• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of actuator disc circulation distribution for unsteady virtual blades model

    2021-03-01 11:17:04KusyumovKusyumovMikhilovBrkos

    A.N.Kusyumov , , S.A.Kusyumov , S.A.Mikhilov , G.N.Brkos

    a Kazan National Research Technical University n.a. A N Tupolev, Russia

    b Glasgow University, Glasgow, UK

    Keywords: Surface circulation distribution Unsteady actuator disk model Blade tip vortices reproduction

    ABSTRACT The actuator disc method is an engineering approach to reduce computer resources in computational fluid dynamics (CFD) simulations of helicopter rotors or aeroplane propellers.Implementation of an ac- tuator disc based on rotor circulation distribution allows for approximations to be made while reproduc- ing the blade tip vortices.Radial circulation distributions can be formulated according to the nonuniform Heyson-Katzoff“typical load”in hover.In forward flight, the nonuniform disk models include “azimuthal”sin and cos terms to reproduce the blade cyclic motion.The azimuthal circulation distribution for a for- ward flight mode corresponds to trimmed conditions for the disk rolling and pitching moments.The amplitude of the cos harmonic is analysed and compared here with presented in references data and CFD simulations results.

    One of the primary requirements in helicopter design is the es- timation of the rotor effect on the helicopter fuselage.In particu- lar, the fuselage surface pressure distribution can be used as ini- tial data for structural analyses.The actuator disc (AD) method is a mathematical approach in computational fluid dynamics (CFD) to approximate a helicopter rotor or an airplane propeller.For this purpose, the Navier-Stokes or Reynolds averaged Navier-Stokes (RANS) equations are modified with a source terms distribution in the momentum equations.The “intensity”of the source terms is determined in the form of a “pressure jump”across the AD surface in accordance to the rotor thrust force.Since no surface is needed in the grid, the position of the sources reproducing the blades lo- cation can be changed without transformation of the initial grid.

    In some CFD solvers (commercial ANSYS fluent CFD code, for example) the AD conception is realized in the form of a special type of boundary condition applied on the infinitely thin AD sur- face, localized at (and instead of) the fully resolved rotor disk.

    Classical helicopter AD models provide a steady-state formula- tion of the RANS equations to estimate a time-averaged action of the rotor downwash on the helicopter fuselage and its surface ele- ments.Within the classical AD models, the source terms are con- tinuously distributed on the AD surface.

    A more realistic approach for simulation of the unsteady space structure of the helicopter rotor wake is based on a variable and space localized source distribution similar to the fully resolved rotor blades planform.Such methods require solution of the un- steady Reynolds averaged Navier-Stokes (URANS) equations and are called as the actuator-blade methods.

    For example, with the actuator-lines method [1,2] the rotor blades action is simulated by forces acting along filaments sources lines.Body forces are typically derived from the blade element mo- mentum (BEM) method.This classic BEM method is based requires corrections particularly near the blade tip region [3] .In Lynch et al.[4] it is noted that such correction can be applied using Prandtl’s approach [5] .

    An alternative approach which reproduces the flow structure is the unsteady AD method: the disk surface is divided in the azimuthal direction with a time-varied pressure jump across the AD surface elements [ 4 , 6 ].In references [7–9] , such approach was termed unsteady virtual blades actuator (VBA) model.In Ref.[8] the AD surface was divided in 4 sectors according to the rotor blades number (Fig.1).

    In forward flight the nonuniform AD models include “az- imuthal”terms reproducing the blade cyclic.The amplitudes of the azimuthal terms depend on the AD models and should be adjusted to provide trimmed flight disk loading.Reference [9] presents the AD mathematical formulations and comparison of several AD mod- els, based on prescribed AD circulation distributions.The AD1 model presented in Ref.[9] takes into consideration only the az- imuthal variation of the rotor circulation distribution.For the AD2 model the AD loading is determined with the Blade Element The- ory.A more complicated model AD3 is based on the “typical”cir- culation distribution [10] .The formulation of that model takes into account both azimuthal and radial circulation distributions and is described in detail in Ref.[ 11 ].

