• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of a rigid structure on the dynamics of a bubble beneath the free surface

    2021-03-01 11:17:06ShiMinLiManZhangNianNianLiu

    Shi-Min Li, A-Man Zhang , Nian-Nian Liu

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150 0 01, China

    Keywords: Underwater explosion Bubble dynamics Boundary integral method

    ABSTRACT The coupling effect between a pulsating bubble and a free surface near a rigid structure is a compli- cated physical process.In this study, the evolution of an underwater explosion bubble and the free sur- face near a rigid structure is modeled by the boundary integral method.An approach of “double-node method”is used to maintain the stability of fluid-structure junction in the simulations, and meshes on the free surface and the structure are transformed to an open domain to ensure the calculation accu- racy and efficiency.Validations are conducted against an underwater explosion experiment near a rigid structure.As a result, the simulations trace the jetting behavior of the bubble and the rise of the free sur- face.Finally, the bubble migration and the height of the free surface for different structure draughts are analyzed.

    Bubble dynamics near the free surface have always been a pop- ular topic due to the wide applications in underwater explosions [1–4] , jet printing [ 5 , 6 ], and ultrasonic cleaning [ 7 , 8 ].Once a struc- ture is near the free surface, the three-phase coupling effect be- tween the bubble, the structure, and the free surface becomes very complicated.The most important flow feature is the migra- tion of the bubble and the formation of the water column on the free surface.The migration direction of the bubble determines the impact region of the high-speed liquid jet generated during the asymmetric collapse and the characteristics of the shear flow be- tween the bubble and the structure, which in turn changes the ef- fects of underwater explosions and surface cleaning.The formation of the water column is a valuable tool in jet printing and some military affairs.An in-depth understanding of the interaction be- tween the bubble and free surface near typical structures is essen- tial for rational use of the characteristics of bubbles and the free surface.

    Contributions have been made to many numerical and experi- mental studies on the interaction between bubbles and free sur- faces [9–17] or other various boundaries [18–23] .Many interest- ing phenomena, including the secondary cavitation, toroidal bub- ble splitting, crown-shaped water doom, and feather broken sur- face, are discovered.Especially for numerical simulation, it is one of the most effective and applicable methods for systematic studies and is not limited by experimental conditions.However, most nu- merical studies are all based on axisymmetric configurations.Once there is a structure near the free surface, the entire fluid domain becomes an asymmetric three-dimensional flow field, which sig- nificantly increases the difficulty and time consuming of the nu- merical simulation.Therefore, the boundary integral method (BIM) is a good choice in studying three-dimensional bubble dynamics due to its high efficiency and accuracy [24–28] .Some literature is already studying the dynamic behavior of bubbles near structures using three-dimensional BIM in recent years [29–32] , but they fo- cus more on the infinite boundaries or specific engineering appli- cations.Study on systematic descriptions of the characteristics of the bubble and free surface is relatively rare.

    In this study, a numerical model for calculating the interaction between the bubble and free surface near a rigid boundary with a certain draught is established firstly using BIM.A simple and ba- sic structure, a right-angled corner, is regarded as the rigid struc- ture.An underwater explosion experiment near a cabin model is conducted to verify the reliability of our numerical method.Qual- itative analyses are performed for the behavior of the bubble and free surface for two draughts of the structure.Finally, the effects of the structure draught on bubble migration, jet direction, and free surface height are discussed.

    The physical scenario in this paper can be described as the interaction between the bubble and free surface when two rigid perpendicular semi-infinite rigid walls (a vertical and a horizon- tal wall) exist, as shown in Fig.1 .The generation position of the bubble is regarded as the origin to establish a Cartesian coordinate system.Thez-axis points opposite to gravitational acceleration, and they-axis is horizontal to the right.The directions of thex,y, andzaxes meet the right-hand rule.The vertical wall crosses the free surface, and the structure is symmetrical about the bubble along thex-axis with the draught ofD.The structural walls are entirely rigid, without considering the flow of fluids on the external do- main.

    The boundary integral method is based on the potential flow theory; that is, the fluid is regarded to be inviscid, irrotational, and incompressible.These assumptions can be reasonably adopted dur- ing most of the bubble’s lifetime [33–35] .Therefore, the Laplace equation is used to control the dynamics of fluids:

    whereφis the fluid velocity potential.

