馮萬祖 NatashaIsabelTanatsiwaMbiza 張浩然 吳雨欣 李建平 許汝冰 黎妍妍 張建民 李錫宏
摘要:【目的】明確環(huán)斑猛獵蝽(Sphedanolestes impressicollis Stal.)對煙田煙蚜[Myzus persicae (Sulzer)]若蟲的捕食潛力,為田間應(yīng)用環(huán)斑猛獵蝽防控?zé)熝撂峁﹨⒖??!痉椒ā繉嶒炇覘l件下,在培養(yǎng)皿中設(shè)置1頭饑餓24 h的環(huán)斑猛獵蝽4齡若蟲與不同密度梯度的1~4齡煙蚜若蟲,統(tǒng)計環(huán)斑猛獵蝽的捕食量并通過GrapPad Prism 8.0、DPS等軟件進行生物學(xué)統(tǒng)計分析,明確環(huán)斑猛獵蝽對煙蚜若蟲的功能反應(yīng)和搜尋效應(yīng);以不同密度的環(huán)斑猛獵蝽4齡若蟲與煙蚜4齡若蟲在不同溫度梯度及空間格局條件下,通過控制單一變量法并構(gòu)建線性回歸方程,明確環(huán)斑猛獵蝽4齡若蟲種內(nèi)干擾對捕食率的影響以及自身密度、溫度、空間格局對捕食量的影響,評估環(huán)斑猛獵蝽4齡若蟲對煙蚜4齡若蟲的捕食功能反應(yīng)模型?!窘Y(jié)果】環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食功能反應(yīng)符合Holling-II模型,其種內(nèi)干擾及自身密度對捕食量的影響分別符合Hassell模型和Watt模型。環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲中的3齡和4齡若蟲捕食具有偏好性,對4齡若蟲的捕食量最大,最大日捕食量為55.7頭,其次為3齡煙蚜(55.3頭)。在空間一定和煙蚜若蟲定量條件下,環(huán)斑猛獵蝽4齡若蟲個體間存在種內(nèi)干擾,干擾系數(shù)為1.31,并隨著自身密度的增加干擾增強,平均捕食量下降。在不同空間且煙蚜若蟲密度一定的條件下,隨著空間的增大,環(huán)斑猛獵蝽4齡若蟲對獵物的捕食量減少。在16~32 ℃的溫度梯度下,環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食量隨著溫度的升高而逐漸增強,32 ℃下的日捕食量最大,達23頭。【結(jié)論】環(huán)斑猛獵蝽在煙田中具有防治煙蚜的潛力。
關(guān)鍵詞: 環(huán)斑猛獵蝽;煙蚜;若蟲;捕食功能;生物防治
中圖分類號: S435.72;S476.2? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼: A 文章編號:2095-1191(2021)11-3041-08
Predatory responses of Sphedanolestes impressicollis Stal. on the nymphs of Myzus persicae (Sulzer)
FENG Wan-zu1, Natasha Isabel Tanatsiwa Mbiza1, ZHANG Hao-ran1, WU Yu-xin1,
LI Jian-ping1, XU Ru-bing2, LI Yan-yan2, ZHANG Jian-min1, LI Xi-hong2*
(1College of Agriculture, Yangtze University, Jingzhou,Hubei? 434025, China; 2Tobacco Research Institute of Hubei Province, Wuhan? 430030, China)
Abstract:【Objective】The aim of this study was to evaluate the predation potential of Sphedanolestes Impressicollis Stal. against the nymphs of Myzus persicae (Sulzer) in tobacco fields, and provide a scientific theoretical basis for ecolo-gical control of aphids in tobacco field. 【Method】Under laboratory conditions, a hungry S. impressicollis 4th instar nymph(for 24 h) and 1st-4th instar aphid nymphs were set up with different gradients in Petri dishes and the predation of S. impressicollis was observed to determine the functional response and predatory effect of S. impressicollis on aphid nymphs. The biological statistical analysis was performed using GraphPad Prism 8.0, DPS and other softwares. S. impressicollis and tobacco aphid with different densities under different temperature gradient and spatial pattern conditions By controlling a single variable method and constructing a linear regression equation, the influence of intraspecific interference on predation rate and density of the 4th S. impressicollis instar nymph as well as temperature and spatial pattern on the predation was veri-fied to evaluate the predation functional response model of the 4th instar nymph of S. impressicollis to M. persicae. 【Result】The predatory functional responses of the 4th instar nymphs of S. impressicollis to nymphs of M. persicae were consistent with Holling-II model, and the effects of its intraspecific disturbance and density on nymphs of M. persicae were consistent with the Hassell model and Watt model, respectively. In the predation of the 4th instar nymphs of S. impressicollis on the 1st-4th instar nymphs of aphids, the 4th instar nymphs of S. impressicollis were partial to the 3rd and 4th instar aphid nymphs, and had the largest predatory number on the 4th instar aphid nymphs (the theoretical maximum of daily predation was 55.7), followed by the 3rd instar aphid nymphs (the theoretical maximum of daily predation was 55.3). Under the conditions of specific space size and aphid number, there was disturbed among the 4th instar nymphs of S. impressicollis, and the disturbance coefficient was 1.31. Moreover, with the increase of the density of S. impressicollis, the disturbance increased, and the average prey quantity decreased. At the same time, under the same aphid density but different spaces, with the increase of space, the predation amount of S. impressicollis decreased. Under 16-32 ℃, with the increase of temperature, the predation amount of the 4th instar nymphs of S. impressicollis on the aphid nymphs gradually increased. The predation amount was the maximum under 32 ℃(32 aphids). 【Conclusion】S. impressicollis has the potential to control M. persicae in a tobacco field.