    Another (different from Ref.[11]) approach, termed AD4, that also accounts for the radial and azimuthal circulation distribution, is presented in Ref, [9] .The AD loadings for different models are compared in Ref.[9] by the rotor surface normal force distribution obtained with numerical simulation for the PSP rotor [12] .

    It should be noted that two kinds of “trimming coefficients”, determining the amplitude of the blade cyclic motion are offered [9] .A difference between the trimming coefficients is determined by a functional dependence (linear or nonlinear) on the rotor ad- vance ratio.The goal of this paper is the comparative analysis of the AD loading for the AD4 model with the linear and nonlinear forms of the trimming coefficients.For prescribed flight conditions the circulation distribution of the AD4 model is compared to the circulation distribution obtained with vortex theory [13] .In addi- tion the AD surface pressure distribution is compared to PSP rotor CFD simulation results (unlike Ref.[9] , which considered a com- parison with the surface normal force coefficient).

    A widely accepted AD model, expresses the AD loading of a for- ward flying rotor as a function of the disk radiusrand azimuth angleΨ:

    where the functions sin(r,Ψ)and cos(r,Ψ)determine the sin and cos pressure oscillations, and the coefficientsΔp0,Δp1s , andΔp2s depend on the rotor geometry and flight conditions.Using the ro- tor circulation functionΓ(r,Ψ)the local loading can be written as

    where

    hereρis the air density,Ωis the blade rotational speed,Ris the rotor disk radius, andμis the rotor advance ratio:

    whereVtip=ΩRis the blade tip speed,Vis the forward rotor ve- locity, andαris the rotor disk plane tilt angle (positive for forward tilt).

    The simplified circulation distribution (AD1 model) can be writ- ten as [ 9,13 ]:

    while

    whereCTis the rotor trust coefficient determined by the rotor thrustT:

    A more advanced model is based on a "typical" circulation dis- tribution [10] .According to Ref.[9] the circulation distribution also depends on the normalized radial coordinate=r/R, and can be approximated as:

    here

    The azimuthal variation of the dimensionless disk circulation distributionis determined by the rotor advance ratioμand does not depend on the rotor thrust coefficient that is ac- counted by theΓ4term.The dimensionless disk circulation dis- tributionfor the hover mode is determined as [10] :

    Two kinds of trimming coefficientsK(μ)andW(μ)can be de- termined for the sin and cos harmonic components [9] as linear and nonlinear functions of the advance ratio:

    Substitution of Eqs.(12) and (13) into Eqs.(10) and (11) al- lows determination two kinds of functions for the dimensionless A D surface circulation distribution:and

    One should note that both kinds trimming coefficients deter- mine the AD loading distribution are comparable, in general, to the CFD results.The radius-averaged azimuthal circulation distri- bution can be considered for clarification of the trimming coeffi- cients choice.One can determine the averaged 1D function

    to compare with the simplest1(Ψ)dimensionless AD circulation.Substituting Eqs.(10) and (11) into Eqs.(14) and (15) gives a gen- eral expression

    Substituting Eqs.(12) and (13) into Eq.(15) gives respectively

    Figure 2 shows the function1(Ψ)in comparison to the aver- aged 1D functions41a(Ψ), and42a(Ψ)distribution for the rotor advance ratioμof 0.15.

    From Fig.2, it follows that the andandfunction have two extremums, unlike thefunction, which has four extremums and one can expect that the42a(Ψ)function allows for better reproduction of real main rotor disk properties.

    In Fig.3 , the dimensionless circulation distributionsandare shown forμ= 0.1 .Figure 3 shows a discrepancy between the dimensionlessandcirculation dis- tributions at the retreating blade area.Due to the different sine co- sine harmonic circulation components the AD model with thecirculation distribution is slightly higher in comparison with thecirculation near ≈270 °.