    To numerically solve Eq.(2) , the integral form of Laplace equa- tion (boundary integral equation [ 25 , 26 , 36 ]) is employed:

    Based on the Bernoulli equation [ 37 , 38 ], the velocity potentials of the bubble and free surface are updated:

    wherep∞ is the hydrostatic pressure at the initial position of the bubble, andpis the current pressure on the boundary surface.

    To make the research universal, we organize all simulations on a non-dimensional system.Three fundamental dimensionless quantities are the maximum radius of the bubbleRm, the density of the liquidρ, and the hydrostatic pressure at the initial position of the bubblep∞.On this basis, the reference quantities of time, velocity and velocity potential can be easily obtained.Subsequent research contents are all based on the non-dimensional system un- less otherwise specified.Here, we give three dimensionless param- eters used in this study:

    whereδis the buoyancy parameter used to characterize the bubble scale,dfanddware the distance between the initial bubble and the free surface and vertical wall, respectively.

    In addition, the Kelvin impulse [ 33 , 39 ] is used here to quantita- tively measure the movement trend of bubbles:

    wherenis the normal vector of nodes on the bubble surface, andsbis the area of the bubble wall.

    The boundary conditions of the bubble surface and the free sur- face can be written as:

    where the superscript indicates that the corresponding physical quantity is dimensionless; as ignoring the viscous effect and sur- face tension,pof nodes on the bubble surface is equal to the inter- nal bubble pressure calculated according to the adiabatic assump- tion (p′ =ε(V0 ′/V′)?,εis the strength parameter,V0 ′ andV′ are the initial and current bubble volume, and?is polytropic coeffi- cient).

    For nodes that belong to the free surface and rigid wall simul- taneously, they need to meet the boundary conditions of the free surface and cannot penetrate the rigid boundary, causing their ve- locities to be unstable and eventually collapse the simulation.In previous works [40] , the “weighted interpolation method”is used to deal with this problem, but it is only suitable for the slightly de- formed free surface.When the free surface dramatically deforms, a more general method is employed: the “double-node method”[ 27 , 41 , 42 ].Firstly, we define twon×nmatrices,GijandHij(i,j= 1, 2, …,n), representing the influence of the elements around nodejon nodei.GijandHijare calculated by ∫ ∫

    sG(i,j)dsandrespectively.The detailed discrete pro- cess of the boundary integral method and the principle of the ’double-node method’ can refer to the works of the literature [ 24 , 43 ].Here, only the coefficient matrix used in the calculation is given:

    whereκis the solid angle;sis the boundary surface composing the flow field; P and Q are discrete points on the boundaries (the source point P and the integration point Q);?/?nis the normal deviation of nodes on the boundaries.Once the boundaries is dis- cretized by a certain number of nodes and meshes, a calculation relationship between P and Q can be obtained, and thus a solv- ablen-element linear equation system (nis the number of nodes) is formed.After solving this linear equation system, the normal ve- locities of the bubble and the free surface and the velocity poten- tial of the wall are determined because the velocity potential of the bubble and free surface is known, and the normal velocities of rigid walls are always zero.

    where the subscript ’f’ represents the nodes on the free surface, ’w’ represents that on the rigid walls, and ’c’ denotes that on the junction which is divided into two parts: the influence of the free surfacecf and the rigid boundarycw .

    It can be seen that we need to calculate the effects of free sur- face elements and wall elements separately when calculating the matrixGij.Since the normal velocity of the node on the rigid walls is zero (?φcw/?n= 0), Eq.(8) can be simplified as:

    Since?φw/?nis zero, the values ofGfw ,Gcfw andGww can also be set to zero; thus, only the influence of the free surface elements on the nodes needs to be taken into account for the matrixGij.

    Another challenging problem in simulations is the scale of the boundaries.The boundary integral Eq.(2) requires the boundary surface to be closed, resulting in numerous nodes built outside the computational domain.Therefore, we need to artificially regard the nodes outside the computing domain to be on rigid walls to keep them stationary, which will undoubtedly cause errors and signifi- cantly reduce the calculation efficiency.Therefore, we use a vortex made by the free sides of boundaries to compensate for this de- ficiency.The basic idea is to replace the solid angle of the outer domain surface to nodes with the induced velocity potential of the vortex ring.The specific process is that all nodes on the free side of boundaries are considered on a three-dimensional vortex ring, and a local cylindrical coordinate system is established with the normal direction of the vortex ring as thez-axis.The detailed the- oretical foundation and calculation details of this approach can be found in Liu’s works[ 27,31 ] .The result is directly provided here:

    whereris the vector from the node on the boundary to the center of the microelement of the vortex ring,rzandrrare the normal and radial components ofr, respectively;Cis the three- dimensional vortex ring formed by the free side of the free surface and walls, and dlis the microelement on vortexC.

