• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Displacement reconstruction and strain refinement of clustering-based homogenization

    2021-03-01 11:17:00LeiZhangShaoqiangTang

    Lei Zhang, Shaoqiang Tang

    HEDPS and LTCS, College of Engineering, Peking University, Beijing 100871, China

    Keywords: Homogenization Self-consistent clustering analysis Lippmann-Schwinger equation Green’s function

    ABSTRACT Recently proposed clustering-based methods provide an efficient way for homogenizing heterogeneous materials, yet without concerning the detailed distribution of the mechanical responses.With coarse fields of the clustering-based methods as an initial guess, we develop an iteration strategy to fastly and accurately resolve the displacement, strain and stress based on the Lippmann-Schwinger equation, thereby benefiting the local mechanical analysis such as the detection of the stress concentration.From a simple elastic case, we explore the convergence of the method and give an instruction for the selection of the reference material.Numerical tests show the efficiency and fast convergence of the reconstruction method in both elastic and hyper-elastic materials.?2021 The Author(s).Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.

    Macroscopic materials are composed of microscopic fine struc- tures, which are often heterogeneous.To predict quickly and faith- fully the macroscopic behavior based on microscopic structures, re- duced order models, such as the transformation field analysis (TFA) [1] , the nonuniform transformation field analysis (NTFA) [ 2 , 3 ] and proper orthogonal decomposition (POD) [4] have been proposed.

    More recently, data-driven clustering-based homogenization methods, such as self-consistent clustering analysis (SCA) [5-10] , virtual clustering analysis (VCA) [11-13] and finite element method (FEM) clustering analysis (FCA) [14] , were developed to further im- prove the efficiency.These methods decompose the microscopic computational domain into several sub-regions called as clusters by machine learning techniques according to the strain similar- ity in pre-computed high-fidelity results.Assuming uniform strain and stress in each cluster during a loading/unloading process, clustering-based homogenization is able to provide the macro- scopic/average properties efficiently, by ignoring the detailed dis- tribution of the responses.While demonstrated effective in many applications including fractue, it may fail.

    On the other hand, when detailed distributions are demanded, one may adopt finite element or meshfree methods.Unfortunately for heterogeneous materials, they usually induce immense compu- tational cost.To reduce the cost, for periodic cells, some numeri- cal methods [15-17] make use of the fast Fourier transform (FFT) to achieve higher efficiency both in terms of speed and memory.In general, these methods take zero or uniform fields for initial- ization.As a matter of fact, clustering-based methods provide a roughly correct distribution of the mechanical responses in form of piece-wise constant fields, hence serve as a good initial guess for faster convergence in iterations.When dealing with history- dependent cases, classical numerical methods might have to sim- ulate the whole loading process in an incremental way.Mean- while, clustering-based methods might also provide rough infor- mation such as state variables in the elasto-plastic materials.For the sake of efficiency, we only need homogenization rather than local detailed features in most case.The clustering-based results might help to determine the location and loading for refinement.

    In this paper, we propose an iteration strategy based on the Lippmann-Schwinger equation with coarse fields of the clustering- based homogenization as the initial guess.This scheme accu- rately resolves the displacement, strain and stress, and recovers the lost distribution details of reduced-order model.We take periodic boundary conditions for illustration and use SCA results as the ba- sis.Based on the periodic Lippmann-Schwinger equation, we re- solve the strain and stress fields with iteration scheme first.Then we reconstruct the displacement field using the Green’s method.Furthermore, we explore the relationship between the convergence and the selection of the reference material.Numerical examples show that the iteration scheme converges fast when the appropri- ate reference material is chosen.

    In the following, we first present a general framework for the iteration scheme, and then introduce the problem setup and the Lippmann-Schwinger equation.We briefly review the SCA method.The reconstruction of strain and displacement fields is proposed later.We then study the convergence and give an instruction for the selection of the reference material.Numerical examples verify the efficiency of the method.Some remarks are drawn finally.