    To validate the obtained disk load distributions one can analyze the rotor AD surface load distribution determined by theandfunctions in comparison with data presented in ref- erences.The theoretical circulation distribution obtained from the vortex theory is presented in Ref.[13] at the main rotor disk sec- tion= 0.7 for the rotor parameters: the rotor solidityσ= 0.07 , the rotor trustCTcoefficient of 0.012 and the advancing ratio of 0.15.

    Figure 4 presents the normalized41(,Ψ)and42(,Ψ)func- tions compared with a theoretical circulation distribution.The rel- ative theoretical circulation distribution is presented in Ref.[13] in the form

    where the function(= 0.7)is determined by Eq.(9) for= 0.7 .

    Figure 4 shows, that the normalized42(= 0.7,Ψ)distribu- tion agrees very well with the vortex theory results.The trimming coefficients determined by expressions Eq.(13) (nonlinear form) thus provide better agreement of the rotor disk circulation distri- bution in comparison with the coefficients of Eq.(12) (linear de- pendence on the advance ratio).

    The theoretical AD loading can be compared with CFD results.For CFD simulation the four-bladed PSP [12] rotor was considered (details of the rotor geometry, simulation conditions and brief de- scription of a CFD solver are presented).In Ref.[9] the theoreti- cal and CFD normal force coefficient distributions for the PSP ro- tor were also compared.In Fig.5 a comparison of the AD load- ings are considered for the surface pressure jump across the disk (whichisused as boundary condition in VBA models).The dimen- sionless pressure jump distribution on the rotor disk surface is shown forCT= 0.016 ,μ= 0.35 .In Fig.5 a the dimensionless pres- sure jumpCFD(,Ψ)is determined by the normalized rotor disk load

    hereMtipis the blade tip Mach number, andCnis the normal force coefficient.Figure 5 b shows the obtained distribution

    whereΔp(r,Ψ)is determined by the expression (2) for thecirculation distribution.

    Comparison of the CFD simulation results to the obtained forpressure jump distribution shows a satisfactory agree- ment.The VBA model approach is based on "typical" [10] circula- tion distributions on the rotor disk and does not take into account the specific blade design or any particular rotor trimming method.For this reason, the considered AD model shows some discrepancy of the rotor disk load near the azimuth angleΨof 90 °compared to the CFD data.Nevertheless, the AD model predicted the high disk load forΨ≈45 °and 135 °at the disk radius 0.75Rand the lower values of the disk load near the rotor root part forΨ≈45 °.

    Circulation distribution on the surface nonuniformly loaded ac- tuator disk model is analyzed developed using the “typical law”of the helicopter main rotor disk circulation distribution.The actuator disk model contains “trimming coefficients”, which determine disk circulation distribution taking into account the sin and cos circu- lation components.Circulation distribution on the disk surface is analyzed for two kinds of the trimming coefficients, which linear or nonlinear depend on the rotor advance ratio.

    Both linear and nonlinear models yield the assigned thrust co- efficient value and satisfied the trimming conditions of the AD load for forward flight.However, the nonlinear AD model better agrees with the vortex theory prediction and with the rotor CFD simula- tion results.Comparison to the vortex theory results at the 75% of the rotor radius shows good agreement for the azimuthal circula- tion distribution, including peak to peak values and their location.Comparison to the CFD simulation results for the four-bladed rotor shows that the AD model predicted well the disk load for different azimuth angles and rotor disk radius, excluding the azimuth area near 90 °.

    Declaration of Interest Statement

    We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satis- fied the criteria for authorship but are not listed.We further con- firm that the order of authors listed in the manuscript has been approved by all of us.

    Declaration of Competing Interest

    The authors declare no conflict of interest.

    Acknowledgement

    Work of Russian coauthors was supported by the grant " FZSU- 2020-0021 " (No.075-03-2020-051/3 from 09.06.2020) of the Min- istry of Education and Science of the Russian Federation.