    An underwater explosion experiment was carried out to verify the feasibility of our numerical method.The experiment was con- ducted in a 4 m ×4 m ×4 m water tank.The layout of the exper- iment site can refer to the previous works [44] .5 g RDX explosives generates a bubble withRm of about 29.8 cm, with the buoyancy parameterδof 0.18.A cabin structure is welded above the water tank on a fixed steel frame and crosses through the free surface.Both the length (along thexaxis) and width (along theyaxis) of the structure are 80 cm.The distance from the bottom of the structure to the free surface is 40 cm.The depth of the explosive is 65 cm, and the relative position between the bubble at inception and the structure is shown in the first panel.The high-speed cam- era shoots the underwater explosion process at a speed of 50 0 0 frames per second, and the typical image is shown in Fig.1 .The high-pressure bubble expands rapidly after the explosive is deto- nated, remaining nearly spherical in the expansion stage.After the bubble volume reaches its maximum, the pressure of the flow field caused by the free surface and the wall is asymmetry, resulting in the obvious non-spherical collapsing.The upper part of the bubble is flattened due to a local high-pressure zone (3-4 frame) caused by the atmospheric boundary condition of the free surface [ 13 , 45 ].Under the combined action of the free surface and the rigid walls, the upper left part of the bubble collapses obliquely downwards towards the end of the first cycle.

    At the same time, the numerical model simulates the behav- ior of the underwater explosion bubble.The identification of initial conditions can refer the works of Li [43] , and we do not describe it here in detail.In this and subsequent cases, the adiabatic parame- ter?is 1.25 (for explosion bubbles [46]), and the initial radius and inner pressureεof the bubble are 0.149 and 100, respectively.The numerical simulation reproduces the bubble oscillation and jetting behavior well.Att= 51.284 ms, the bubble also exhibits the trend of collapsing obliquely downwards.The inclination angle is calcu- lated by Kelvin impulse to be about 56 °(arctan(Iz /Iy),Iz andIy are thez-component andy-component ofI, respectively).The direct measurement result in the image (that is, 58 °, the direction per- pendicular to the visible outline of the upper right part of the bub- ble, which matches the movement direction of the black flocculent impurities in frame 10) is very consistent with the calculation re- sult, verifying the feasibility of the numerical model on predicting the bubble migration.

    In the numerical simulation, the left part of the bubble is more rounded and swollen than that in the experimental image (frame 9 and 10), which is attributed to the slight movement of the struc- ture.In fact, it is a challenging task to completely rigidify the structure as attacked by underwater explosions.In the experiment, the fluids between the bubble and the rigid walls flow freer since the rigid structure is slightly bounced during the bubble expan- sion stage, while the liquids are completely confined to one side of the walls in the simulation.So the bubble surface nearer the rigid structure shrinks slower in the experiment than in the simulation.Nevertheless, in terms of the overall oscillation process and migra- tion direction of the bubble, the weak motion of the structure does not affect the collapse process of the bubble to a large extent.

    Figure 2 shows the evolution of the bubble and free surface as the right-angled structural draughtDis set to 0.5Rm when the bubble is located near the corner of the structure.In subsequent cases, the buoyancy parameterδis set to 0.4, equivalent to a bub- ble withRm of about 1.8 m.The bubble expansion causes the free surface to rise significantly, in which the part directly above the bubble rises fastest (we call it ’water doom’).The entire free sur- face is in the shape of an ’inclined umbrella’.At the maximum bubble volume (frame 2), the bubble surface close to the free sur- face is sucked in, and the part near the structure is repelled.Sub- sequently, an oblique downward liquid jet emerges as a result of the local high-pressure area upper the bubble [47] .The effect of the free surface drives the bubble to move downward, the effect of rigid walls attracts the bubble, and the buoyancy effect causes the bubble to migrate upwards.These effects are collectively re- ferred to as the ’Bjerkness effect’ [ 4 8 , 4 9 ].The oblique downward jet (3-5 frames) results from the combined influence of the free surface, rigid structure and buoyancy effect.Toward the end of the first cycle, the liquid jet pierced the opposite bubble wall, forming an annular bubble (frame 6).