Key words: Sphedanolestes impressicollis Stal.; Myzus persicae(Sulzer); nymph; predation function; biological control
Foundation item: Science and Technology Project of China National Tobacco Corporation(110202102040); Scien-ce and Technology Project of Hubei Tobacco Company(027Y2020-006)
0 引言
【研究意義】煙蚜[Myzus persicae(Sulzer)]又稱桃蚜,為半翅目(Hemiptera)蚜科(Aphididae)昆蟲,是煙草和園藝植物的重要害蟲之一。近年來,隨著全球氣候變暖和煙草耕作制度的變更,煙蚜在煙草上的發(fā)生日益加重。煙蚜常以刺吸式口器刺吸植物汁液造成直接危害,同時還可通過傳播植物病毒病和分泌蜜露引起煤污病造成間接危害(韋興啟等,2013;Tarek et al.,2018;張前進等,2020;Samara et al.,2020;潘磊等,2021),對煙草品質(zhì)造成嚴(yán)重影響。環(huán)斑猛獵蝽(Sphedanolestes impressicollis Stal.)屬半翅目(Hemiptera)獵蝽科(Reduviidae)猛獵蝽屬(Sphedanolestes)昆蟲,最早報道于1979年,廣泛分布于湖南、陜西、山東、江蘇、浙江、湖北、江西、福建、廣東、廣西、四川、貴州和云南等地,國外則主要分布于印度和日本(姚德富等,1995)。作為刺吸式捕食性天敵昆蟲,環(huán)斑猛獵蝽可捕食玉米螟[Ostrinia furnacalis(Guenee)]、棉鈴蟲[Helicoverpa armigera (Huibner)]、棉小造橋蟲[Amonis flava(Fabrius)]、斜紋夜蛾[Spodoptera litura(Fabricius)]、粘蟲[Mythimna separate(Walker)]、楊扇舟蛾[Clostera anachoreta(Fabricius)]、黃刺蛾[Cnidocampa flavescens (Walker)]、舞毒蛾[Lymantria dispar(Linnaeus)]、油松毛蟲[Dendrolimus tabulaeformis(Tsai et Liu)]、黃褐天幕毛蟲[Malacosoma neustriatestacea(Motschulsky)]和刺槐蚜[Aphis robiniae(Macchiati)]等多種農(nóng)林害蟲(姚德富等,1993),而其4齡若蟲期更是超過200 d,因此,開展環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食作用研究,對保護環(huán)境和提高煙草品質(zhì)具有重要意義?!厩叭搜芯窟M展】隨著我國“兩減”政策的實施以及全國煙草病蟲害綠色防控技術(shù)的大力推廣,利用生物防治法防控?zé)熝烈殉蔀闊熖餆熝练揽刂饕胧┲?。迄今為止,已知煙蚜的寄主植物達70多科400多種,可傳播115種植物病毒,占蚜蟲所傳播170種植物病毒的67.6%(van Emden et al.,2003;Tang et al.,2017;Xu et al.,2021)。當(dāng)前國外關(guān)于環(huán)斑猛獵蝽的研究未見報道,而國內(nèi)關(guān)于環(huán)斑猛獵蝽的研究主要有姚德富等(1993)、李夢釵等(2009)通過室內(nèi)觀察及對獵物的選擇性試驗,并記述其生物學(xué)特性,試驗結(jié)果顯示環(huán)斑猛獵蝽為多種林木害蟲的天敵;董軍生(2008)采用Moore I指標(biāo)、CA指標(biāo)、擴散系數(shù)C、負二項分布中的K等指標(biāo)對環(huán)斑猛獵蝽的空間分布進行研究,結(jié)果表明環(huán)斑猛獵蝽種群趨于聚集分布,劉朝華等(2009)采用相同的方法證實了此結(jié)論;馬建昭等(2009)對環(huán)斑猛獵蝽1齡若蟲進行耐饑能力測定,結(jié)果顯示環(huán)斑猛獵蝽耐饑餓能力隨其發(fā)育時間的延長而逐漸增強;田靜等(2007b)通過觀察記錄環(huán)斑猛獵蝽對2種林木害蟲的捕食情況,研究了其雌成蟲對玉米螟和蚜蟲混合種群的選擇捕食作用,結(jié)果表明環(huán)斑猛獵蝽對玉米螟具有正喜好性,繼而更深入地通過對空間異質(zhì)性、獵物與天敵密度等因素的影響探究環(huán)斑猛獵蝽對玉米螟的捕食功能(田靜等,2007a)。