    Mathematical framework

    Considerageneralproblemdescribedby

    whereuis the unknown function of independent variablesx.Lis a linear operator andNis a nonlinear operator.Usually by some transformation such as the Gauss/Stokes theorem, we might find an adjoint operatorL*satisfying

    where*denotes convolutionv*w()d,Bis a linear operator and?Ωis a boundary integral on?Ω.We then obtain the Green functionφby

    Substitutev=u,w=φinto Eq.(2) , we obtain the following in- tegral equation,

    This actually gives the Green’s method.Considering the unique- ness of the solution to Eq.(1) , Eq.(4) provides a way to solve the problem by iterations, i.e.,

    If it converges, the limit gives the fixed point, i.e., the solution to Eq.(1) .

    Methodology and the Lippmann-Schwinger equation

    Consider the material in a representative volume element (RVE)Ω.The local problem inΩis governed by equilibrium equation, strain-displacement equation and constitutive equation

    whereσ=σ(ε;x)is a function of the strainεand the positionx.For the sake of clarity, denote the operator.In most applications, RVE consists of a limited number of phases and there are different local constitutive relations in each phase.

    In order to close the problem, we choose periodic boundary conditions as follows.The whole strain fieldε(x)is split into its averageEand a fluctuation field(x)

    Correspondingly, the displacement fieldu(x)consists of two terms

    where(x)is the fluctuation term corresponding to(x).Periodic boundary conditions refer to periodic(x)and hence, and anti- periodic tractionn·σ.

    This problem with periodic boundary conditions can be solved by FEM [14] .In this paper, we use clustering-based methods, illus- trated with SCA, to solve it efficiently, while the result is merely a rough piece-wise constant strain field.Based on this, we propose a method to refine the strain field and reconstruct the displacement field.

    We rewrite Eq.(6) as

    Here,C0denotes the stiffness of a reference homogeneous linear elastic material andτ=σ?C0:εis called as the polarization ten- sor.Here, corresponding to Eq.(1) , let

    By virtue of the Green’s function, the solution of Eq.(11) can be expressed by applying periodic Green functionφ(i)(x?), namely, the solution to the problem with a concentrated force alongxidi- rection at the point, associated withC0as

    with

    It is noticed that this equation satisfies the compatibility condi- tions directly.The explicit form in Fourier space is

    forΦ, and

    forΨ, whereξis the coordinate in Fourier space corresponding toxin real space,λ0andμ0are the Lamécoefficients of the refer- ence stiffnessC0.The formulation works for both 2D and 3D prob- lems.The convolution in both Eqs.(13) and (15) can be translated into a direct multiplication in Fourier space:

    which can be realized by applying FFT algorithm.

    Review of self-consistent clustering analysis

    SCA [5] is a two-stage reduced order modeling approach con- sisting of an offline data compression stage and an online predic- tion stage.In the offline stage, the original high-fidelity RVE rep- resented by voxels or elements is compressed into clusters.In the online stage, macroscopic loading is applied to the reduced order (clustered) RVE, i.e., average strainEis given.SCA works for peri- odic problems described previously.

    The key idea is to decompose the computational domain intoknon-overlapped sub-regions, so-called clusters, denoted byΩI,I= 1,2,···,kand assume uniform strain and stress in each cluster, i.e.,

    distinguished mathematically by the characteristic functionχ

    These clusters are obtained by machine learning technique ac- cording to material responses under limited loading cases dur- ing the offline stage.This allows one to discretize the Lippmann- Schwinger equation into

    Finally, we solve the above algebraic system Eq.(23) and derive the macroscopic constitutive relation between a macroscopic stress and strain.

    The flowchart is summarized as below:

    Offline:

    (a) Under the selected loadings, compute the mechanical re- sponses with high-fidelity numerical simulations and restore data information in tensorA.

    (b) DecomposeΩintokclusters (Ω1,Ω2,···,Ωk) by a cluster- ing algorithm according toA.

    (c) ComputeDIJ.

    Online:

    (a) At the current loading step, solve the Lippmann-Schwinger equation (23) and obtain the strainεI(I= 1,2,···,k)in each clus- ter.

    (b) Compute macroscopic/average strain and stress.

    Reconstruction method

    Clustering-based methods such as SCA solve the homogeniza- tion problems efficiently, but they only give a rough piece-wise constant strain field, and do not offer local information correctly.We propose a reconstruction method to refine the results based on the continuous Lippmann-Schwinger equation.Based on the re- fined strain field, we can also construct the displacement field ef- ficiently according to Eq.(13) .