    We then illustrate the evolution of the bubble and free surface as the structural draft is 2Rm in Fig.3 when the bubble is located on the side of the vertical wall.In the expansion stage, the left part of the bubble is flattened due to the obstruction of the wall, and the upper part is sucked into the free surface.As the bubble col- lapses, the liquid jet tends to point downward and hit the opposite bubble wall under the influence of the free surface.At the same time, the lower right part of the bubble also tends to be concave upwards diagonally under the action of the buoyancy.Before the jet impacts the bubble wall, the rightmost part of the bubble be- comes pointed, resulting from the more significant influence of the vertical wall.Compared with the previous case, the more oversized vertical wall hinders the oscillation of the left part of the bubble so that the right part shrinks more quickly relative to the other parts of the bubble wall.Therefore, the upper right part and the lower right part of the bubble surface are respectively affected by the free surface and the buoyancy effect at a relatively faster con- traction speed, resulting in a sharpened shape of the bubble wall.

    Figure 5 shows the displacement of the bubble centroidu(Panel a) and the evolution of the height of the water doomh(Panel b) for different structure draughts.The bubble migration process in the vertical direction differs slightly for various draughts because the distance from the bubble to the free surface and the buoyancy parameters are fixed,γf=γw= 1,δ= 0.4 .During most of the first cycle, the vertical migration range of bubbles increases as the structural draft increases.However, the vertical migration range does not change monotonously with the structural draft by the end of the first cycle, mainly because of the non-spherical bub- ble shape as the descriptions in Figs.3 and 4 .In general, when the scale and position of the bubble are fixed, the influence of the structural draft on the longitudinal bubble migration in the first period is not apparent, and the bubble does not significantly mi- grate downward or upward.However, the jet directions all point downwards (not displaying all cases), which is consistent with the prediction results of Kelvin impulse theory [ 49 , 50 ] (asγfδ<0.442 , the free surface effect is stronger than the buoyancy effect).In- stead, the influence of the structural draft on the horizontal migra- tion of bubbles is significant.The bubble is slightly repelled by the walls in the early stage and is intensely attracted at the late stage.As the structure draught decreases, the bubble is less affected by the rigid walls, so the migration range of the bubble away from and towards the walls is smaller.Panel b shows the time histo- ries of the height of the water doom.The free surface rises rapidly as the bubble expands and changes relatively slowly after reaching the maximum volume.As the structural draft increases, the free surface is raised higher.A physical explanation is provided as fol- lows: as the structural draft increases, the flow of liquids between the bubble and the structure is more limited, so the pulsating of the bubble makes the fluids near the walls flow to the top of the bubble instead of the bottom of the structure, leading to the in- crease in the pressure between the bubble and the free surface.

    In this study, the boundary integral method (BIM) is used to model the dynamic behavior of the bubble and the evolution of the free surface for different structure draughts.The ’double-node method’ and ’open-domain correction’ are adopted to ensure the stability and accuracy of the numerical simulations.By comparing with the underwater explosion experiment, the feasibility of our numerical model has been verified.Under the influence of the free surface, the rigid structure and the buoyancy effect, a downward liquid jet is generated and deflected towards the structure surface.Simultaneously, the free surface is obviously raised to form a wa- ter doom taking an ’inclined umbrella’ shape.When the initial po- sition of the bubble is fixed, the vertical movement of the bubble changes little with the structural draft in the first period, and the jet direction is consistent with the prediction of Kelvin impulse theory.The structural draught significantly affects the horizontal migration of the bubble.The larger structural draught causes the bubble to be repelled more strongly in the early oscillation stage and move toward the structure more vigorously in the late os- cillation stage.The existence of the structure also causes the free surface to rise higher, which can provide design references for the ’water curtain anti-missile’ near a ship.

    Declaration of Competing Interest

    There exists no conflict of interest statement in this works.

    Acknowledgments

    This work is supported by the National Key R&D Program of China (2018YFC0308900), the National Natural Science Founda- tion of China (11872158 , 52001085), the Postdoctoral Science Foun- dation (2019M661256), and the Heilongjiang Postdoctoral Fund, China (LBH-Z19135).