    午夜亚洲福利在线播放| 国产亚洲精品av在线| 色哟哟哟哟哟哟| 婷婷六月久久综合丁香| 淫秽高清视频在线观看| 欧美色欧美亚洲另类二区| 久久久久久久久免费视频了| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| 午夜福利视频1000在线观看| 91大片在线观看| 白带黄色成豆腐渣| 午夜a级毛片| 国产黄色小视频在线观看| 无人区码免费观看不卡| 亚洲av成人一区二区三| 国产三级中文精品| 国产精品av久久久久免费| 99在线视频只有这里精品首页| 午夜久久久久精精品| 激情在线观看视频在线高清| 久久精品夜夜夜夜夜久久蜜豆 | 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品一区二区www| 欧美+亚洲+日韩+国产| 天堂√8在线中文| 在线观看午夜福利视频| 两个人看的免费小视频| 日韩中文字幕欧美一区二区| 精品乱码久久久久久99久播| 日韩高清综合在线| www.熟女人妻精品国产| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 女警被强在线播放| 欧美日韩国产亚洲二区| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| 性欧美人与动物交配| 黑人操中国人逼视频| 男人舔奶头视频| 亚洲无线在线观看| e午夜精品久久久久久久| 看黄色毛片网站| 国产高清视频在线播放一区| 国产一区二区在线av高清观看| 香蕉国产在线看| 日本一本二区三区精品| 夜夜看夜夜爽夜夜摸| 香蕉av资源在线| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 国产精品国产高清国产av| 美女免费视频网站| 亚洲国产欧美一区二区综合| 最近最新中文字幕大全电影3| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器 | 亚洲国产中文字幕在线视频| 小说图片视频综合网站| 亚洲激情在线av| 久久久久国内视频| 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看 | 视频区欧美日本亚洲| 亚洲人与动物交配视频| 一本综合久久免费| 中文字幕人妻丝袜一区二区| 欧美日韩一级在线毛片| 亚洲国产欧美网| ponron亚洲| 国产亚洲欧美在线一区二区| 久久久久久亚洲精品国产蜜桃av| 日韩精品中文字幕看吧| 免费av毛片视频| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 老熟妇仑乱视频hdxx| 久久香蕉国产精品| 成人av在线播放网站| 日日夜夜操网爽| 午夜福利高清视频| 日韩欧美免费精品| 国产片内射在线| 午夜两性在线视频| 国内揄拍国产精品人妻在线| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av片天天在线观看| 久久香蕉精品热| 亚洲美女黄片视频| 久久久久久久精品吃奶| 国产精品永久免费网站| 老汉色∧v一级毛片| 国产午夜精品久久久久久| 日本一区二区免费在线视频| 搡老熟女国产l中国老女人| 成人三级黄色视频| 又大又爽又粗| 国产1区2区3区精品| 国产三级中文精品| 色播亚洲综合网| 国内久久婷婷六月综合欲色啪| 麻豆成人av在线观看| 香蕉av资源在线| tocl精华| 国产午夜精品论理片| 亚洲成人中文字幕在线播放| 日本 欧美在线| 成人18禁高潮啪啪吃奶动态图| 久久精品91蜜桃| 久久久水蜜桃国产精品网| 在线观看免费午夜福利视频| 超碰成人久久| 久久天堂一区二区三区四区| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 高清毛片免费观看视频网站| 亚洲av片天天在线观看| 久久99热这里只有精品18| 一本久久中文字幕| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 99国产精品99久久久久| 国产一区在线观看成人免费| 两性夫妻黄色片| 99精品在免费线老司机午夜| 啦啦啦免费观看视频1| 色精品久久人妻99蜜桃| 久久久久久久久中文| 色在线成人网| 香蕉国产在线看| 亚洲国产欧美网| 97人妻精品一区二区三区麻豆| 久久亚洲真实| 国产激情欧美一区二区| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 在线国产一区二区在线| 国产精品久久久久久精品电影| 亚洲色图 男人天堂 中文字幕| 中文字幕高清在线视频| 久久亚洲精品不卡| 可以在线观看的亚洲视频| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 真人一进一出gif抽搐免费| 亚洲国产欧美网| av在线播放免费不卡| 日韩高清综合在线| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| 