    Refinement of the strain field

    We consider the elastic and inelastic cases, with a microscopic constitutive relation

    Take the rough results of SCA as the initial guess and give a recursive scheme according to Eq.(15) :

    wherendenotes the iteration step andΦis the kernel function associated with the reference modulusC0used in the refinement.

    The convolution is calculated in the Fourier space readily, so the algorithm is implemented with FFT algorithm.In general, the it- erations converge very fast when selecting appropriate reference material.In the following numerical examples, the refined results reach a good accuracy in about 3 iteration steps.Remark that the kernelΦhas been computed in the offline stage of SCA, so we do not need to compute it again, which improves the efficiency.

    We shall discuss the relationship between the convergence and the reference modulusC0in a while.Note that if the scheme is convergent, the final result converges to the analytical solution of the Lippmann-Schwinger equation, i.e., the real solution of the system.The refined resultsεrefine(x)are continuous, give specific strain response and satisfy the compatibility conditions.

    Reconstruction of the displacement field

    The above results are all about the strain field, while the tra- ditional methods (e.g., FEM) give the displacement field directly.The displacement field plays a key role in the mechanical analy- sis, especially when we consider the current configuration.The dis- placement field is not easy to be derived from the strain field ac- cording to the strain-displacement Eq.(7) .According to the Green’s method Eq.(13) , we are able to reconstruct the displacement field from the strain results, i.e.,

    where the average of fluctuation partis determined by the cen- troid drift or the displacements of given points.To ensure the ac- curacy, we usually reconstruct the displacement field from the re- fined strainεrefine and stressσrefine.The convolution can also be computed in the Fourier space, so Eq.(28) becomes

    The reconstructed displacement field is obviously continuous.Note that if the strain and stress are exact, the displacement is also exact.

    Convergence analysis

    Now, we study the convergence of iteration scheme for strain refinement.SCA provides a selection of the reference material moduli, i.e., the homogeneous material moduli.Due to different solution schemes, this selection can not always ensure the con- vergence of the iteration scheme, so we might use another refer- ence material in the refinement.If the material is homogeneous, the algorithm is a linear problem.We study this simple case to give some instructions for the selection of the reference modulusC0,refineintherefinement.

    Let the stiffness of the material be constantC, and that of the reference material beC0.It is remarked that we do not need the inverse Fourier transform in the iteration process, so the iteration scheme reduces to

    The initial value is considered as a non-zero fluctuation field.If we denote, we can rewrite Eq.(30) as

    with

    Due to ?Φ(0)= 0 , the last term on the right side vanishes.Note that the convergence of this iteration scheme depends on eigenval- ues ofA(ξ)at each wave numberξ.

    We focus on a simple case in 2D, i.e.,ξ= [ξ1,0]T.We have the iteration scheme in the matrix form:

    The eigenvalues ofA(ξ)isWhen

    whereλ(x)andμ(x)are the material properties at each material point.

    In summary, based on this, we suggest to take a harder stiffnessC0, such as the hardest phase as the reference material.

    Numerical tests

    Twodimensionalelasticmaterials

    We apply our method to 2D plane strain problem to illustrate the efficiency of the reconstruction.

    In Fig.1 , the color blue represents the matrix and the color yellow represents the inclusion.The volume fraction of the inclu- sion is 20%.The Young’s moduli and Poisson’s ratios of the matrix (phase 1) and inclusion (phase 2) are:

    The mesh size for the high-fidelity RVE model is 600 ×600 .Here, the reference result (DNS) is obtained with the FFT-based method with the basic scheme [ 10 , 15 ].The results under the uni- axial tension loadingε11 = 0.001 are used as data-base of cluster- ing.In an offline stage, the mesh is compressed intok1= 8 clusters in the matrix andk2clusters in the inclusion by SOM.As the vol- ume fraction of the inclusion phase is 20%, we takek2 =k1/4 in the clustering process.

    Under the uniaxial tension loadingε11 = 0.001 , the problem is a linear elastic one.The strain field obtained by SCA is plotted in Fig.2 b.The reference results are shown in Fig.2 a for comparison.It is noticed that the SCA result describes the strain field roughly and misses some features.Let us focus on the part in the solid line-box in the figures.In Fig.2 a, there exists a high strain region (in yellow) in the matrix.Figure 2 b undermines such significant structure in the SCA strain field.