    亚洲av五月六月丁香网| 日韩大码丰满熟妇| 亚洲,欧美精品.| 亚洲专区中文字幕在线| 看黄色毛片网站| 成人亚洲精品av一区二区| 十八禁人妻一区二区| 国产亚洲欧美在线一区二区| 久久狼人影院| 国产精品综合久久久久久久免费| 精品少妇一区二区三区视频日本电影| 精品国产国语对白av| 在线播放国产精品三级| 男女那种视频在线观看| 亚洲成国产人片在线观看| 日韩精品青青久久久久久| 白带黄色成豆腐渣| 国产精品亚洲一级av第二区| 悠悠久久av| 亚洲专区国产一区二区| 久久精品国产综合久久久| 国产精品1区2区在线观看.| 国产成人精品久久二区二区免费| 好看av亚洲va欧美ⅴa在| 好看av亚洲va欧美ⅴa在| 精品久久久久久久久久久久久 | 夜夜夜夜夜久久久久| 99在线视频只有这里精品首页| 久久九九热精品免费| 最新在线观看一区二区三区| 国产成人欧美在线观看| 99久久精品国产亚洲精品| 十分钟在线观看高清视频www| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| АⅤ资源中文在线天堂| 久久中文看片网| 男女下面进入的视频免费午夜 | 天天躁夜夜躁狠狠躁躁| 精品国产亚洲在线| 一边摸一边做爽爽视频免费| 久久精品国产综合久久久| 黑人欧美特级aaaaaa片| 欧洲精品卡2卡3卡4卡5卡区| e午夜精品久久久久久久| 1024手机看黄色片| 亚洲五月天丁香| 免费人成视频x8x8入口观看| 国产精品自产拍在线观看55亚洲| 国产精品二区激情视频| 一区二区日韩欧美中文字幕| 村上凉子中文字幕在线| 午夜福利18| 欧美又色又爽又黄视频| 999久久久国产精品视频| 亚洲熟女毛片儿| 在线十欧美十亚洲十日本专区| 国产伦在线观看视频一区| 可以在线观看毛片的网站| 国产片内射在线| 亚洲欧美精品综合久久99| 非洲黑人性xxxx精品又粗又长| 99在线视频只有这里精品首页| 欧美成狂野欧美在线观看| 午夜福利视频1000在线观看| 国产成人影院久久av| 国产精品 国内视频| 欧美zozozo另类| 亚洲性夜色夜夜综合| 久久久久久国产a免费观看| 国产精品,欧美在线| 午夜福利一区二区在线看| av在线播放免费不卡| 午夜福利高清视频| 亚洲电影在线观看av| 日韩精品中文字幕看吧| 韩国av一区二区三区四区| 精品久久久久久久人妻蜜臀av| 亚洲人成网站高清观看| 精品久久久久久成人av| 人妻久久中文字幕网| 精品日产1卡2卡| 成年女人毛片免费观看观看9| 非洲黑人性xxxx精品又粗又长| 一级作爱视频免费观看| 嫁个100分男人电影在线观看| 免费一级毛片在线播放高清视频| 桃红色精品国产亚洲av| 丝袜人妻中文字幕| av超薄肉色丝袜交足视频| 麻豆av在线久日| 午夜福利在线观看吧| 日日干狠狠操夜夜爽| 亚洲av第一区精品v没综合| 俄罗斯特黄特色一大片| 制服丝袜大香蕉在线| 亚洲无线在线观看| 久久久水蜜桃国产精品网| 99在线人妻在线中文字幕| 99在线人妻在线中文字幕| 女生性感内裤真人,穿戴方法视频| 宅男免费午夜| 亚洲成av片中文字幕在线观看| 欧美激情 高清一区二区三区| 久久精品国产清高在天天线| 中文字幕人妻丝袜一区二区| 欧美黑人精品巨大| 两个人免费观看高清视频| 欧美午夜高清在线| 1024香蕉在线观看| 日韩欧美三级三区| 亚洲精品美女久久av网站| 亚洲熟妇熟女久久| 亚洲精品美女久久久久99蜜臀| 亚洲男人天堂网一区| 欧美午夜高清在线| 国产精品二区激情视频| 美女高潮到喷水免费观看| 欧美黄色片欧美黄色片| 免费电影在线观看免费观看| 黄片小视频在线播放| 亚洲男人天堂网一区| 琪琪午夜伦伦电影理论片6080| 成人亚洲精品一区在线观看| 精品久久久久久久毛片微露脸| 色精品久久人妻99蜜桃| 91国产中文字幕| 操出白浆在线播放| 国产成人av教育| 欧美黄色淫秽网站| 亚洲精品国产一区二区精华液| 性欧美人与动物交配| 男女那种视频在线观看| 波多野结衣巨乳人妻| 免费一级毛片在线播放高清视频| 亚洲午夜理论影院| 国产精品亚洲美女久久久| 国产精品1区2区在线观看.