• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Noether symmetry method for Birkhoffian systems in terms of generalized fractional operators

    2021-03-01 11:16:52ChuanJingSongShiLeiShen

    Chuan-Jing Song , Shi-Lei Shen

    School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, China

    Keywords: Generalized fractional operator Birkhoffian system Noether symmetry Perturbation to Noether symmetry

    ABSTRACT Compared with the Hamiltonian mechanics and the Lagrangian mechanics, the Birkhoffian mechanics is more general.The Birkhoffian mechanics is discussed on the basis of the generalized fractional operators, which are proposed recently.Therefore, differential equations of motion within generalized fractional op- erators are established.Then, in order to find the solutions to the differential equations, Noether sym- metry, conserved quantity, perturbation to Noether symmetry and adiabatic invariant are investigated.In the end, two applications are given to illustrate the methods and results.

    Compared with the integer order model, the fractional order model can more accurately describe the dynamic behavior of the complex systems.Under the long-term exploration, many fractional operators have been put forward.The most widely used fractional operators are the Riemann-Liouville fractional operator, the Caputo fractional operator, the Riesz-Riemann-Liouville fractional operator and the Riesz-Caputo fractional operator.In 2010, Agrawal [1] pro- posed a new fractional operator, called generalized fractional oper- ator, which can be reduced to the above four operators in special cases.

    Fractional calculus has practical applications in various fields [2–7] .In 1996, Riewe [8–9] first applied the fractional calculus to the study of the dynamics of the nonconservative mechanical systems, proposed and preliminarily studied the fractional varia- tional problems.This motivated several scholars to investigate frac- tional calculus of variations further, and those results include the fractional Lagrangian formulations and the fractional Hamiltonian formulations [10–17] .As one of the important research directions of the modern analytical mechanics, the Birkhoffian mechanics is more general than the Hamiltonian mechanics and the Lagrangian mechanics [18–19] .In recent years, scholars have also applied frac- tional calculus to the Birkhoffian system, and achieved a lot of re- search results [20–21] .Particularly, Zhang et al.[22] derived the generalized Birkhoffequation by using the generalized fractional operators proposed by Agrawal.

    Noether symmetry is one of the useful methods to find solu- tions to the differential equations of motion, i.e., Noether sym- metry and conserved quantity are useful to reveal the inherent physical properties of the dynamic systems [23–24] .For example, for the fractional Birkhoffian mechanics, there are several achieve- ments on Noether theorem [25–30] .However, based on the def- inition of the classical conserved quantity, the study of Noether symmetry and conserved quantity of the Birkhoffian system within generalized fractional operators have not been involved.Therefore, this paper intends to study Noether symmetry for the Birkhoffian system in terms of generalized fractional operators and derive the corresponding conserved quantities.

    When the system is disturbed by small disturbance, the sym- metry and conservation may change.The change of symmetry and its invariants are closely related to the integrability of the me- chanical system, so the research of this aspect is also of great sig- nificance.Some achievements have been made on the perturba- tion to Noether symmetry, and the corresponding adiabatic invari- ants have been obtained for fractional Birkhoffian systems [31–33] .Hence, the perturbation to Noether symmetry and adiabatic invari- ants of the Birkhoffian system within generalized fractional opera- tors are also studied here.

    Generalized fractional operatorsK,AandBare introduced by Agrawal [1] .Here we only list their definitions and properties briefly.

    The definition of the operatorsK,AandBare defined as

    whereais a parameter set,mandωare two real numbers,κα(t,τ)is a kernel which may depend on a parameterα,nis an integer.

    Remark 1 .Letκα(t,τ)=(t?τ)α?1/Γ(α), whenM=M1 =,M=M2 =andM=M3 =, the operatorAreduces to the left Riemann- Liouville fractional operator, the right Riemann-Liouville fractional operator and the Riesz-Riemann-Liouville fractional operator, respectively.Similarly, the operatorBreduces to the left Caputo fractional operator, the right Caputo fractional operator and the Riesz-Caputo fractional operator, respectively.The integration by parts formulae of operatorsK,AandBare

    whereM*=,n?1<α

    It is noted that in the following text we setn= 1 , i.e., 0<α<1 .