此外,生態(tài)學(xué)研究表明,綠色植物上的紅色蚜蟲容易被捕食者發(fā)現(xiàn),而綠色蚜蟲更易被寄生類天敵寄生(Losey et al.,1997;Libbrecht et al.,2007)?!颈狙芯壳腥朦c】目前我國對煙蚜的生物防治主要是在煙田中釋放煙蚜繭蜂捕食煙蚜(余玲,2018;李青超等,2021),關(guān)于捕食類天敵環(huán)斑猛獵蝽對煙草害蟲煙蚜的防控研究尚未見報道?!緮M解決的關(guān)鍵問題】以環(huán)斑猛獵蝽4齡若蟲和煙蚜若蟲為研究對象,通過控制單一變量法探究溫度、空間格局等因素對環(huán)斑猛獵蝽捕食功能的影響,并運用生物學(xué)統(tǒng)計的方法分析不同密度梯度的環(huán)斑猛獵蝽對煙蚜若蟲的捕食功能反應(yīng)的影響,探明其對煙蚜的尋找效應(yīng)及自身的干擾效應(yīng),從而明確環(huán)斑猛獵蝽對煙蚜若蟲的捕食潛力,彌補單一使用煙蚜繭蜂防治煙蚜的局限,為田間應(yīng)用環(huán)斑猛獵蝽防控?zé)熝撂峁┛茖W(xué)參考。
1 材料與方法
1. 1 試驗材料
供試?yán)ハx環(huán)斑猛獵蝽和煙蚜均采自湖北省恩施州宣恩縣椒園鎮(zhèn)煙草田。環(huán)斑猛獵蝽種群在室內(nèi)用斜紋夜蛾幼蟲飼養(yǎng),煙蚜用煙草植株飼養(yǎng)。試驗所用器具為直徑9 cm塑料培養(yǎng)皿。飼養(yǎng)條件:溫度20~26 ℃,光周期L∶D=16 h∶8 h,相對濕度45%~65%。
1. 2 試驗方法
1. 2. 1 功能反應(yīng)和搜尋效應(yīng)測定 分別在培養(yǎng)皿中接入1頭饑餓24 h的環(huán)斑猛獵蝽4齡若蟲,然后接入不同齡期、不同密度的煙蚜若蟲,并放置直徑為2 cm的煙草葉片及用于保濕的蘸水小棉球,最后用封口膜封住培養(yǎng)皿。煙蚜1齡若蟲密度梯度為10、20、30、40和50頭;2齡若蟲密度梯度為10、15、20、25、30、35和40頭;3齡若蟲密度梯度為10、15、20、25、30、35、40和45頭;4齡若蟲密度梯度為10、15、20、25、30、35、40、45和50頭。每處理4次重復(fù),24 h后統(tǒng)計存活煙蚜數(shù)量。
1. 2. 2 環(huán)斑猛獵蝽4齡若蟲在不同溫度下的捕食效應(yīng) 在培養(yǎng)皿中放置1頭饑餓24 h的環(huán)斑猛獵蝽4齡若蟲,30頭煙蚜4齡若蟲,并放置煙草葉片及蘸水小棉球。設(shè)置16、20、24、28和32 ℃ 5個溫度處理,每處理4次重復(fù),24 h后統(tǒng)計存活煙蚜數(shù)量。試驗在SPX-150-GB智能型光照培養(yǎng)箱中進行,光周期L∶D=16 h∶8 h,相對濕度65%。
1. 2. 3 環(huán)斑猛獵蝽4齡若蟲種內(nèi)干擾及對煙蚜4齡若蟲捕食量的影響 煙蚜4齡若蟲密度梯度設(shè)置為20、40、60、80和100頭/皿,在對應(yīng)密度梯度下分別放入饑餓24 h的1、2、3、4和5頭環(huán)斑猛獵蝽4齡若蟲。每處理4次重復(fù),24 h后統(tǒng)計存活煙蚜數(shù)量。
1. 2. 4 環(huán)斑猛獵蝽4齡若蟲自身密度對煙蚜若蟲捕食量的影響 設(shè)置饑餓24 h的環(huán)斑猛獵蝽4齡若蟲密度為1、2、3、4和5頭/皿,并在每個密度下放置煙蚜4齡若蟲60頭/皿。每處理4次重復(fù),24 h后統(tǒng)計煙蚜存活數(shù)量。
1. 2. 5 環(huán)斑猛獵蝽4齡若蟲在不同空間下捕食量的變化 分別在體積為70 cm3的玻璃瓶、95 cm3的培養(yǎng)皿、420 cm3的培養(yǎng)皿和930 cm3的方盒中接入1頭饑餓24 h的環(huán)斑猛獵蝽4齡若蟲與不同密度的煙蚜4齡若蟲,設(shè)置煙蚜4齡若蟲的密度梯度為10、15、20、25、30、35和40頭。每處理4次重復(fù),24 h后統(tǒng)計存活煙蚜數(shù)量。
1. 3 統(tǒng)計分析
試驗數(shù)據(jù)先在Excel 2019和DPS中進行處理,然后在GrapPad Prism 8.0中擬合作圖并求得方程各參數(shù)。分別采用以下4種模型方程進行擬合,并用F檢驗進行統(tǒng)計分析。