| 亚洲国产高清在线一区二区三 | 国产一区在线观看成人免费| 国产精品香港三级国产av潘金莲| 美女免费视频网站| 久久精品aⅴ一区二区三区四区| 岛国视频午夜一区免费看| 中文字幕人妻丝袜一区二区| 啦啦啦 在线观看视频| av在线天堂中文字幕| 亚洲欧美一区二区三区黑人| 搡老妇女老女人老熟妇| 色播亚洲综合网| 亚洲国产精品成人综合色| 免费看十八禁软件| 国产成人av教育| 亚洲免费av在线视频| 婷婷丁香在线五月| 校园春色视频在线观看| 亚洲国产中文字幕在线视频| 欧美一级毛片孕妇| 伦理电影免费视频| 久久久久精品国产欧美久久久| 久久国产精品人妻蜜桃| 可以在线观看毛片的网站| av电影中文网址| 麻豆成人av在线观看| 日本黄色视频三级网站网址| 日韩免费av在线播放| 久久人人精品亚洲av| 欧美黑人精品巨大| 亚洲男人天堂网一区| 久久精品影院6| 国产精品av久久久久免费| 日韩av在线大香蕉| 18禁裸乳无遮挡免费网站照片 | 国产99久久九九免费精品| 看黄色毛片网站| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 悠悠久久av| 国产av在哪里看| 久久亚洲精品不卡| 19禁男女啪啪无遮挡网站| 国产亚洲精品久久久久5区| 欧美日韩亚洲综合一区二区三区_| 色播亚洲综合网| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 婷婷丁香在线五月| 亚洲在线自拍视频| 琪琪午夜伦伦电影理论片6080| 露出奶头的视频| 69av精品久久久久久| 高清毛片免费观看视频网站| 一本一本综合久久| 女警被强在线播放| 国产v大片淫在线免费观看| 欧美一级a爱片免费观看看 | svipshipincom国产片| 法律面前人人平等表现在哪些方面| 成人一区二区视频在线观看| 少妇熟女aⅴ在线视频| 一边摸一边做爽爽视频免费| 丝袜在线中文字幕| 久久人人精品亚洲av| 免费av毛片视频| 久久久久久大精品| 久久亚洲真实| 女警被强在线播放| 亚洲天堂国产精品一区在线| 久久精品国产综合久久久| 999久久久精品免费观看国产| 国产av在哪里看| 天堂√8在线中文| 国产精品 国内视频| 十分钟在线观看高清视频www| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 神马国产精品三级电影在线观看 | 婷婷精品国产亚洲av在线| 1024香蕉在线观看| 亚洲av熟女| 欧美日韩福利视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 一级毛片女人18水好多| 日本熟妇午夜| 欧美又色又爽又黄视频| 国产蜜桃级精品一区二区三区| 丝袜美腿诱惑在线| 亚洲成人久久爱视频| 91大片在线观看| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 99在线人妻在线中文字幕| 男女视频在线观看网站免费 | 淫秽高清视频在线观看| 搡老妇女老女人老熟妇| 黄片小视频在线播放| 九色国产91popny在线| 天天躁夜夜躁狠狠躁躁| 美女免费视频网站| 国产久久久一区二区三区| 高清在线国产一区| 亚洲午夜理论影院| 18禁观看日本| 国产一区在线观看成人免费| 亚洲,欧美精品.| 亚洲aⅴ乱码一区二区在线播放 | 夜夜爽天天搞| 色av中文字幕| 免费在线观看视频国产中文字幕亚洲| 少妇粗大呻吟视频| 欧美黑人欧美精品刺激| 麻豆av在线久日| www.精华液| 老司机深夜福利视频在线观看| 大型黄色视频在线免费观看| 免费电影在线观看免费观看| 一级片免费观看大全| 欧美中文日本在线观看视频| 色播在线永久视频| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成av人片免费观看| 黄色丝袜av网址大全| 曰老女人黄片| 精品国产一区二区三区四区第35| 国产高清有码在线观看视频 | 色播亚洲综合网| 老司机午夜福利在线观看视频| 亚洲专区字幕在线| 亚洲美女黄片视频| 一个人免费在线观看的高清视频| 免费在线观看黄色视频的| 免费在线观看日本一区| 欧美三级亚洲精品| 长腿黑丝高跟| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区| 亚洲精品中文字幕在线视频| 亚洲av成人av| 成年人黄色毛片网站| 黑人欧美特级aaaaaa片| 亚洲中文字幕一区二区三区有码在线看 | 宅男免费午夜| 在线观看午夜福利视频| www.精华液| 国产精品98久久久久久宅男小说| 国产又爽黄色视频| 欧美性猛交╳xxx乱大交人| 99久久国产精品久久久| 日日爽夜夜爽网站| 午夜福利18| 最近最新中文字幕大全免费视频| 欧美黄色淫秽网站| 国产熟女xx| 大型黄色视频在线免费观看| 久久精品影院6| 国产亚洲av高清不卡| 精品国产一区二区三区四区第35| 18禁美女被吸乳视频| 国产成人欧美在线观看| 女人爽到高潮嗷嗷叫在线视频| av天堂在线播放| 国产精品av久久久久免费| 99久久国产精品久久久| 日日夜夜操网爽| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 久久99热这里只有精品18| 精品久久久久久久末码| 午夜福利成人在线免费观看| 午夜激情av网站| 1024香蕉在线观看| 又大又爽又粗| 欧美大码av| 国产视频一区二区在线看| 黄片小视频在线播放| a在线观看视频网站| www.