    Differential equation of motion within operator A

    Integration

    is called Pfaff action within operatorA, whereaA=,BA(t,aA)is called Birkhoffian,RAν(t,aA)is called Birkhofffunctions,ν= 1,2,···,2n.

    The isochronous variational principle

    with the commutative relationship [22]

    and the boundary condition

    is called Pfaff-Birkhoffprinciple within operatorA, whereδmeans the isochronous variation.

    From Eq.(8) , we have

    whereμ,ν= 1,2,···,2n, and

    Substituting Eq.(12) into Eq.(11) , we have

    It follows from the independence ofδaμAand the arbitrariness of the interval [t1,t2 ] that

    Equation (14) is called Birkhoffequation within operatorA.

    Differential equation of motion within operator B

    Integration

    is called Pfaff action within operatorB, whereaB=,BB(t,aB)is called Birkhoffian,RBν(t,aB)are called Birkhofffunctions,ν= 1,2,···,2n.

    The isochronous variational principle

    with the commutative relationship [22]

    and the boundary condition

    is called Pfaff-Birkhoffprinciple within operatorB.

    From Eqs.(6) , (16) , (17) , (18) , we have

    Therefore,

    Equation (20) is called Birkhoffequation within operatorB.

    Remark 2.In fact, Birkhoffequation within operatorAand Birkhoffequation within operatorBhave been studied in Ref.[22] .Birkhoffequation within operatorB(Eq.(20)) obtained here is con- sistent with that in Ref.[22] .However, Birkhoffequation within operatorA(Eq.(14)) obtained here is different from that in Ref.[22] , becauseRAμ·in Eq.(12) is not equal to zero.

    Remark 3.Letκα(t,τ)=(t?τ)α?1/Γ(α), from Eq.(14), Birkhoffequations within left Riemann-Liouville fractional opera- tor, right Riemann-Liouville fractional operator and Riesz-Riemann- Liouville fractional operator can be obtained by lettingM=M1,M=M2 andM=M3 , respectively.Similarly, from Eq.(20) , Birkhoff equations within left Caputo fractional operator, right Caputo frac- tional operator and Riesz-Caputo fractional operator can also be obtained.Furthermore, if letα→ 1 , then all of them reduce to the classical Birkhoffequation, which can be found in Ref.[24] .In ad- dition, Birkhoffequation obtained from Eq.(20) whenM=M3 is consistent with the result in Ref.[20] .

    Noether symmetry means the invariance of the Pfaffaction.And conserved quantity can be deduced from Noether symmetry.Be- fore we present conserved quantities of the systems (Eqs.(14) and (20)), we first give its definition.

    Definition 1.A quantityIis called a conserved quantity if and only if the condition dI/dt= 0 holds.

    We begin with the change of the Pfaffaction within operatorA.

    Noether symmetry within operator A

    Assuming the Pfaffaction within operatorA(Eq.(7)) is changed under the following infinitesimal transformations

    whose expansions are

    whereθAis an infinitesimal parameter,andare called in- finitesimal generators within operatorA.

    Then denoting the linear part ofasΔJAand neglecting the higher order ofθA, we have

    where

    It follows from Noether symmetry (ΔJA= 0) that

    Equation (25) is called Noether identity within operatorA.

    Equation (26) is called Noether-quasi identity within operatorA.

    Therefore, we have:

    Theorem 1For the Birkhoffian system within operatorA(E q.(14)) , if the infinitesimal generatorsandsatisfy the Noether identity (E q.(25)) , then there exists a conserved quan- tity

    Proof .From Eqs.(14) and (25) , we have dIA0/dt= 0 .