国产一区二区在线av高清观看| 国产精品亚洲av一区麻豆| 婷婷精品国产亚洲av| 亚洲av成人av| 欧美中文日本在线观看视频| 亚洲熟女毛片儿| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 小说图片视频综合网站| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 老鸭窝网址在线观看| 国产99久久九九免费精品| 午夜影院日韩av| 欧美成人一区二区免费高清观看 | 日本免费一区二区三区高清不卡| 啪啪无遮挡十八禁网站| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 日本一二三区视频观看| 欧美 亚洲 国产 日韩一| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看 | 久久久久久免费高清国产稀缺| a级毛片a级免费在线| 亚洲国产中文字幕在线视频| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲综合一区二区三区_| 欧美中文综合在线视频| 国产精品影院久久| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 亚洲av美国av| 99热这里只有精品一区 | 一级a爱片免费观看的视频| a在线观看视频网站| 国产亚洲精品综合一区在线观看 | 免费观看精品视频网站| 亚洲自拍偷在线| 久久久久九九精品影院| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站 | 99热这里只有精品一区 | 欧美乱码精品一区二区三区| 可以在线观看的亚洲视频| 日本一本二区三区精品| 国产99白浆流出| 精品乱码久久久久久99久播| 久久精品成人免费网站| 中文在线观看免费www的网站 | 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 嫩草影视91久久| 亚洲国产欧美人成| 国产麻豆成人av免费视频| 一级毛片高清免费大全| 999久久久国产精品视频| 91成年电影在线观看| 亚洲人成伊人成综合网2020| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 国产精品一区二区精品视频观看| 国产又色又爽无遮挡免费看| 欧美zozozo另类| √禁漫天堂资源中文www| 久久香蕉精品热| 长腿黑丝高跟| 热99re8久久精品国产| 欧美高清成人免费视频www| 精品国产美女av久久久久小说| 久久这里只有精品19| 国产视频一区二区在线看| 国产精品av久久久久免费| 久久久久久久久免费视频了| 99久久精品热视频| 国产69精品久久久久777片 | 亚洲人成77777在线视频| 在线播放国产精品三级| 丁香欧美五月| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| cao死你这个sao货| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 欧美国产日韩亚洲一区| 亚洲成人中文字幕在线播放| 女警被强在线播放| 欧美三级亚洲精品| 亚洲精品久久国产高清桃花| 又黄又爽又免费观看的视频| 久久久精品欧美日韩精品| 久久热在线av| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 嫩草影视91久久| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 成人午夜高清在线视频| 午夜日韩欧美国产| 亚洲熟妇熟女久久| 欧美久久黑人一区二区| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| ponron亚洲| 一本久久中文字幕| 日本成人三级电影网站| 一个人免费在线观看电影 | 国产精品影院久久| 黄色片一级片一级黄色片| 日本成人三级电影网站| 亚洲五月天丁香| 搞女人的毛片| 听说在线观看完整版免费高清| 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看 | av中文乱码字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 身体一侧抽搐| www.www免费av| 757午夜福利合集在线观看| 露出奶头的视频| 国产精品一区二区免费欧美| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 欧美av亚洲av综合av国产av| 国产视频内射| 伊人久久大香线蕉亚洲五| 禁无遮挡网站| 小说图片视频综合网站| 人成视频在线观看免费观看| 久久久久国产精品人妻aⅴ院| 成在线人永久免费视频| 精品高清国产在线一区| 黄色视频不卡| 