熟女人妻精品国产| 麻豆成人av在线观看| 午夜免费观看网址| 成人手机av| 亚洲在线自拍视频| 免费在线观看影片大全网站| 长腿黑丝高跟| 人人妻人人澡人人看| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 欧美激情极品国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| 亚洲精品粉嫩美女一区| bbb黄色大片| 欧美日本视频| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 午夜免费观看网址| 亚洲五月婷婷丁香| 国产激情欧美一区二区| 成人av一区二区三区在线看| 欧美激情极品国产一区二区三区| 亚洲人成电影免费在线| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 亚洲国产精品成人综合色| 熟女少妇亚洲综合色aaa.| 久热爱精品视频在线9| 亚洲男人天堂网一区| 国产成人一区二区三区免费视频网站| 亚洲 欧美一区二区三区| 波多野结衣高清无吗| 国产精品九九99| 午夜激情福利司机影院| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 国产熟女午夜一区二区三区| 中文字幕久久专区| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 动漫黄色视频在线观看| 亚洲中文av在线| 少妇的丰满在线观看| 曰老女人黄片| 一二三四社区在线视频社区8| 99热6这里只有精品| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 国产激情欧美一区二区| 91成人精品电影| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 欧美日韩乱码在线| 国产av一区在线观看免费| 免费在线观看影片大全网站| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面| 亚洲三区欧美一区| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 好看av亚洲va欧美ⅴa在| 国内揄拍国产精品人妻在线 | 老司机福利观看| 亚洲一区二区三区色噜噜| 黄色视频不卡| 欧美丝袜亚洲另类 | www.自偷自拍.com| 精品免费久久久久久久清纯| 观看免费一级毛片| 嫩草影视91久久| 色精品久久人妻99蜜桃| 一级毛片高清免费大全| 久久亚洲精品不卡| 中文字幕人妻熟女乱码| 黑人操中国人逼视频| 啦啦啦免费观看视频1| 一本一本综合久久| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 婷婷亚洲欧美| 亚洲成av片中文字幕在线观看| 欧美丝袜亚洲另类 | 此物有八面人人有两片| 国产黄色小视频在线观看| 国产人伦9x9x在线观看| 亚洲精品在线观看二区| av超薄肉色丝袜交足视频| 91老司机精品| 国产男靠女视频免费网站| 一级片免费观看大全| 亚洲av中文字字幕乱码综合 | 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 女生性感内裤真人,穿戴方法视频| 免费在线观看成人毛片| 一边摸一边做爽爽视频免费| 亚洲av日韩精品久久久久久密| 一夜夜www| 中出人妻视频一区二区| 亚洲中文字幕日韩| 国产精品自产拍在线观看55亚洲| 高清在线国产一区| 亚洲 国产 在线| 国产成人精品久久二区二区91| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| 久久九九热精品免费| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 国产国语露脸激情在线看| 午夜激情av网站| 91成年电影在线观看| 午夜福利成人在线免费观看| 免费无遮挡裸体视频| 久久国产亚洲av麻豆专区| avwww免费| 国内精品久久久久久久电影| 国产亚洲精品久久久久久毛片| 日韩视频一区二区在线观看| 级片在线观看| 国产av在哪里看| 久久性视频一级片| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出| 99久久综合精品五月天人人| 午夜视频精品福利| 免费看十八禁软件| 久久久久免费精品人妻一区二区 | 大型av网站在线播放| 日日爽夜夜爽网站| 