    In the refinement, the reference material takes Young’s modulus 4 ×105MPa and the Poisson’s ratioν0.2 (λ= 1.11 ×105MPa,μ= 1.67 ×105MPa), i.e., the inclusion phase.Figure 3 presents recon- struction results at different iteration steps.After merely one it- eration step, the high strain region appears.After three iteration steps, the strain field is captured very well, as compared with the FFT result.

    We take the sectiony= 300 and observe the distribution curves ofε11 of different methods alongx-direction as shown in Fig.4 .The curve of the SCA result is piece-wise constant due to the clustering-based reduced order model.It correctly captures the FFT result in the average, but can not reflect the extreme values cor- rectly.After one iteration step, the distribution in the matrix is al- ready consistent with the FFT result, yet not so in the inclusion.The refinement after three iteration steps fits well the FFT result, including the extreme values.

    In Table 1 , we list the strain energy

    Table 1 Strain energy and deviation from FFT under the loading ε 11 = 0 . 001 .

    and the deviations of the results from DNS

    of different methods.The results converge to the reference solu- tion very fast.After 3 iteration steps, the error is less than 3%.We remark that strain at some material points might be negative after only one iteration step, but the result is good enough after three iteration steps.

    In SCA, the homogeneous moduli are selected as the reference one, i.e.,λ0= 5.78 ×104MPa,μ0= 3.4 ×104MPa .This set of ref- erence material properties do not satisfy the condition Eq.(35) and the iteration scheme can not converge.

    Hyper-elastic materials

    The iteration scheme can be extended to the finite strain prob- lem.We consider a simple hyper-elastic model, i.e., a linear re- lation between the second Piola-KirchhoffstressSand the Green strainG

    with

    Cis the standard fourth-order isotropic stiffness tensor.Fis the deformation gradient.

    We use the same geometry as shown in Fig.1 , and the same material properties as shown in Eq.(36) .Here, the reference result (DNS) is obtained with the FFT-based method [16] .We stretch the material alongx1 -direction to 20% deformation, well beyond the limit of the small strain problem.

    We still select the inclusion phase as the reference material.The strain distributions of different methods along the sectiony= 300 are plotted in Fig.5 .The deviations from FFT are listed in Table 2 .After three iteration steps, the refinement is able to capture the strain field with less than a 3% difference from the FFT result.This verifies the efficiency of the reconstruction method.

    Table 2 The deviation from FFT under the loading F 11 = 1 . 2

    To summarize, in this paper, we propose a reconstruction method to accurately resolve the displacement, strain and stress, and recover the lost detailed features of reduced-order model.We first propose an iteration scheme based on the Lippmann- Schwinger equation with the coarse strain field of clustering- based homogenization and achieve high resolution, and further construct an accurate displacement field using Green’s method.Then we start from a simple elastic case to explore the con- vergence and the selection of the reference material.In the numerical tests, we refine the SCA results by the reconstruc- tion method, which shows the fast convergence and accuracy of the method.The set of construction iterations can be extended to other clustering-based homogenization with different kernel functions.

    We are now working on the elasto-plastic cases to expand its applications.We consider to start simulations from the clustering- based strain fields based on the rough state variables provided by clustering-based methods.Compared to the traditional way to sim- ulate the whole loading process in an incremental way from zero fields, the reconstruction based on these rough information has the potential to achieve high efficiency.

    Declaration of interests

    The authors declare that they have no known competing finan- cial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Declaration of Competing Interest

    The authors declare no conflict of interest.

    Acknowledgements

    Lei Zhang and Shaoqiang Tang were supported partially by the National Natural Science Foundation of China under grant numbers 11832001, 11521202, 11890681 and 11988102.

    Appendix: Finite strain formulation

    The finite strain problem is governed by the following equations in the undeformed configuration:

    wherePis the first Piola-Kirchhoffstress,Fis the deformation gra- dient at each material pointX.We consider the periodic boundary condition.

    For deriving the Lippmann-Schwinger equation, the reference homogeneous reference material is described by a constitutive re- lation:

    C0isthestandardfourth-orderisotropicelasticstiffnesstensor.

    Similar to Eq.(15) , the finite strain system can also be reformu- lated by the Lippmann-Schwinger equation

    Φis the fourth-order tensor defined by

    in the Fourier space.

