量差異均達(dá)極顯著水平,SPOP基因在各組織中高表達(dá),而MyD88基因呈低表達(dá),二者的相對(duì)表達(dá)量呈負(fù)相關(guān),即SPOP基因負(fù)調(diào)控MyD88基因的表達(dá)。王菲(2020)研究表明,SPOP通過(guò)與MyD88互作可促進(jìn)后者的降解,從而負(fù)調(diào)控MyD88基因表達(dá),當(dāng)SPOP基因高表達(dá)時(shí),免疫因子的表達(dá)和載菌量較低,說(shuō)明SPOP對(duì)機(jī)體免疫保護(hù)起負(fù)調(diào)控作用。白細(xì)胞介素-1β和白細(xì)胞介素-8是MyD88下游的2種促炎細(xì)胞因子,與SPOP基因表達(dá)呈負(fù)相關(guān)(Lee et al.,2011),故推測(cè)SPOP參與免疫反應(yīng)調(diào)節(jié)。SPOP基因在不同組織中廣泛表達(dá),且在不同組織中的表達(dá)水平存在一定差異(Zhang et al.,2019)。在外源病原微生物的刺激下,MyD88基因表達(dá)上調(diào),且在先天免疫中發(fā)揮重要作用(Yao et al.,2009)。說(shuō)明SPOP通過(guò)阻斷MyD88組裝及抑制NF-κB信號(hào)通路而干擾免疫反應(yīng)(Li et al.,2020)。因此,本研究結(jié)論為揭示SPOP和MyD88基因參與雞肺臟發(fā)育機(jī)制及其抵抗呼吸道微生物感染作用打下了理論基礎(chǔ)。
4 結(jié)論
SPOP和MyD88基因在雞胚不同發(fā)育階段肺臟、眼球和肌胃中的表達(dá)相對(duì)較高,SPOP基因的表達(dá)水平均極顯著高于MyD88基因,且二者的相對(duì)表達(dá)量呈負(fù)相關(guān),即SPOP基因負(fù)調(diào)控MyD88基因的表達(dá)。
參考文獻(xiàn):
陳碩. 2018. 結(jié)直腸癌中SPOP的表達(dá)及臨床意義[D]. 南昌:南昌大學(xué). [Chen S. 2018. Expression and clinical signifi-cance of SPOP in colorectal cancer[D]. Nanchang:Nanchang University.]
匡文華. 2012. pEGFP-Cl-MyD88真核表達(dá)載體的構(gòu)建及其在HEK293細(xì)胞中的表達(dá)[D]. 武漢:華中師范大學(xué). [Kuang W H. 2012. Construction of eukaryotic expression vector pEGFP-Cl-MyD88 and its expression in HEK293 cells[D]. Wuhan:Central China Normal University.] doi:10. 7666/d.y2079617.
李強(qiáng),李學(xué)偉,朱礪,陳磊,李明洲. 2009. 豬MyD88基因的克隆及組織表達(dá)譜分析[J]. 畜牧獸醫(yī)學(xué)報(bào),40(10):1429-1434. [Li Q,Li X W,Zhu L,Chen L,Li M Z. 2009. Molecular cloning and tissue specific expression profile of porcine MyD88 gene[J]. Acta Veterinaria et Zootechnica Sinica,40(10):1429-1434.] doi:10.3321/j.issn:0366-6964. 2009.10.001.
林婷,曹心怡,金曉鋒. 2021. E3泛素連接酶接頭蛋白SPOP介導(dǎo)的底物非降解型泛素化修飾[J]. 中國(guó)生物化學(xué)與分子生物學(xué)報(bào),37(7):874-882. [Lin T,Cao X Y,Jin X F. 2021. SPOP-mediated non-degradative ubiquitination[J]. Chinese Journal of Biochemistry and Molecular Biology,37(7):874-882.] doi:10.13865/j.cnki.cjbmb.2020.11. 1488.
羅潔. 2018. SPOP介導(dǎo)SIRT2與FADD降解對(duì)非小細(xì)胞肺癌的作用及其機(jī)制研究[D]. 蘇州:蘇州大學(xué). [Luo J. 2018. The role of SPOP induce SIRT2 and FADD degradation non-small lung cancer and the mechanism involved in[D]. Suzhou:Soochow University.] doi:10.27351/d.cnki.gszhu.2018.000073.
王菲. 2020. SPOP通過(guò)降解MyD88負(fù)反饋調(diào)節(jié)先天免疫的分子機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院. [Wang F. 2020. SPOP promotes degradation of MyD88 to suppress the innate immune response[D]. Beijing:Chinese Academy of Agricultural Sciences.] doi:10.27630/d.cnki.gznky.2020. 000009.