亚洲片人在线观看| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| videosex国产| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 中文字幕精品亚洲无线码一区 | 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| 久久精品人妻少妇| 国产av又大| 熟女电影av网| 一边摸一边抽搐一进一小说| 在线国产一区二区在线| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 欧美激情高清一区二区三区| 亚洲人成网站高清观看| 亚洲国产看品久久| 两人在一起打扑克的视频| 国产一区二区三区视频了| a级毛片在线看网站| 亚洲专区字幕在线| 视频区欧美日本亚洲| 观看免费一级毛片| 丁香欧美五月| 欧美色欧美亚洲另类二区| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站| 欧美日韩精品网址| 日韩欧美免费精品| 午夜日韩欧美国产| 亚洲熟妇熟女久久| 高清在线国产一区| 国产不卡一卡二| 性欧美人与动物交配| 午夜免费成人在线视频| 久久香蕉激情| 999精品在线视频| 俺也久久电影网| 久久国产精品影院| 69av精品久久久久久| 国产伦在线观看视频一区| 亚洲狠狠婷婷综合久久图片| 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 成人国语在线视频| 婷婷精品国产亚洲av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 精品国产国语对白av| 91成年电影在线观看| 国产视频一区二区在线看| avwww免费| 99在线视频只有这里精品首页| 日本成人三级电影网站| 男女视频在线观看网站免费 | 老司机深夜福利视频在线观看| 91成年电影在线观看| 真人做人爱边吃奶动态| 长腿黑丝高跟| 亚洲人成网站高清观看| 色综合亚洲欧美另类图片| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 身体一侧抽搐| 黄片大片在线免费观看| 久久国产精品影院| 1024视频免费在线观看| 国产乱人伦免费视频| 男女视频在线观看网站免费 | 成人国产综合亚洲| 叶爱在线成人免费视频播放| 色播在线永久视频| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合 | 淫妇啪啪啪对白视频| 久久中文看片网| xxx96com| 香蕉av资源在线| 高清在线国产一区| 男女下面进入的视频免费午夜 | 亚洲自偷自拍图片 自拍| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 女性生殖器流出的白浆| 99国产精品99久久久久| 国产亚洲欧美在线一区二区| 一级毛片精品| 欧美日韩中文字幕国产精品一区二区三区| 怎么达到女性高潮| 国产黄a三级三级三级人| 国产精品电影一区二区三区| 亚洲国产欧洲综合997久久, | 他把我摸到了高潮在线观看| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 亚洲天堂国产精品一区在线| 免费av毛片视频| 久久国产精品人妻蜜桃| 99热只有精品国产| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 天堂√8在线中文| 国产精品野战在线观看| 波多野结衣高清作品| 精品第一国产精品| 老汉色∧v一级毛片| 这个男人来自地球电影免费观看| 少妇 在线观看| 在线观看免费日韩欧美大片| 国产一级毛片七仙女欲春2 | 亚洲五月色婷婷综合| 日韩高清综合在线| 成人特级黄色片久久久久久久| 欧美成狂野欧美在线观看| 久久婷婷成人综合色麻豆| 制服诱惑二区| 久久久久久人人人人人| 午夜老司机福利片| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| 18禁黄网站禁片免费观看直播| 久久草成人影院| 亚洲片人在线观看| 天堂影院成人在线观看| 亚洲第一青青草原| 久久久久久久久免费视频了| 99热只有精品国产| 日日夜夜操网爽| 一个人免费在线观看的高清视频| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 国产亚洲精品一区二区www| av在线天堂中文字幕| 日本熟妇午夜| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 制服诱惑二区| 自线自在国产av| 成人国语在线视频| avwww免费| 精品第一国产精品| 久久久久久国产a免费观看| 亚洲av成人一区二区三|