    Theorem 2For the Birkhoffian system with operatorA(Eq.(14)), if there exists a gauge functionsuch that the in- finitesimal generatorsandsatisfy the Noether-quasi iden- tity (Eq.(26)), then there exists a conserved quantity

    Proof .From Eqs.(14) and (26) , we have dIAG0/dt= 0 .

    Noether symmetry within operator B

    Assuming the Pfaffaction within operatorB(Eq.(15)) is changed under the following infinitesimal transformations

    whose expansions are

    whereθBis an infinitesimal parameter,andare called in- finitesimal generators.

    Then denoting the linear part ofasand neglecting the higher order ofθB, we have

    where

    It follows from Noether symmetry (ΔJB= 0) that

    Equation (33) is called Noether identity within operatorB.

    If letΔJB= ?is called gauge function, then from Eq.(31) , we get

    Eq.(34) is called Noether-quasi identity within operatorB.

    Therefore, we have

    Theorem 3For the Birkhoffian system within operatorB(Eq.(20)), if the infinitesimal generatorsandsatisfy the Noether identity (Eq.(33)), then there exists a conserved quan- tity

    Proof .From Eqs.(20) and (33) , we have dIB0/dt= 0 .

    Theorem 4For the Birkhoffian system with operatorB(Eq.(20)), if there exists a gauge functionsuch that the in- finitesimal generatorsandsatisfy the Noether-quasi iden- tity (Eq.(34)), then there exists a conserved quantity

    Proof .From Eqs.(20) and (34) , we have dIBG 0/dt= 0 .

    Remark 4.Letκα(t,τ)=(t?τ)α?1/Γ(α), from Eqs.(25) , (26) and (28) , Noether identities, Noether-quasi identities and con- served quantities within left Riemann-Liouville fractional opera- tor, right Riemann-Liouville fractional operator and Riesz-Riemann- Liouville fractional operator can be obtained by lettingM=M1 ,M=M2 andM=M3 , respectively.Similarly, from Eqs.(33) , (34) and (36) ,Noether identities,Noether-quasi identities and con- served quantities within left Caputo fractional operator, right Ca- puto fractional operator and Riesz-Caputo fractional operator can also be obtained.Furthermore, if letα→ 1 , then all of them reduce to the classical Noether identity, Noether-quasi identity and conserved quantity, which can be found in Ref.[24] .In ad- dition, Noether identity and conserved quantity obtained from Eqs.(33) and (36) whenM=M3 are consistent with the results in Ref.[26] .

    When the systems Eqs.(14) and ((20)) are disturbed by small forces, the conserved quantities may also change.Before we study the perturbation to Noether symmetry and adiabatic invariant, we first give the definition of the adiabatic invariant.

    Definition 2.A quantityIzis called an adiabatic invariant ifIzcontains a parameterε, whose highest power isz, and also satisfies that dIz/dtis in proportion toεz+1 .

    Supposing the Birkhoffian system with operatorA(Eq.(14)) is disturbed as

    the gauge functionGA, the infinitesimal generatorsξA0andξAμare disturbed as

    then we have:

    Theorem 5For the disturbed Birkhoffian system within opera- torA(Eq.(37)), if there exists a gauge functionGsAsuch that the infinitesimal generatorsandsatisfy

    Proof .From Eqs.(37) and (39) , we have=

    Similarly, for the disturbed Birkhoffian system within operatorB

    if the gauge functionGB, the infinitesimal generatorsξB0andξBμare disturbed as

    then we have

    Theorem 6For the disturbed Birkhoffian system with operatorB(Eq.(41)), if there exists a gauge functionGsBsuch that the in- finitesimal generatorsandsatisfy

    Proof .From Eqs.(41) and (43) , we have

    Remark 5.Letκα(t,τ)=(t?τ)α?1/Γ(α), from Theorem 5 and Theorem 6, adiabatic invariants within left Riemann-Liouville frac- tional operator, left Caputo fractional operator, right Riemann- Liouville fractional operator, right Caputo fractional operator, Riesz- Riemann-Liouville fractional operator and Riesz-Caputo fractional operator can be achieved by lettingM=M1 ,M=M2 andM=M3 , respectively.Furthermore, if letα→ 1 , then all of them reduce to the classical adiabatic invariant.