王榮華,李偉,肖調(diào)義,劉巧林,金生振,周智愚. 2016. 赤眼鱒MyD88基因cDNA克隆與表達(dá)特性研究[J]. 水生生物學(xué)報(bào),40(3):459-466. [Wang R H,Li W,Xiao T Y,Liu Q L,Jin S Z,Zhou Z Y. 2016. Molecular cloning,characte-rization and expression of MyD88 in squaliobarbus curri-culus[J]. Acta Hydrobiologica Sinica,40(3):459-466.] doi:10.7541/2016.61.
趙飛,譚愛(ài)萍,孔璐璐,劉付翠,鄧玉婷,潘厚軍,張瑞泉,姜蘭. 2019. 多子小瓜蟲(chóng)感染后草魚(yú)TLR信號(hào)通路基因的表達(dá)動(dòng)態(tài)[J]. 南方農(nóng)業(yè)學(xué)報(bào),50(9):1885-1892. [Zhao F,Tan A P,Kong L L,Liu F C,Deng Y T,Pan H J,Zhang R Q,Jiang L. 2019. The dynamics of gene expression profiles in toll-like receptor(TLR) signaling pathway of grass carp (Ctenopharyngodon idella) after infection with Ichthyophthirius multifiliis[J]. Journal of Sou-thern Agriculture,50(9):1885-1892.] doi:10.3969/j.issn. 2095-1191.2019.09.01.
趙陸璐,曲芳萱,陳克研,吳騰飛. 2020. 表沒(méi)食子兒茶素沒(méi)食子酸酯通過(guò)TLR4/Myd88信號(hào)通路改善失血性休克大鼠肺臟損傷[J]. 解剖科學(xué)進(jìn)展,26(3):343-346. [Zhao L L,Qu F X,Chen K Y,Wu T F. 2020. Epigallocatechin gallat improves lung injury in hemorrhagic shock rats via TLR4/Myd88 signaling pathway[J]. Progress of Anatomi-cal Sciences, 26(3):343-346.] doi:10.16695/j.cnki.1006-2947.2020.03.027.
Boysen G,Barbieri C E,Prandi D,Blattner M,Chae S S,Dahija A,Nataraj S,Huang D,Marotz C,Xu L M,Huang J L,Lecca P,Chhangawala S,Liu D L,Zhou P B,Sboner A,de Bono J S,Demichelis F,Houvras Y,Rubin M A. 2015. SPOP mutation leads to genomic instability in prostate cancer[J]. eLife,4:e09207. doi:10.7554/eLife.09207.
Cai H C,Liu A M. 2016. Spop promotes skeletal development and homeostasis by positively regulating Ihh signa-ling[J]. Proceedings of the National Academy of Sciences of the United States of America,113(51):14751-14756. doi:10.1073/pnas.1612520114.
Casanova J L,Abel L,Quintana-Murci L. 2011. Human TLRs and IL-1Rs in host defense:Natural insights from evolutionary,epidemiological,and clinical genetics[J]. Annual Review of Immunology,29:447-491. doi:10.1146/annurev-immunol-030409-101335.
El-Gebali S,Mistry J,Bateman A,Eddy S R,Luciani A,Potter S C,Qureshi M,Richardson L J,Salazar G A,Smart A,Sonnhammer E L L,Hirsh L,Paladin L,Piovesan D,Tosatto S C E,F(xiàn)inn R D. 2019. The Pfam protein families database in 2019[J]. Nucleic Acids Research,47(D1):D427-D432. doi:10.1093/nar/gky995.
Geng C D,Rajapakshe K,Shah S S,Shou J,Eedunuri V K,F(xiàn)oley C,F(xiàn)iskus W,Rajendran M,Chew S A,Zimmermann M,Bond R,He B,Coarfa C,Mitsiades N. 2014. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer[J]. Cancer Research,74(19):5631-5643. doi:10.1158/0008-5472.CAN-14-0476.
Guillamot M,Ouazia D,Dolgalev I,Yeung S T,Kourtis N,Dai Y L,Corrigan K,Zea-Redondo L,Saraf A,F(xiàn)lorens L,Washburn M P,Tikhonova A N,Malumbres M,Gong Y X,Tsirigos A,Park C,Barbieri C,Khanna K M,Busino L,Aifantis I. 2019. The E3 ubiquitin ligase SPOP controls resolution of systemic inflammation by triggering MYD88 degradation[J]. Nature Immunology,20(9):1196-1207. doi:10.1038/s41590-019-0454-6.