(1)Holling-Ⅱ模型圓盤方程:Na=a·T·N/(1+a·Th·N)。式中,Na為被捕食獵物數(shù)量,a為捕食者對獵物的瞬間攻擊率,T為試驗總時間,Th為處置獵物的時間,N為獵物密度。
(2)尋找效應(yīng)模型方程:S=a/(1+a·Th·N)。式中,S為尋找效應(yīng),a為瞬時攻擊率,Th為處理時間,N為獵物密度。
(3)Hassell干擾效應(yīng)模型方程:E=Q·P-m。式中,E為捕食率,Q為搜索常數(shù),m為干擾系數(shù),P為天敵密度。
(4)Watt模型方程:A=a·P-b。式中,A為競爭條件下平均捕食量,a為常數(shù),即無競爭條件下每頭天敵的捕食量估計,P為天敵密度,b為競爭參數(shù)。
2 結(jié)果與分析
2. 1 環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食行為觀察
饑餓狀態(tài)下的環(huán)斑猛獵蝽4齡若蟲在搜尋到培養(yǎng)皿中的煙蚜若蟲后,往往先觀察一段時間后再將口針迅速刺入煙蚜體內(nèi),使煙蚜快速進入麻痹狀態(tài)以利其取食。當(dāng)環(huán)斑猛獵蝽在煙草植株上捕食煙蚜?xí)r,常在葉片背面躲避很久,然后快速襲擊獵物,并迅速將口針刺入煙蚜體內(nèi),吸食煙蚜體液直至成干癟狀態(tài)。環(huán)斑猛獵蝽在取食期間,大部分時間保持靜態(tài),偶爾帶著正吸食的煙蚜爬動,其飽食后腹部膨大鼓起。環(huán)斑猛獵蝽口針可從蚜蟲身體各部位刺入,包括頭部(圖1-A)、胸部(圖1-B)和腹部(圖1-C)等。
2. 2 環(huán)斑猛獵蝽4齡若蟲在不同密度煙蚜若蟲下的日捕食量
由圖2可看出,環(huán)斑猛獵蝽4齡若蟲對1齡(圖2-A)、2齡(圖2-B)、3齡(圖2-C)和4齡(圖2-D)煙蚜若蟲的日捕食量均隨著煙蚜密度增大而增加,且捕食量增長速率呈遞減趨勢,明顯受到獵物密度制約。
2. 3 環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食功能反應(yīng)
采用Holling-II圓盤模型方程對環(huán)斑猛獵蝽4齡若蟲對不同密度下1~4齡煙蚜若蟲的日捕食量進行擬合,擬合方程見表1。由表1可知,環(huán)斑猛獵蝽4齡若蟲對不同齡期煙蚜若蟲的瞬時攻擊率表現(xiàn)為2齡>4齡>3齡>1齡,其中環(huán)斑猛獵蝽4齡若蟲對煙蚜3齡若蟲的捕食時間最短(0.018 d)。由環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲捕食量的擬合方程可知,F(xiàn)1齡(4,19)=18.32,P<0.01;F2齡(6,27)=28.98,P<0.01;F3齡(7,31)=29.12,P<0.01;F4齡(8,35)=27.70,P<0.01,4個齡期的方程擬合R2>0.800,可見效果較好。環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲的日最大捕食量分別為30.1、27.8、55.3和55.7頭,a/Th值分別為14.54、37.33、38.74和42.80,日最大捕食量和a/Th值的最大值均為對4齡煙蚜若蟲,其次為3齡煙蚜若蟲。a/Th能更全面地反應(yīng)天敵捕食能力大小,由此說明環(huán)斑猛獵蝽4齡若蟲對4齡和3齡煙蚜若蟲的捕食能力最強。因煙蚜4齡期相對較長,故在后續(xù)試驗中以4齡煙蚜若蟲為主要研究對象。
2. 4 尋找效應(yīng)
環(huán)斑猛獵蝽4齡若蟲對不同密度下1~4齡煙蚜若蟲的尋找效應(yīng)及其方程見圖3和表2。環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲的尋找效應(yīng)均隨煙蚜密度的增加而逐漸下降,即煙蚜密度越大,環(huán)斑猛獵蝽4齡若蟲的尋找效應(yīng)就越低。環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲的尋找效應(yīng)在小于25頭/皿煙蚜密度下排序為2齡>4齡>3齡>1齡;而在密度大于25頭/皿后,其尋找效應(yīng)排序為4齡>2齡>3齡>1齡,說明環(huán)斑猛獵蝽4齡若蟲在煙蚜密度達25頭/皿后對4齡煙蚜若蟲的搜尋效應(yīng)比其他3個齡期煙蚜若蟲的搜尋效應(yīng)高。