    Remark 6.In Theorem 5 and Theorem 6, if letz= 0 , then con- served quantities in Theorem 2 and Theorem 4 can be obtained, respectively.

    Remark 7.Because the Birkhoffian system is more general than the Hamiltonian system and the Lagrangian system, differential equations of motion, conserved quantities and adiabatic invariants for the Hamiltonian system and the Lagrangian system can be ob- tained through special transformations from Eq.(14) , Eq.(20) and Theorem 1 –Theorem 6.Particularly, differential equations of motion for the Lagrangian system obtained from Eq.(14) and Eq.(20) are consistent with the results in Ref.[1] .

    Finally, we give two applications to illustrate the results and methods.

    The differential equations of motion, Noether symmetry and conserved quantities, perturbation to Noether symmetry and adi- abatic invariants are investigated in terms of operator A and op- erator B, respectively.The Lotka biochemical oscillator model and the Hénon–Heiles model are presented below.Without loss of gen- erality, we study the former model using operator A and study the latter one using operator B.

    Application 1 The Birkhoffian and Birkhofffunctions of the Lotka biochemical oscillator model have the forms

    whereα1,α2,β1andβ2are constants.Try to find its conserved quantity and adiabatic invariant within operatorA.

    Equation (14) gives the differential equation of motion within operatorAfor this model as

    satisfy the Noether-quasi identity (Eq.(26)).Therefore, using The- orem 2, we get

    Specially, letκα(t,τ)=M=M1 (orM=M2 orM=M3), andα→ 1 , we have

    If the system is disturbed by ?εAWA1(t,aA)=and ?εAWA2(t,aA)=then we can verify that

    is a solution to Eq.(39) .Therefore, using Theorem 5, we get

    Furthermore, we can get higher order adiabatic invariant.

    Application 2The Birkhoffian and Birkhoffequations of the Hénon–Heiles model are

    Try to find its conserved quantity and adiabatic invariant within operatorB.

    Firstly, from Eq.(20) , Birkhoffequation within operatorBcan be obtained as

    is a solution to the Noether-quasi identity (Eq.(34)).Therefore, from Theorem 4, we get

    Specially, letκα(t,τ)=M=M1 (orM=M2 orM=M3) andα→ 1 , we have

    If the system is disturbed by ?εBWB1(t,aB)= 0 , ?εBWB2(t,aB)= 0 , ?εBWB3(t,aB)=?εBWB4(t,aB)=then we can verify that

    satisfy Eq.(43) .Therefore, from Theorem 6, we have

    Furthermore, we can get higher order adiabatic invariant.

    Based on generalized fractional operators, Birkhoffequations, conserved quantities and adiabatic invariants are obtained.The Birkhoffequation within operatorA(Eq.(14)), the Birkhoffequa- tion within operatorB(Eq.(20)), the Noether theorems within op- eratorA(Theorem 1 –Theorem 2), the Noether theorems within operatorB(Theorem 3 –Theorem 4), the perturbation to Noether symmetry and adiabatic invariants within generalized fractional operators (Theorem 5 –Theorem 6), all of them are new work.

    There are some other methods to find solutions to differential equations of motion except for Noether symmetry method, such as Lie symmetry method and Mei symmetry method.Besides, making use of MATLAB to simulate the applications to illustrate the results is also significant.Therefore, the discussions of different methods and the appliance of the MATLAB are likely to be the next work.