    After clustering the material points based on DNS results, we can also obtain the discrete Lippmann-Schwinger equation

    午夜精品国产一区二区电影| 久久精品aⅴ一区二区三区四区| 国产免费福利视频在线观看| 天天影视国产精品| 丰满饥渴人妻一区二区三| 亚洲精品成人av观看孕妇| 曰老女人黄片| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 丝袜脚勾引网站| 久久久久网色| 丰满饥渴人妻一区二区三| 性色av一级| 日韩一区二区三区影片| 亚洲欧美中文字幕日韩二区| 又大又黄又爽视频免费| 亚洲国产最新在线播放| 一区二区av电影网| 亚洲精品,欧美精品| 91aial.com中文字幕在线观看| 大香蕉久久成人网| 交换朋友夫妻互换小说| 街头女战士在线观看网站| 日本猛色少妇xxxxx猛交久久| 咕卡用的链子| 男女午夜视频在线观看| 国产免费福利视频在线观看| 亚洲国产中文字幕在线视频| 狂野欧美激情性bbbbbb| 宅男免费午夜| 国产精品一国产av| 又粗又硬又长又爽又黄的视频| 中国国产av一级| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 亚洲成人免费av在线播放| 久久天堂一区二区三区四区| 欧美xxⅹ黑人| 免费高清在线观看视频在线观看| 欧美久久黑人一区二区| 亚洲精品国产区一区二| 亚洲精品美女久久av网站| 国产精品无大码| 男女边吃奶边做爰视频| 女人精品久久久久毛片| 国产xxxxx性猛交| 一级a爱视频在线免费观看| 一级黄片播放器| 日韩视频在线欧美| 色94色欧美一区二区| 交换朋友夫妻互换小说| 99热国产这里只有精品6| 欧美少妇被猛烈插入视频| 啦啦啦在线免费观看视频4| 人妻人人澡人人爽人人| 午夜91福利影院| 啦啦啦啦在线视频资源| 在线观看一区二区三区激情| 人妻一区二区av| 美女脱内裤让男人舔精品视频| 超色免费av| 日日撸夜夜添| 国产精品女同一区二区软件| 午夜91福利影院| 日本av手机在线免费观看| 欧美日韩国产mv在线观看视频| 老司机影院成人| 国产精品久久久久久久久免| 一个人免费看片子| 午夜福利一区二区在线看| www.av在线官网国产| 伊人亚洲综合成人网| 又大又黄又爽视频免费| 欧美另类一区| 丝袜美足系列| 热re99久久精品国产66热6| 成年av动漫网址| 伊人久久大香线蕉亚洲五| 男人添女人高潮全过程视频| 精品少妇黑人巨大在线播放| 制服丝袜香蕉在线| 又大又黄又爽视频免费| 天美传媒精品一区二区| 侵犯人妻中文字幕一二三四区| 男人舔女人的私密视频| 日韩精品免费视频一区二区三区| 亚洲,欧美精品.| 叶爱在线成人免费视频播放| av在线观看视频网站免费| 人人妻人人澡人人看| 最近最新中文字幕免费大全7| 亚洲精品乱久久久久久| 久久99一区二区三区| 国产免费又黄又爽又色| 考比视频在线观看| 欧美激情极品国产一区二区三区| 好男人视频免费观看在线| 国产成人啪精品午夜网站| 桃花免费在线播放| av在线观看视频网站免费| 欧美日韩福利视频一区二区| 久久这里只有精品19| 免费久久久久久久精品成人欧美视频| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| 一边摸一边抽搐一进一出视频| 日韩 欧美 亚洲 中文字幕| 人成视频在线观看免费观看| 激情五月婷婷亚洲| 黄色 视频免费看| 九草在线视频观看| 亚洲精品乱久久久久久| 日韩中文字幕欧美一区二区 | 黑人巨大精品欧美一区二区蜜桃| 成人亚洲欧美一区二区av| 亚洲免费av在线视频| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 电影成人av| www.熟女人妻精品国产| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 国产精品久久久人人做人人爽| 亚洲精品视频女| 9色porny在线观看| 亚洲精品一区蜜桃| 制服丝袜香蕉在线| 在线观看国产h片| 亚洲成人一二三区av| 捣出白浆h1v1| 久久久久国产一级毛片高清牌| 男人爽女人下面视频在线观看| 欧美黑人精品巨大| 欧美日韩视频精品一区| 无限看片的www在线观看| 欧美97在线视频| 日韩av在线免费看完整版不卡| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 亚洲成色77777| 少妇的丰满在线观看| a级毛片黄视频| 免费看不卡的av| 国产 一区精品| 卡戴珊不雅视频在线播放| av在线app专区| 亚洲国产精品一区二区三区在线| 免费不卡黄色视频| 9191精品国产免费久久| 一区二区日韩欧美中文字幕| 日韩伦理黄色片| 亚洲色图综合在线观看| 欧美日韩精品网址| videos熟女内射| 