日日夜夜操网爽| 久久久久久久久久黄片| 最近最新中文字幕大全电影3| 午夜a级毛片| 成年女人毛片免费观看观看9| 又粗又爽又猛毛片免费看| 真人一进一出gif抽搐免费| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品久久久久5区| 日韩欧美在线乱码| 久久久精品欧美日韩精品| 一级毛片精品| 日韩三级视频一区二区三区| 成人欧美大片| 天堂动漫精品| 国产又黄又爽又无遮挡在线| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 五月伊人婷婷丁香| 欧美日韩亚洲国产一区二区在线观看| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 成人三级做爰电影| 国产一区在线观看成人免费| 校园春色视频在线观看| 无遮挡黄片免费观看| 亚洲人成伊人成综合网2020| av中文乱码字幕在线| 狂野欧美白嫩少妇大欣赏| 老汉色∧v一级毛片| 91国产中文字幕| 国产亚洲av高清不卡| 精品久久久久久久末码| 激情在线观看视频在线高清| 欧美黑人巨大hd| 国产精品乱码一区二三区的特点| 免费观看人在逋| 丁香六月欧美| 国产亚洲欧美在线一区二区| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 国产私拍福利视频在线观看| 观看免费一级毛片| 波多野结衣高清作品| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 国产高清videossex| 久久亚洲精品不卡| 亚洲欧洲精品一区二区精品久久久| 男人舔女人下体高潮全视频| 成人18禁在线播放| 精品乱码久久久久久99久播| 高潮久久久久久久久久久不卡| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 可以在线观看毛片的网站| 亚洲18禁久久av| 国产aⅴ精品一区二区三区波| 国产精品一及| 欧美久久黑人一区二区| 长腿黑丝高跟| 看黄色毛片网站| 露出奶头的视频| netflix在线观看网站| 亚洲人成77777在线视频| 欧美高清成人免费视频www| 亚洲人成77777在线视频| 91在线观看av| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频 | 久久久精品欧美日韩精品| 在线观看舔阴道视频| 国产一区二区三区在线臀色熟女| 少妇被粗大的猛进出69影院| 正在播放国产对白刺激| 国产高清视频在线观看网站| 国产99久久九九免费精品| 国产一区二区在线av高清观看| 国产av麻豆久久久久久久| 亚洲av日韩精品久久久久久密| 在线国产一区二区在线| 搡老妇女老女人老熟妇| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 麻豆成人av在线观看| 嫁个100分男人电影在线观看| 精品一区二区三区视频在线观看免费| 在线观看免费午夜福利视频| 男女午夜视频在线观看| 亚洲av电影不卡..在线观看| 国产精品一及| 日日爽夜夜爽网站| 久久中文字幕一级| 成年版毛片免费区| 又大又爽又粗| 一进一出抽搐gif免费好疼| 亚洲人成电影免费在线| 亚洲精品在线观看二区| 91麻豆av在线| 日韩精品免费视频一区二区三区| 91大片在线观看| 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 又黄又粗又硬又大视频| 亚洲五月天丁香| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 999久久久国产精品视频| 狂野欧美白嫩少妇大欣赏| 嫩草影视91久久| 欧美黄色淫秽网站| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| 99热只有精品国产| 中文字幕av在线有码专区| 在线观看美女被高潮喷水网站 | 国内毛片毛片毛片毛片毛片| 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 亚洲avbb在线观看| 黄片小视频在线播放| 一进一出好大好爽视频| 99热这里只有是精品50| 一个人免费在线观看的高清视频| 香蕉久久夜色| 色播亚洲综合网| 全区人妻精品视频| 18禁黄网站禁片午夜丰满| 亚洲成人精品中文字幕电影| 亚洲男人的天堂狠狠| 久久中文看片网| 亚洲精品av麻豆狂野| 露出奶头的视频| 亚洲最大成人中文| 18禁裸乳无遮挡免费网站照片| 每晚都被弄得嗷嗷叫到高潮| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品999在线| 精品久久久久久成人av| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 亚洲欧美一区二区三区黑人| 国语自产精品视频在线第100页| 久久性视频一级片| 