    Declaration of Competing Interest

    The authors declare that they have no known competing finan- cial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foun- dation of China (Grants 11802193 and 11972241), the Natural Sci- ence Foundation of Jiangsu Province (Grant BK20191454) and the Young Scientific and Technological Talents Promotion Project of Suzhou Association for Science and Technology.

    bbb黄色大片| 亚洲性夜色夜夜综合| 一区福利在线观看| 中文字幕人成人乱码亚洲影| 亚洲 国产 在线| 亚洲成人久久性| 神马国产精品三级电影在线观看| 草草在线视频免费看| 丰满人妻一区二区三区视频av| 天堂√8在线中文| 午夜福利免费观看在线| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站| 久久久久九九精品影院| 人妻久久中文字幕网| 9191精品国产免费久久| 亚洲av二区三区四区| 全区人妻精品视频| 2021天堂中文幕一二区在线观| 3wmmmm亚洲av在线观看| 村上凉子中文字幕在线| 久久这里只有精品中国| 丁香欧美五月| 97超视频在线观看视频| 丰满乱子伦码专区| av在线天堂中文字幕| 日本一二三区视频观看| 午夜福利成人在线免费观看| 在线观看舔阴道视频| 我的老师免费观看完整版| 91字幕亚洲| 亚洲乱码一区二区免费版| 我的女老师完整版在线观看| 色噜噜av男人的天堂激情| 亚洲熟妇熟女久久| 99在线人妻在线中文字幕| 精品午夜福利在线看| 国产精品一及| 深夜精品福利| 有码 亚洲区| 亚洲狠狠婷婷综合久久图片| 欧美成人性av电影在线观看| 久久久久九九精品影院| 97超级碰碰碰精品色视频在线观看| 国产69精品久久久久777片| 亚洲在线自拍视频| 精品国内亚洲2022精品成人| 看片在线看免费视频| 午夜视频国产福利| 成人国产综合亚洲| 欧美三级亚洲精品| 自拍偷自拍亚洲精品老妇| 色综合亚洲欧美另类图片| 一a级毛片在线观看| 丰满乱子伦码专区| 夜夜爽天天搞| 亚洲人成电影免费在线| 亚洲av电影不卡..在线观看| 亚洲欧美日韩高清专用| 久久久久九九精品影院| 能在线免费观看的黄片| 高清在线国产一区| 欧美日本视频| 国语自产精品视频在线第100页| 波多野结衣高清无吗| 亚洲av.av天堂| 亚洲精品粉嫩美女一区| 99热只有精品国产| 丰满的人妻完整版| 久久久久久久久久黄片| 狠狠狠狠99中文字幕| 嫩草影院新地址| 久久久久久久精品吃奶| 99国产精品一区二区蜜桃av| 毛片女人毛片| 成年免费大片在线观看| 黄色丝袜av网址大全| 小蜜桃在线观看免费完整版高清| 精品久久久久久,| 日日干狠狠操夜夜爽| 色av中文字幕| 成年女人看的毛片在线观看| 国产欧美日韩精品亚洲av| 简卡轻食公司| 国产成+人综合+亚洲专区| 午夜福利18| 国产伦人伦偷精品视频| 色尼玛亚洲综合影院| av福利片在线观看| АⅤ资源中文在线天堂| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 欧美成人a在线观看| 高清在线国产一区| 亚洲电影在线观看av| 亚洲av成人av| 国产视频内射| 精品不卡国产一区二区三区| 床上黄色一级片| 无人区码免费观看不卡| 国产免费男女视频| 国产欧美日韩一区二区三| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 日本与韩国留学比较| 我要搜黄色片| 日韩欧美国产在线观看| 亚洲专区中文字幕在线| av视频在线观看入口| 内地一区二区视频在线| 免费在线观看影片大全网站| 我要看日韩黄色一级片| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 免费在线观看亚洲国产| av福利片在线观看| 成人特级av手机在线观看| 97超级碰碰碰精品色视频在线观看| 一个人看视频在线观看www免费| 一区福利在线观看| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 午夜a级毛片| www.www免费av| 免费在线观看日本一区| av国产免费在线观看| 精品久久久久久久末码| 成人一区二区视频在线观看| 