2. 5 不同溫度對環(huán)斑猛獵蝽4齡若蟲捕食量的影響
由圖4可看出,在16~32 ℃的溫度梯度下,環(huán)斑猛獵蝽4齡若蟲對煙蚜4齡若蟲的捕食量隨著溫度的升高而逐漸增強,32 ℃下達最大捕食量23頭。其中,R2>0.800,F(xiàn)>F0.01(4,19)=4.50,P<0.01,表明環(huán)斑猛獵蝽4齡若蟲對煙蚜的捕食量與溫度顯著相關(guān)。
2. 6 不同空間對環(huán)斑猛獵蝽4齡若蟲捕食量的影響
如圖5所示,環(huán)斑猛獵蝽4齡若蟲對煙蚜4齡若蟲的捕食量整體上表現(xiàn)為空間越大捕食量越小,在4種不同裝置容器中,環(huán)斑猛獵蝽4齡若蟲在體積為70 cm3的玻璃瓶中的捕食量最大。經(jīng)F檢驗,環(huán)斑猛獵蝽4齡若蟲對煙蚜4齡若蟲的捕食量在70、95、420和930 cm3容器的F值分別為46.14、58.77、59.30和57.89,均大于F0.01(7,31)=3.28,表明環(huán)斑猛獵蝽4齡若蟲的捕食量與空間格局密切相關(guān)。
2. 7 環(huán)斑猛獵蝽4齡若蟲在不同密度下的捕食率及其種內(nèi)干擾作用對捕食率的影響
如表4所示,環(huán)斑猛獵蝽4齡若蟲對煙蚜4齡若蟲的捕食量隨著自身及獵物密度的增加,其平均捕食率下降;種內(nèi)干擾對捕食率產(chǎn)生影響的擬合方程為E=0.65P-1.31,搜索常數(shù)及干擾系數(shù)分別為0.65和1.31,其決定系數(shù)R2>0.800,將捕食者密度與捕食率取對數(shù)后擬合方程并進行F檢驗,F(xiàn)>F0.01(1,4)=21.20,P<0.01,表明環(huán)斑猛獵蝽4齡若蟲自身密度與捕食率顯著相關(guān)。通過Hassell干擾效應(yīng)模型可知,隨著捕食者密度的增加,環(huán)斑獵蝽4齡若蟲種內(nèi)的相互干擾作用愈加明顯,尋找效應(yīng)則相應(yīng)減小,平均捕食量下降。
2. 8 環(huán)斑猛獵蝽4齡若蟲對自身密度的功能反應(yīng)
利用Watt模型對環(huán)斑猛獵蝽4齡若蟲在不同獵物密度下的捕食量進行擬合。其擬合方程、日最大捕食量及相關(guān)系數(shù)見表5。由模型方程可知,環(huán)斑猛獵蝽4齡若蟲隨著自身密度的增加,其對煙蚜4齡若蟲的平均捕食量逐漸下降。無競爭條件下每頭環(huán)斑猛獵蝽4齡若蟲的日最大捕食量為24.11頭,競爭參數(shù)為0.72,說明隨環(huán)斑猛獵蝽4齡若蟲自身密度的增加會對其捕食量產(chǎn)生干擾作用。
3 討論
本研究中環(huán)斑猛獵蝽4齡若蟲對1~4齡煙蚜若蟲的捕食量均隨著煙蚜密度的增加而增大,捕食功能反應(yīng)均符合Holling-II模型,與其他捕食性蝽類對獵物的捕食功能反應(yīng)模型一致(鄧海濱等,2012;陳然等,2015;唐藝婷等,2018;胡長效等,2020)。其中,日最大捕食量和a/Th值的最大值均為對4齡煙蚜若蟲,其次為3齡煙蚜若蟲,可能是由于煙蚜隨著齡期的增加,其體型逐漸變大,體內(nèi)營養(yǎng)更豐富,更易被環(huán)斑猛獵蝽發(fā)現(xiàn)與取食所致。研究中發(fā)現(xiàn)環(huán)斑猛獵蝽喜歡在隱蔽場所活動,時常躲在葉片背面捕食,進食后則很少活動,在未受到外界干擾時常保持一個姿態(tài)很長時間。環(huán)斑猛獵蝽對煙蚜的搜尋效應(yīng)結(jié)果顯示,隨著煙蚜若蟲密度的增加,搜尋效應(yīng)逐漸降低,與其他捕食性獵蝽對害蟲的搜尋效應(yīng)一致,符合模型S=a/(1+a·Th·N)(鄧海濱等,2012;唐藝婷等,2020)。
環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食量隨著溫度的升高而逐漸遞增,即溫度與捕食量呈正相關(guān)。在本研究設(shè)置的溫度梯度及煙蚜密度下,環(huán)斑猛獵蝽4齡若蟲在32 ℃時的平均日捕食量最大,達23頭,但在溫度上升至36 ℃時煙蚜若蟲均死亡,可能是煙蚜若蟲在實驗室條件下與自然環(huán)境存在差異,不能有效地規(guī)避逆境條件所致。環(huán)斑猛獵蝽種內(nèi)干擾及自身密度對捕食量的影響分別符合Hassell模型和Watt模型。在一定空間和一定數(shù)量的煙蚜若蟲存在情況下,環(huán)斑猛獵蝽4齡若蟲個體間存在種內(nèi)干擾,干擾系數(shù)為1.31,并隨著自身密度的增加干擾增強,其平均捕食量隨之降低。在不同大小的空間裝置中,隨著空間的增大,環(huán)斑猛獵蝽4齡若蟲對獵物的捕食量減少,意味著搜尋效應(yīng)隨之降低。