Hardiman G,Jenkins N A,Copeland N G,Gilbert D J,Garcia D K,Naylor S L,Kastelein R A,Bazan J F. 1997. Gene-tic structure and chromosomal mapping of MyD88[J]. Genomics,45(2):332-339. doi:10.1006/geno.1997.4940.
Hernández-Mu?oz I,Lund A H,van der Stoop P,Boutsma E,Muijrers I,Verhoeven E,Nusinow D A,Panning B,Marahrens Y,van Lohuizen M. 2005. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase[J]. Proceedings of the Natio-nal Academy of Sciences of the United States of America,102(21):7635-7640. doi:10.1073/pnas.0408918102.
Hjorth-Jensen K,Maya-Mendoza A,Dalgaard N,Sigur?sson J O,Bartek J,Iglesias-Gato D,Olsen J V,F(xiàn)lores-Morales A. 2018. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability[J]. Nucleic Acids Research,46(18):9484-9495. doi:10.1093/nar/gky719.
Hu Y H,Wang Y,Wang F,Dong Y M,Jiang W L,Wang Y P,Zhong X,Ma L X. 2020. SPOP negatively regulates toll-like receptor-induced inflammation by disrupting MyD88 self-association[J]. Cellular & Molecular Immunology,18(7):1708-1717. doi:10.1038/s41423-020-0411-1.
Jin X F,Shi Q,Li Q,Zhou L Y,Wang J,Jiang L,Zhao X Y,F(xiàn)eng K,Lin T,Lin Z H,Zhuang H,Yang J Y,Hu C K,Zhang L Y,Shen L L,Lu Y,Zhu J,Wang H B,Qi H G,Meng X D,Xi Y,Pan J C,F(xiàn)ang S,Tian H H,Zhou C W,Zhang P Z,Gao K,Zhao S M,Li Y,Gong Z H,Wang C J. 2020. CRL3-SPOP ubiquitin ligase complex suppres-ses the growth of diffuse large B-cell lymphoma by negatively regulating the MyD88/NF-κB signaling[J]. Leukemia,34(5):1305-1314. doi:10.1038/s41375-019-0661-z.
Lee Y S,Park J S,Kim J H,Jung S M,Lee J Y,Kim S J,Park S H 2011. Smad6-specific recruitment of Smurf E3 ligases mediates TGF-β1-induced degradation of MyD88 in TLR4 signalling[J]. Nature Communications,2:460. doi:10.1038/ncomms1469.
Li Q H,Wang F,Wang Q,Zhang N,Zheng J M,Zheng M Q,Liu R R,Cui H X,Wen J,Zhao G P. 2020. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response[J]. PLoS Pathogens,16(5):e1008188. doi:10.1371/journal.ppat.1008188.
Li X C,Zhang P,Jiang X S,Du H R,Yang C W,Zhang Z R,Men S,Zhang Z K,Jiang W,Wang H N. 2017. Differen-ces in expression of genes in the MyD88 and TRIF signalling pathways and methylation of TLR4 and TRIF in Tibetan chickens and DaHeng S03 chickens infected with Salmonella enterica serovar enteritidis[J]. Veterinary Immunology and Immunopathology,189:28-35. doi:10.1016/ j.vetimm.2017.05.003.
Ma J Q,Zhang Y J,Tian Z K,Liu C M. 2020. Bixin attenuates carbon tetrachloride induced oxidative stress,inflammation and fibrosis in kidney by regulating the Nrf2/TLR4/MyD88 and PPAR-γ/TGF-β1/Smad3 pathway[J]. International Immunopharmacology,90:107117. doi:10. 1016/j.intimp.2020.107117.
Mahmassani Z S,Reidy P T,McKenzie A I,Petrocelli J J,Matthews O,de Hart N M,F(xiàn)errara P J,O'Connell R M,F(xiàn)unai K,Drummond M J. 2020. Absence of MyD88 from skeletal muscle protects female mice from inactivity-induced adiposity and insulin resistance[J]. Obesity (Silver Spring),28(4):772-782. doi:10.1002/oby.22759.
Nabais Sá M J,El Tekle G,de Brouwer A P M,Sawyer S L,Del Gaudio D,Parker M J,Kanani F,van den Boogaard M J H,van Gassen K,van Allen M I,Wierenga K,Purcarin G,Elias E R,Begtrup A,Keller-Ramey J,Bernasocchi T,van de Wiel L,Gilissen C,Venselaar H,Pfundt R,Vis-sers L E L M,Theurillat J P P,de Vries B B A. 2020. De novo variants in SPOP cause two clinically distinct neurodevelopmental disorders[J]. American Journal of Human Genetics,106(3):405-411. doi:10.1016/j.ajhg.2020. 02.001.