美女免费视频网站| 国产亚洲av嫩草精品影院| 国产精品电影一区二区三区| 美女免费视频网站| 1024手机看黄色片| 在线十欧美十亚洲十日本专区| 久久久成人免费电影| 好男人在线观看高清免费视频| 看黄色毛片网站| 美女免费视频网站| 99在线视频只有这里精品首页| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩| 真人一进一出gif抽搐免费| 国产av麻豆久久久久久久| 国产精品影院久久| 欧美zozozo另类| 国产高清三级在线| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| www日本黄色视频网| 最后的刺客免费高清国语| 可以在线观看毛片的网站| 2021天堂中文幕一二区在线观| 啪啪无遮挡十八禁网站| 赤兔流量卡办理| 亚洲成人中文字幕在线播放| 日韩高清综合在线| 色综合婷婷激情| 精华霜和精华液先用哪个| 成人无遮挡网站| 欧美最黄视频在线播放免费| 欧美bdsm另类| 51国产日韩欧美| 99国产精品一区二区三区| 亚洲av.av天堂| 51国产日韩欧美| 亚洲国产精品合色在线| 成年女人永久免费观看视频| 直男gayav资源| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 亚洲第一电影网av| 精品人妻1区二区| 欧美黑人巨大hd| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 欧美激情在线99| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 久久亚洲精品不卡| 国产中年淑女户外野战色| 黄色配什么色好看| 色综合站精品国产| 真实男女啪啪啪动态图| eeuss影院久久| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 国产精品免费一区二区三区在线| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 我要搜黄色片| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| 日本熟妇午夜| 90打野战视频偷拍视频| 日本一本二区三区精品| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 国产在线男女| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩高清专用| av福利片在线观看| 亚洲av电影在线进入| 日本三级黄在线观看| 日本免费一区二区三区高清不卡| 成人无遮挡网站| netflix在线观看网站| 国产一区二区在线观看日韩| 99精品久久久久人妻精品| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 又爽又黄a免费视频| 亚洲av成人不卡在线观看播放网| 亚洲成av人片免费观看| 搞女人的毛片| 天堂√8在线中文| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 超碰av人人做人人爽久久| 男女那种视频在线观看| 最新中文字幕久久久久| 国产亚洲欧美98| 中文亚洲av片在线观看爽| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 在线观看一区二区三区| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 亚洲最大成人手机在线| 国语自产精品视频在线第100页| 综合色av麻豆| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 国产亚洲欧美98| 永久网站在线| 精品久久久久久久末码| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 又爽又黄a免费视频| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 国产一区二区三区视频了| 91久久精品国产一区二区成人| 波多野结衣巨乳人妻| 亚洲av.av天堂| 国产69精品久久久久777片| 色哟哟哟哟哟哟| 亚洲黑人精品在线| 特级一级黄色大片| 极品教师在线免费播放| 国产在线男女| 亚州av有码| 亚洲人成网站在线播| 亚洲av成人不卡在线观看播放网| 禁无遮挡网站| 精品福利观看| 99国产精品一区二区蜜桃av| 欧美激情国产日韩精品一区| 欧美性猛交黑人性爽| 国产精品永久免费网站| 婷婷色综合大香蕉| 中文字幕精品亚洲无线码一区| 