在自然環(huán)境中,天敵昆蟲對獵物的捕食除與個體性質(zhì)密切相關(guān)外,還與濕度、光照和氣候等存在明顯關(guān)系。本研究試驗在實驗室內(nèi)進行,故環(huán)斑猛獵蝽與其在自然環(huán)境中的捕食量應(yīng)存在一定差異,但本研究結(jié)果仍可為環(huán)斑猛獵蝽對煙蚜害蟲的防控提供理論支持。鑒于環(huán)斑猛獵蝽4齡若蟲期長達200多天,在一年發(fā)生一代的情況下,4齡期的捕食功能顯得尤為重要(姚德富等,1995),故本研究只開展了環(huán)斑猛獵蝽4齡若蟲的捕食功能研究,綜合所有結(jié)果顯示環(huán)斑猛獵蝽在煙田中應(yīng)具有防控?zé)熝恋臐摿?。因此,在今后的工作中?yīng)對環(huán)斑猛獵蝽加以保護、開發(fā)和利用,從而為煙草的安全生產(chǎn)提供更有力的保障。
4 結(jié)論
環(huán)斑猛獵蝽4齡若蟲對煙蚜若蟲的捕食功能反應(yīng)符合Holling-II模型,其種內(nèi)干擾及自身密度對捕食量的影響分別符合Hassell模型和Watt模型。環(huán)斑猛獵蝽4齡若蟲個體間、生存空間大小及溫度變化可對煙蚜的捕食量產(chǎn)生影響。環(huán)斑猛獵蝽在煙田中具有防治煙蚜的潛力。
致謝:本研究環(huán)斑猛獵蝽種類鑒定工作由中國農(nóng)業(yè)大學(xué)彩萬志教授完成,在此表示衷心的感謝!
參考文獻:
陳然,梁廣文,張拯研,曾嶸,冼繼東. 2015. 叉角厲蝽對斜紋夜蛾的捕食功能反應(yīng)[J]. 環(huán)境昆蟲學(xué)報,37(2):401-406. [Chen R,Liang G W,Zhang Z Y,Zeng R,Xian J D. 2015. The functional response of Cahtheconidea furcellata(Hemiptera:Asopinae) to Spodoptera litura(Lepidoptera:Noctuidae)[J]. Journal of Environmental Entomology,37(2):401-406.] doi:10.3969/j.issn.1674-0858. 2015.02.26.
鄧海濱,王珍,陳永明,吳文斌,彭文松. 2012. 紅彩真獵蝽對斜紋夜蛾和煙青蟲的捕食功能反應(yīng)[J]. 廣東農(nóng)業(yè)科學(xué),(13):107-109. [Deng H B,Wang Z,Chen Y M,Wu W B,Peng W S. 2012.Predation of Harpactor fuscipes on Helicoverpa assulta and Spodoptera litura[J]. Guangdong Agricultural Sciences,(13):107-109.] doi:10.16768/j. issn.1004-874x.2012.13.033.
董軍生. 2008. 環(huán)斑猛獵蝽種群的空間格局研究[J]. 河北林果研究,23(3):309-310. [Dong J S. 2008. Spatial distributions of Sphedanolestes impressicollis population[J]. Hebei Journal of Forestry and Orchard Research,23(3):309-310.] doi:10.3969/j.issn.1007-4961.2008.03.020.
胡長效,強承魁,王勝永. 2020. 微小花蝽對梨癭蚊的室內(nèi)捕食作用[J]. 江蘇農(nóng)業(yè)學(xué)報,36(1):57-62. [Hu C X,Qiang C K,Wang S Y. 2020. Predation of Orius minutes on Dasumeira pyri in the laboratory[J]. Jiangsu Journal of Agricultural Sciences,36(1):57-62.] doi:10.3969/j.issn.1000- 4440.2020.01.008.