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| 日本 av在线| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 手机成人av网站| 青草久久国产| 国产精品久久久久久亚洲av鲁大| 色综合欧美亚洲国产小说| 宅男免费午夜| 国产成人精品久久二区二区免费| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 成年人黄色毛片网站| 波多野结衣高清无吗| 欧美极品一区二区三区四区| 国产精品免费一区二区三区在线| 99国产精品99久久久久| 69av精品久久久久久| 亚洲成人免费电影在线观看| 三级毛片av免费| 亚洲国产精品999在线| 级片在线观看| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品久久国产高清桃花| 日韩免费av在线播放| 国产v大片淫在线免费观看| 精品国产美女av久久久久小说| 窝窝影院91人妻| 亚洲七黄色美女视频| 国产精品久久久久久久电影 | 欧美色视频一区免费| 久久人人精品亚洲av| 国产高清videossex| 亚洲中文av在线| 亚洲最大成人中文| 国产av又大| 亚洲自拍偷在线| 中文在线观看免费www的网站 | 午夜激情av网站| tocl精华| 18禁黄网站禁片免费观看直播| 国产片内射在线| 欧美日韩中文字幕国产精品一区二区三区| 色老头精品视频在线观看| 欧美乱妇无乱码| 人妻夜夜爽99麻豆av| 真人一进一出gif抽搐免费| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区精品| 一区二区三区高清视频在线| 精品无人区乱码1区二区| 国产主播在线观看一区二区| 99精品在免费线老司机午夜| а√天堂www在线а√下载| 国产午夜福利久久久久久| 最新在线观看一区二区三区| 他把我摸到了高潮在线观看| 色综合婷婷激情| 色精品久久人妻99蜜桃| 国产三级中文精品| 高清在线国产一区| 亚洲av电影在线进入| 变态另类成人亚洲欧美熟女| 国产成人av教育| 婷婷六月久久综合丁香| 看黄色毛片网站| 国产精品久久视频播放| 婷婷精品国产亚洲av在线| 亚洲欧洲精品一区二区精品久久久| 午夜福利免费观看在线| 精品不卡国产一区二区三区| 亚洲欧美激情综合另类| 国产91精品成人一区二区三区| 亚洲成av人片在线播放无| 这个男人来自地球电影免费观看| 午夜福利在线在线| 国产又黄又爽又无遮挡在线| 欧美性猛交╳xxx乱大交人| 国产精品亚洲一级av第二区| 久久久久性生活片| 亚洲,欧美精品.| 无限看片的www在线观看| 桃红色精品国产亚洲av| 日韩成人在线观看一区二区三区| 99热这里只有是精品50| 国产高清有码在线观看视频 | 亚洲av电影在线进入| 国产午夜精品论理片| 亚洲av熟女| 欧美成人午夜精品| 亚洲人成电影免费在线| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 男女下面进入的视频免费午夜| 国产激情久久老熟女| 黄色女人牲交| 日本一本二区三区精品| 十八禁网站免费在线| 成人欧美大片| 天天添夜夜摸| 天天一区二区日本电影三级| 欧美黑人巨大hd| 亚洲成人免费电影在线观看| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 首页视频小说图片口味搜索| 男人舔女人下体高潮全视频| 91大片在线观看| 床上黄色一级片| 91九色精品人成在线观看| 69av精品久久久久久| 亚洲熟女毛片儿| 亚洲人成电影免费在线| 国产野战对白在线观看| www.精华液| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 日本a在线网址| 小说图片视频综合网站| 99在线视频只有这里精品首页| 国产av在哪里看| 亚洲国产精品久久男人天堂| 亚洲熟妇中文字幕五十中出| 亚洲中文日韩欧美视频| av视频在线观看入口| 中文亚洲av片在线观看爽| 欧美人与性动交α欧美精品济南到| 久久久久亚洲av毛片大全| 又爽又黄无遮挡网站| 国产私拍福利视频在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三| 老司机深夜福利视频在线观看| 欧美日韩福利视频一区二区| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品,欧美在线| 成人高潮视频无遮挡免费网站| 黄色片一级片一级黄色片| 美女黄网站色视频| 亚洲一区中文字幕在线| 亚洲欧美激情综合另类| 亚洲熟妇中文字幕五十中出| av免费在线观看网站| 美女 人体艺术 gogo| 国产一区在线观看成人免费| 国产精品一区二区免费欧美| 国内毛片毛片毛片毛片毛片| 国产高清视频在线播放一区| 中文字幕最新亚洲高清| 亚洲av熟女| av中文乱码字幕在线| 啦啦啦韩国在线观看视频| 麻豆av在线久日|