九九在线视频观看精品| 91久久精品国产一区二区成人| 亚洲午夜理论影院| 久久久久久久久久黄片| 国产精品久久电影中文字幕| av国产免费在线观看| 可以在线观看的亚洲视频| 在线天堂最新版资源| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 无人区码免费观看不卡| 精品人妻偷拍中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产老妇女一区| 亚洲七黄色美女视频| 午夜日韩欧美国产| 90打野战视频偷拍视频| 99热精品在线国产| 亚洲国产欧洲综合997久久,| 亚洲在线自拍视频| 深夜精品福利| 国产成人a区在线观看| 国产伦精品一区二区三区视频9| 97超级碰碰碰精品色视频在线观看| 悠悠久久av| a在线观看视频网站| 日韩精品中文字幕看吧| 亚洲av熟女| 亚洲一区二区三区不卡视频| 色综合站精品国产| 少妇的逼水好多| 美女高潮喷水抽搐中文字幕| 亚洲不卡免费看| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 麻豆成人av在线观看| 51午夜福利影视在线观看| 麻豆一二三区av精品| 男女床上黄色一级片免费看| 老女人水多毛片| 黄色女人牲交| 老司机福利观看| 亚洲自拍偷在线| 午夜激情福利司机影院| 神马国产精品三级电影在线观看| 99在线视频只有这里精品首页| 亚洲成人免费电影在线观看| 性插视频无遮挡在线免费观看| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 国产午夜精品论理片| a级毛片a级免费在线| 免费人成在线观看视频色| 久久久久久久久久黄片| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 高清在线国产一区| 国产精品一及| 日本一本二区三区精品| 波多野结衣高清作品| 精品人妻一区二区三区麻豆 | 国产精品日韩av在线免费观看| 精品午夜福利视频在线观看一区| 欧美日韩综合久久久久久 | 久久精品国产99精品国产亚洲性色| 天堂影院成人在线观看| 我的老师免费观看完整版| 深爱激情五月婷婷| 国产成人啪精品午夜网站| 午夜福利在线观看免费完整高清在 | 午夜福利高清视频| 禁无遮挡网站| 国内精品美女久久久久久| 欧美黑人巨大hd| 亚洲精品乱码久久久v下载方式| 在线观看66精品国产| 亚洲欧美日韩卡通动漫| 亚洲av五月六月丁香网| 欧美黑人巨大hd| 成人高潮视频无遮挡免费网站| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久大av| 少妇裸体淫交视频免费看高清| 国产色婷婷99| 最新中文字幕久久久久| 在线免费观看不下载黄p国产 | 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 久久久久久久亚洲中文字幕 | 日本三级黄在线观看| 亚洲一区二区三区色噜噜| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 国产精品av视频在线免费观看| 少妇人妻精品综合一区二区 | 久久久久亚洲av毛片大全| 97热精品久久久久久| 99热这里只有是精品50| 婷婷色综合大香蕉| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 国产精品免费一区二区三区在线| 99热6这里只有精品| 激情在线观看视频在线高清| 丰满人妻一区二区三区视频av| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区四那| 国产精品日韩av在线免费观看| 国产在线男女| 国内毛片毛片毛片毛片毛片| 欧美激情久久久久久爽电影| 97热精品久久久久久| 欧美区成人在线视频| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 日本一二三区视频观看| 看十八女毛片水多多多| 老鸭窝网址在线观看| 伦理电影大哥的女人| 精品久久久久久久久av| 精品久久久久久久久久久久久| 一a级毛片在线观看| 国产视频内射| 精品国产亚洲在线| 精品免费久久久久久久清纯| 黄色丝袜av网址大全| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利剧场| 国产精品不卡视频一区二区 | 午夜免费激情av| 国内精品久久久久精免费| 亚洲真实伦在线观看| 久久午夜福利片| 99精品在免费线老司机午夜| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜添小说| 