李夢釵,溫秀軍,高寶嘉,牛敬生,劉滿光,郭小軍. 2009. 環(huán)斑猛獵蝽室內(nèi)飼養(yǎng)技術(shù)研究[J]. 河北林業(yè)科技,(2):5-6. [Li M C,Wen X J,Gao B J,Niu J S,Liu M G,Guo X J. 2009. Study on indoor feeding technology of Sphedano-lestes impressicollis[J]. The Journal of Hebei Forestry Science and Technology,(2):5-6.] doi:10.16449/j.cnki.issn. 1002-3356.2009.02.012.
李青超,王立達,劉悅,蘭英,劉洋,韓業(yè)輝,楊瑩. 2021. 煙蚜繭蜂不同釋放次數(shù)對煙蚜的控制效果[J]. 黑龍江農(nóng)業(yè)科學(xué),(2):53-55. [Li Q C,Wang L D,Liu Y,Lan Y,Liu Y,Han Y H,Yang Y. 2021. Effects of different agricultural measures on Sclerotinia sclerotiorum of sunflower[J]. Heilongjiang Agricultural Sciences,(2):53-55.] doi:10. 11942/j.issn.1002-2767.2021.02.0053.
劉朝華,馬建昭,田靜,袁慧貞,劉從霞. 2009. 林業(yè)天敵環(huán)斑猛獵蝽的空間格局研究[J]. 河北林業(yè)科技,(2):9-10. [Liu C H,Ma J Z,Tian J,Yuan H Z,Liu C X. 2009. Spatial distributions of forest natural enemy insects of Sphedanolestes impressicollis population[J].The Journal of Hebei Forestry Science and Technology,(2):9-10.] doi:10.16449/j.cnki.issn1002-3356.2009.02.013.
馬建昭,田靜,袁惠貞,劉朝華,劉從霞. 2009. 環(huán)斑猛獵蝽的耐饑力研究[J]. 河北林業(yè)科技,(3):18. [Ma J Z,Tian J,Yuan H Z,Liu C H,Liu C X. 2009. Study on the hunger tolerance of Sphedanolestes impressicollis population[J]. The Journal of Hebei Forestry Science and Technology,(3):18.] doi:10.16449/j.cnki.issn1002-3356.2009.03.009.
潘磊,牛良,魯振華,曾文芳,崔國朝,王志強. 2021. 桃樹蚜蟲的危害及其藥劑防控[J]. 果農(nóng)之友,(3):37. [Pan L,Niu L,Lu Z H,Zeng W F,Cui G C,Wang Z Q. 2021. Damage and control of aphids in peach tree[J]. Fruit Growers’ Friend(3):37.] doi:10.3969/j.issn.1671-7759. 2021.03.015.
唐藝婷,郭義,何國瑋,劉晨曦,陳紅印,張禮生,王孟卿. 2018. 不同齡期的益蝽對粘蟲的捕食功能反應(yīng)[J]. 中國生物防治學(xué)報,34(6):825-830. [Tang Y T,Guo Y,He G W,Liu C X,Chen H Y,Zhang L S,Wang M Q. 2018. Functional responses of Picromerus lewisi Scott (Hemiptera:Pentatomidae) attacking Mythimna separata(Walker)(Lepidoptera:Noctuidae)[J]. Chinese Journal of Biological Control,34(6):825-830.] doi:10.16409/j.cnki.2095-039x.2018.06.004.
唐藝婷,王孟卿,李玉艷,劉晨曦,毛建軍,陳紅印,張禮生. 2020. 蠋蝽對斜紋夜蛾幼蟲的捕食作用[J]. 中國煙草科學(xué),41(1):62-66. [Tang Y T,Wang M Q,Li Y Y,Liu C X,Mao J J,Chen H Y,Zhang L S. 2020. Predation of Arma chinensis on Spodoptera litura Larvae[J]. Chinese Tobacco Science,41(1):62-66.] doi:10.13496/j.issn.1007-5119.2020.01.010.
田靜,高寶嘉,馬建昭,袁勝亮,周國娜. 2007a. 環(huán)斑猛獵蝽的捕食功能反應(yīng)研究[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,30(4):67-71. [Tian J,Gao B J,Ma J Z,Yuan S L,Zhou G N. 2007a. Study on the functional response of Sphedanolestes impressicollis Stal.[J]. Journal of Agricultural University of Hebei,30(4):67-71.] doi:10.3969/j.issn.1000-1573. 2007.04.016.
田靜,高寶嘉,馬建昭,周國娜,姜文虎. 2007b. 環(huán)斑猛獵蝽對獵物的選擇捕食作用[J]. 生態(tài)學(xué)雜志,26(10):1563-1568. [Tian J,Gao B J,Ma J Z,Zhou G N,Jiang W H. 2007b. Selective predation of Sphedanolestes impressicollis on preys[J]. Chinese Journal of Ecology,26(10):1563-1568.]