亚洲欧美中文字幕日韩二区| av福利片在线| 亚洲一级一片aⅴ在线观看| 亚洲美女视频黄频| 激情五月婷婷亚洲| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 美女视频免费永久观看网站| 亚洲欧美色中文字幕在线| 亚洲在久久综合| 国产精品久久久久久人妻精品电影 | 波野结衣二区三区在线| 国产精品二区激情视频| 一级毛片黄色毛片免费观看视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产区一区二| 国产在线一区二区三区精| 国产一区有黄有色的免费视频| 搡老乐熟女国产| 久久性视频一级片| 日本vs欧美在线观看视频| 一级片'在线观看视频| 黄色怎么调成土黄色| 老司机影院成人| 99久久人妻综合| 高清视频免费观看一区二区| 久久精品国产亚洲av高清一级| 欧美另类一区| 丁香六月天网| 欧美人与性动交α欧美精品济南到| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 久久精品人人爽人人爽视色| av又黄又爽大尺度在线免费看| 色婷婷久久久亚洲欧美| 人人妻人人爽人人添夜夜欢视频| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 亚洲国产精品999| 哪个播放器可以免费观看大片| 咕卡用的链子| 男女床上黄色一级片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 激情视频va一区二区三区| videosex国产| 欧美久久黑人一区二区| 一个人免费看片子| 操出白浆在线播放| 国产日韩欧美视频二区| 国产免费现黄频在线看| 久久午夜综合久久蜜桃| 欧美97在线视频| 一区在线观看完整版| netflix在线观看网站| 丝袜脚勾引网站| xxxhd国产人妻xxx| 日本一区二区免费在线视频| 男的添女的下面高潮视频| 一区二区av电影网| 午夜福利视频精品| 青春草视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 免费不卡黄色视频| 下体分泌物呈黄色| 人妻 亚洲 视频| 丝袜人妻中文字幕| 两个人看的免费小视频| 999久久久国产精品视频| 欧美激情极品国产一区二区三区| 午夜福利网站1000一区二区三区| 成年女人毛片免费观看观看9 | 青草久久国产| 亚洲,一卡二卡三卡| 丝瓜视频免费看黄片| 欧美激情高清一区二区三区 | 久久精品国产a三级三级三级| 夫妻性生交免费视频一级片| 国产麻豆69| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 少妇人妻精品综合一区二区| 欧美人与善性xxx| 欧美日韩福利视频一区二区| 热re99久久国产66热| 伊人久久国产一区二区| 亚洲成色77777| 国产精品亚洲av一区麻豆 | 色精品久久人妻99蜜桃| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 欧美日韩一级在线毛片| 亚洲一区中文字幕在线| 欧美日本中文国产一区发布| 成人国语在线视频| 韩国av在线不卡| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡| av线在线观看网站| 精品福利永久在线观看| 久久久久久久久免费视频了| 午夜福利视频在线观看免费| 超色免费av| 99精品久久久久人妻精品| www.熟女人妻精品国产| 欧美成人精品欧美一级黄| 中文字幕另类日韩欧美亚洲嫩草| av又黄又爽大尺度在线免费看| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| 狠狠婷婷综合久久久久久88av| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 精品一区在线观看国产| 18禁观看日本| 久久人妻熟女aⅴ| 天堂8中文在线网| 十八禁高潮呻吟视频| 国产免费福利视频在线观看| 久久久久精品国产欧美久久久 | 亚洲一区二区三区欧美精品| 日韩成人av中文字幕在线观看| 亚洲精品一区蜜桃| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| 国产无遮挡羞羞视频在线观看| 久久久国产精品麻豆| 又粗又硬又长又爽又黄的视频| 久久久精品区二区三区| 欧美最新免费一区二区三区| 久久久国产一区二区| 亚洲欧美激情在线| 成人免费观看视频高清| 亚洲国产欧美在线一区| 韩国av在线不卡| 捣出白浆h1v1| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 国产探花极品一区二区| 看非洲黑人一级黄片| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| 90打野战视频偷拍视频| 