Reiling N,Ehlers S,H?lscher C. 2008. MyDths and un-TOLLed truths:Sensor,instructive and effector immunity to tuberculosis[J]. Immunology Letters,116(1):15-23. doi:10.1016/j.imlet.2007.11.015.
Rocca M A,Battaglini M,Benedict R H B,de Stefano N,Geurts J J G,Henry R G,Horsfield M A,Jenkinson M,Pagani E,F(xiàn)ilippi M. 2017. Brain MRI atrophy quantification in MS:From methods to clinical application[J]. Neurology,88(4):403-413. doi:10.1212/WNL.000000000000 3542.
Song Y Z,Xu Y C,Pan C Y,Yan L Z,Wang Z W,Zhu X Q. 2020. The emerging role of SPOP protein in tumorigenesis and cancer therapy[J]. Molecular Cancer,19(1):2. doi:10.1186/s12943-019-1124-x.
Takahashi I,Kameoka Y,Hashimoto K. 2002. MacroH2A1.2 binds the nuclear protein Spop[J]. Biochimica et Biophysica Acta,1591(1-3):63-68. doi:10.1016/s0167-4889(02)00249-5.
Wheaton S,Lambourne M D,Sarson A J,Brisbin J T,Mayameei A,Sharif S. 2007. Molecular cloning and expression analysis of chicken MyD88 and TRIF genes[J]. DNA Sequence,18(6):480-486. doi:10.1080/10425170701295856.
Wu L C,Du L L,Ju Q Q,Chen Z H,Ma Y,Bai T,Ji G Q,Wu Y,Liu Z G,Shao Y X,Peng X Q. 2020. Silencing TLR4/MyD88/NF-κB signaling pathway alleviated inflammation of corneal epithelial cells infected by ISE[J]. Inflammation,44(2):633-644. doi:10.1007/s10753-020-01363-1.
Yang J H,Liu H,Han S,F(xiàn)u Z R,Wang J Y,Chen Y,Wang L M. 2020. Melatonin pretreatment alleviates renal ische-mia-reperfusion injury by promoting autophagic flux via TLR4/MyD88/MEK/ERK/mTORC1 signaling[J]. FASEB Journal,34(9):12324-12337. doi:10.1096/fj.202001252R.
Yao C L,Kong P,Wang Z Y,Ji P F,Liu X D,Cai M Y,Han X Z. 2009. Molecular cloning and expression of MyD88 in large yellow croaker,Pseudosciaena crocea[J]. Fish & Shellfish Immunology,26(2) :249-255. doi:10.1016/j.fsi.2008.10.014.
Zhang J F,Chen M,Zhu Y S,Dai X P,Dang F B,Ren J M,Ren S C,Shulga Y V,Beca F,Gan W J,Wu F,Lin Y M,Zhou X B,DeCaprio J A,Beck A H,Lu K P,Huang J T,Zhao C,Sun Y H,Gao X,Pandolfi P P,Wei W Y. 2019. SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression[J]. Developmental Cell,48(3):329-344. doi:10.1016/j.devcel.2018.11.035.
Zhu K,Lei P J,Ju L G,Wang X,Huang K,Yang B,Shao C W,Zhu Y,Wei G,F(xiàn)u X D,Li L Y,Wu M. 2017. SPOP-containing complex regulates SETD2 stability and H3K36-me3-coupled alternative splicing[J]. Nucleic Acids Resea-rch,45(1):92-105. doi:10.1093/nar/gkw814.
Zhuang M,Calabrese M F,Liu J,Waddell M B,Nourse A,Hammel M,Miller D J,Walden H,Duda D M,Seyedin S N,Hoggard T,Harper J W,White K P,Schulman B A. 2009. Structures of SPOP-substrate complexes:Insights into molecular architectures of BTB-Cul3 ubiquitin ligases[J]. Molecular Cell,36(1):39-50. doi:10.1016/j.molcel. 2009.09.022.
收稿日期:2020-12-29
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31960698,31760732);貴州省科學(xué)技術(shù)基金項(xiàng)目(黔科合基礎(chǔ)〔2020〕1Y134號(hào));貴州省地方家禽產(chǎn)業(yè)聯(lián)合攻關(guān)項(xiàng)目(黔財(cái)農(nóng)〔2020〕175號(hào))
通訊作者:段志強(qiáng)(1985-),https://orcid.org/0000-0002-0033-3919,博士,副教授,主要從事家禽抗病育種與疫病防控研究工作,E-mail:zqduan@gzu.edu.cn
第一作者:王燕碧(1994-),https://orcid.org/0000-0002-1172-2311,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,E-mail:1194591651@qq.com