韋興啟,李先文,王召,楊茂發(fā),楊洪. 2013. 貴州長順煙區(qū)煙蚜的抗藥性監(jiān)測[J]. 貴州農(nóng)業(yè)科學(xué),41(2):81-85. [Wei X Q,Li X W,Wang Z,Yang M F,Yang H. 2013. Monitoring of insecticide resistance of Myzus persicae in tobacco fields in Changshun of Guizhou[J]. Guizhou Agricultural Sciences,41(2):81-85.] doi:10.3969/j.issn.1001- 3601.2013.02.023.
姚德富,劉后平,嚴(yán)靜君. 1993. 環(huán)斑猛獵蝽生物學(xué)特性的研究[J]. 林業(yè)科學(xué)研究,6(5):517-521. [Yao D F,Liu H P,Yan J J. 1993. A study on the bionomics of predatory bug(Sphedanolestes impressicollis)[J]. Forest Research,6(5):517-521.] doi:10.13275/j.cnki.lykxj.1993.05008.
姚德富,嚴(yán)靜君,李廣武,劉后平. 1995. 暴獵蝽形態(tài)特征和生物學(xué)特性的研究[J]. 林業(yè)科學(xué)研究,8(4):442-446. [Yao D F,Yan J J,Li G W,Liu H P. 1995. A study on the morphology and bionomics of predatory bug Agriosphodrus dohrni(Signoret)[J]. Forest Research,8(4):442-446.] doi:10.13275/j.cnki.lykxyj.1995.04.019.
余玲. 2018. 煙蚜繭蜂對煙田煙蚜的控制作用的研究[D]. 南昌:江西農(nóng)業(yè)大學(xué). [Yu L. 2018. The control of Aphidius gifuensis Ashmead to Myzus persicae(Sulzer) in the tobacco fields[D]. Nanchang:Jiangxi Agricultural University.]
張前進,周文兵,谷星慧,張宏瑞,張立猛. 2020. 不同寄主植物繁育煙蚜和煙蚜繭蜂效果比較[J]. 南方農(nóng)業(yè)學(xué)報,51(12):2978-2984. [Zhang Q J,Zhou W B,Gu X H,Zhang H R,Zhang L M. 2020. Comparison of the ability of different host plants for rearing of Myzus persicae and Aphidius gifuensis[J]. Journal of Southern Agriculture,51(12):2978-2984.] doi:10.3969/j.issn.2095-1191.2020. 12.014.
Libbrecht R,Gwynn D M,F(xiàn)ellowes M D E. 2007. Aphidius ervi preferentially attacks the green morph of the pea aphid, Acyrthosiphon pisum[J]. Journal of Insect Beha-vior,20:25-32. doi:10.1007/s10905-006-9055-y.
Losey J E,Harmon J,Ballantyne F,Brown C. 1997. A polymorphism maintained by opposite patterns of parasitism and predation[J]. Nature,388:269-272. doi:10.1038/40849.
Samara R,Lowery T D,Stobbs L W,Vickers P M,Bittner L A. 2020. Assessment of the effects of novel insecticides on green peach aphid (Myzus persicae) feeding and transmission of Turnip mosaic virus(TuMV)[J]. Pest Mana-gement Science,77(3):1482-1491. doi:10.1002/PS.6169.
Tarek D,Hélène G,Refka B I,Guy C,Laurent G. 2018. Repellence of Myzus persicae(Sulzer):Evidence of two modes of action of volatiles from selected living aromatic plants:Repellent volatiles against Myzus persicae[J]. Pest Management Science,75(6):1571-1584. doi:10.1002/ps. 5271.
Tang Q L,Ma K S,Hou Y M,Gao X W. 2017. Monitoring insecticide resis-tance and diagnostics of resistance mechanisms in the green peach aphid,Myzus persicae(Sulzer) (Hemiptera:Aphididae) in China[J]. PesticBiochem Phy-siol 143:39-47. doi:10.1016/j.pestbp.2017.09.013.
van Emden H F,Eastop V F,Hughes R D,Way M J. 2003. The ecology of Myzus persicae[J]. Annual Review of Entomology,14(1):197-270. doi:10.1146/annurev.en.14.01 0169.001213.
Xu J H,Padilla C S,Li J M,Wickramanayake J,F(xiàn)ischer H D,Goggin F L. 2021. Redox responses of Arabidopsis thalia-na to the green peach aphid,Myzus persicae[J]. Molecular Plant Pathology,22(6):727-736. doi:10.1111/mpp. 13054.
收稿日期:2021-06-04
基金項目:中國煙草總公司科技項目(110202102040);湖北省煙草公司科技項目(027Y2020-006)
通訊作者:李錫宏(1964-),https://orcid.org/0000-0003-3974-5774,研究員,主要從事煙草綠色防控技術(shù)研究與推廣工作, E-mail:lxh885@126.com
第一作者:馮萬祖(1994-),https://orcid.org/0000-0002-1111-1174,研究方向為害蟲綜合治理,E-mail:1647330589@qq.com