又粗又硬又长又爽又黄的视频| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 精品久久久久久电影网| av女优亚洲男人天堂| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| 两个人看的免费小视频| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 看免费av毛片| 18禁观看日本| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网| 国产在线免费精品| 精品国产乱码久久久久久小说| av在线老鸭窝| 最新的欧美精品一区二区| 美国免费a级毛片| 久久亚洲国产成人精品v| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 久久女婷五月综合色啪小说| 亚洲欧洲日产国产| 18禁观看日本| 精品福利永久在线观看| 91精品国产国语对白视频| 日韩视频在线欧美| 久久这里只有精品19| 麻豆乱淫一区二区| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| tube8黄色片| 欧美日韩一级在线毛片| 日韩 亚洲 欧美在线| 国产熟女欧美一区二区| 午夜免费鲁丝| 一区福利在线观看| 亚洲av成人精品一二三区| 99热全是精品| 国产免费福利视频在线观看| 在线观看免费高清a一片| 两个人免费观看高清视频| 99热网站在线观看| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 久久综合国产亚洲精品| 国产乱人偷精品视频| 这个男人来自地球电影免费观看 | 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 不卡av一区二区三区| 亚洲,欧美精品.| 桃花免费在线播放| 丰满饥渴人妻一区二区三| 午夜福利免费观看在线| 一边亲一边摸免费视频| 好男人视频免费观看在线| 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 电影成人av| 91精品国产国语对白视频| 男女无遮挡免费网站观看| 国产精品无大码| 不卡av一区二区三区| 国产欧美亚洲国产| www.精华液| 人人妻,人人澡人人爽秒播 | 亚洲成人av在线免费| 久久久久人妻精品一区果冻| 午夜激情av网站| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 一级爰片在线观看| 中文欧美无线码| 狂野欧美激情性bbbbbb| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 国产精品熟女久久久久浪| 免费高清在线观看日韩| 我的亚洲天堂| 久久毛片免费看一区二区三区| 国产97色在线日韩免费| 日韩制服丝袜自拍偷拍| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 中文字幕色久视频| av在线app专区| av福利片在线| 一边摸一边做爽爽视频免费| 一本一本久久a久久精品综合妖精| www.精华液| 精品亚洲成a人片在线观看| 国产精品无大码| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 男女国产视频网站| 啦啦啦啦在线视频资源| 一区福利在线观看| 中文字幕人妻熟女乱码| 国产 精品1| 日本黄色日本黄色录像| 十分钟在线观看高清视频www| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 在线观看三级黄色| 亚洲av成人不卡在线观看播放网 | 如何舔出高潮| 一级片免费观看大全| 亚洲精品国产av成人精品| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 国产伦理片在线播放av一区| 国产精品三级大全| 精品亚洲成国产av| 日韩伦理黄色片| 黄色 视频免费看| 欧美精品一区二区免费开放| 亚洲精品第二区| 久久精品国产亚洲av高清一级| 国产在视频线精品| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 欧美另类一区| 国产精品久久久人人做人人爽| 少妇的丰满在线观看| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| 男人爽女人下面视频在线观看| 肉色欧美久久久久久久蜜桃| 久久久国产精品麻豆| 国产有黄有色有爽视频| 国产免费一区二区三区四区乱码| 19禁男女啪啪无遮挡网站| 欧美精品av麻豆av| 亚洲国产看品久久| 亚洲一级一片aⅴ在线观看| 日日啪夜夜爽| 一区二区av电影网| 欧美成人精品欧美一级黄| 观看av在线不卡| 国产精品一二三区在线看| 国产成人精品无人区| 色婷婷久久久亚洲欧美| 黄频高清免费视频| 久久精品国产综合久久久| 五月开心婷婷网| 丁香六月欧美| 看十八女毛片水多多多| 黄色毛片三级朝国网站| 黄色视频不卡| 看免费av毛片| 捣出白浆h1v1| 精品一区二区三区av网在线观看 | 欧美国产精品va在线观看不卡| 亚洲av电影在线进入| 高清不卡的av网站| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 午夜91福利影院| 女人久久www免费人成看片| av不卡在线播放| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 久久影院123| 80岁老熟妇乱子伦牲交| 精品久久久久久电影网| 一区二区三区激情视频| 国产女主播在线喷水免费视频网站| av网站在线播放免费| 最近手机中文字幕大全| 午夜福利,免费看| 成人国语在线视频| 国产深夜福利视频在线观看| 亚洲国产av新网站| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| av线在线观看网站| 亚洲欧美成人综合另类久久久| 九九爱精品视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产欧美一区二区综合| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 美国免费a级毛片| 欧美激情极品国产一区二区三区| xxxhd国产人妻xxx| 深夜精品福利| 欧美日韩视频高清一区二区三区二| 国产成人午夜福利电影在线观看| 高清av免费在线| 国产精品久久久av美女十八| av片东京热男人的天堂| 韩国精品一区二区三区| 日韩伦理黄色片| 三上悠亚av全集在线观看| 99香蕉大伊视频| 三上悠亚av全集在线观看| 最黄视频免费看| 女人被躁到高潮嗷嗷叫费观| 哪个播放器可以免费观看大片| 天天躁夜夜躁狠狠躁躁| 最黄视频免费看| 中文字幕制服av| 99热国产这里只有精品6| 日韩中文字幕欧美一区二区 | 最黄视频免费看| 性色av一级| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 国产片特级美女逼逼视频| 男女免费视频国产| www日本在线高清视频| 51午夜福利影视在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产精品 国内视频| 曰老女人黄片| 日韩人妻精品一区2区三区| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 侵犯人妻中文字幕一二三四区| 亚洲av中文av极速乱| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 亚洲精品国产区一区二| 亚洲av中文av极速乱| 欧美成人午夜精品| 美女大奶头黄色视频| 老司机亚洲免费影院| 成年美女黄网站色视频大全免费| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 美女脱内裤让男人舔精品视频| 美国免费a级毛片| 午夜日本视频在线| 新久久久久国产一级毛片| 国产人伦9x9x在线观看| 人体艺术视频欧美日本| 热re99久久精品国产66热6| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 免费日韩欧美在线观看| 成人黄色视频免费在线看| 免费少妇av软件| 一区二区三区四区激情视频| 久久久久久久久久久久大奶| av线在线观看网站| 在线观看国产h片| 欧美激情高清一区二区三区 | 精品国产乱码久久久久久小说| h视频一区二区三区| 在线观看免费高清a一片| 亚洲激情五月婷婷啪啪| 极品少妇高潮喷水抽搐| 天堂8中文在线网| 最近最新中文字幕大全免费视频 | 大香蕉久久网| 欧美精品亚洲一区二区| 国产成人91sexporn| 久久亚洲国产成人精品v| 我要看黄色一级片免费的| 亚洲色图 男人天堂 中文字幕| 在线观看一区二区三区激情| 亚洲,一卡二卡三卡| 日韩av不卡免费在线播放| 极品少妇高潮喷水抽搐| 精品一区二区三区av网在线观看 | 在线观看免费高清a一片| 亚洲av中文av极速乱| 午夜福利视频在线观看免费| 亚洲精品久久午夜乱码| 欧美在线一区亚洲| av线在线观看网站| 两个人看的免费小视频| 在线看a的网站| 自线自在国产av| 在线观看国产h片| 制服丝袜香蕉在线| 999久久久国产精品视频| 成人影院久久| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人精品欧美一级黄| 免费av中文字幕在线| 欧美日韩综合久久久久久| 亚洲成人一二三区av| 熟女少妇亚洲综合色aaa.| 免费高清在线观看日韩| 另类精品久久| 国产精品三级大全| 美女脱内裤让男人舔精品视频| 老汉色∧v一级毛片| 国产精品三级大全| 精品国产露脸久久av麻豆| 如何舔出高潮| 欧美精品av麻豆av|