成人三级黄色视频| 久久久久九九精品影院| netflix在线观看网站| 男女下面进入的视频免费午夜| 国产精华一区二区三区| 好看av亚洲va欧美ⅴa在| 99久久精品热视频| 一级作爱视频免费观看| 久久精品国产亚洲av涩爱 | 亚洲国产高清在线一区二区三| 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 亚洲aⅴ乱码一区二区在线播放| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 日韩欧美精品免费久久 | 久久久久九九精品影院| 无人区码免费观看不卡| 女同久久另类99精品国产91| 欧美色视频一区免费| 中文字幕av成人在线电影| 久久久久性生活片| 国内揄拍国产精品人妻在线| 精品久久久久久久久久免费视频| 成人特级av手机在线观看| 亚洲,欧美,日韩| 啪啪无遮挡十八禁网站| 国内精品美女久久久久久| 国产成人av教育| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 亚洲成人久久性| 亚洲五月婷婷丁香| 黄色日韩在线| 天美传媒精品一区二区| 国产精品野战在线观看| 在线观看一区二区三区| 一夜夜www| 高潮久久久久久久久久久不卡| 一区福利在线观看| 亚洲一区高清亚洲精品| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 极品教师在线视频| 欧美一区二区精品小视频在线| 最后的刺客免费高清国语| 黄色配什么色好看| 亚洲av一区综合| netflix在线观看网站| 日本黄大片高清| 日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 久久久成人免费电影| 极品教师在线视频| 亚洲 国产 在线| 欧美乱妇无乱码| 日本五十路高清| 国产欧美日韩一区二区精品| 午夜两性在线视频| 成人无遮挡网站| 波野结衣二区三区在线| 亚洲七黄色美女视频| 搞女人的毛片| 一级毛片久久久久久久久女| 赤兔流量卡办理| 变态另类丝袜制服| 免费观看精品视频网站| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品sss在线观看| 夜夜夜夜夜久久久久| 村上凉子中文字幕在线| 亚洲第一电影网av| 精品久久久久久久久av| 亚洲国产精品合色在线| 国产欧美日韩一区二区精品| 在线天堂最新版资源| 久久亚洲真实| 特级一级黄色大片| 亚洲av电影在线进入| 窝窝影院91人妻| 麻豆国产97在线/欧美| www.熟女人妻精品国产| 亚洲精品色激情综合| 看免费av毛片| 制服丝袜大香蕉在线| 九九在线视频观看精品| 最近最新中文字幕大全电影3| 国产私拍福利视频在线观看| 人人妻人人看人人澡| 一个人观看的视频www高清免费观看| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| 999久久久精品免费观看国产| 久久性视频一级片| 看十八女毛片水多多多| 嫩草影院新地址| 国产免费男女视频| 久久久久九九精品影院| 日本与韩国留学比较| 国产在视频线在精品| 女生性感内裤真人,穿戴方法视频| 欧美激情国产日韩精品一区| 青草久久国产| 自拍偷自拍亚洲精品老妇| 精品人妻一区二区三区麻豆 | 免费看光身美女| 欧美乱妇无乱码| 精品人妻视频免费看| 国产在线精品亚洲第一网站| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 麻豆成人av在线观看| 精品无人区乱码1区二区| 99久久精品热视频| 午夜日韩欧美国产| 性色avwww在线观看| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久久久久久久| 亚洲av电影在线进入| 又紧又爽又黄一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲av.av天堂| 久久久久免费精品人妻一区二区| 性色avwww在线观看| 日本与韩国留学比较| 日本一本二区三区精品| 亚洲av日韩精品久久久久久密| netflix在线观看网站| 99国产综合亚洲精品| 国产精品乱码一区二三区的特点| 我要搜黄色片| 身体一侧抽搐| 亚洲第一欧美日韩一区二区三区| 亚洲国产欧洲综合997久久,| 国产毛片a区久久久久| 精品一区二区三区视频在线| 最新中文字幕久久久久| 久久久久久久久中文| 最后的刺客免费高清国语| 欧美日本亚洲视频在线播放| 淫妇啪啪啪对白视频| av视频在线观看入口| 成人av一区二区三区在线看| 成人亚洲精品av一区二区| 国产亚洲欧美在线一区二区| 又紧又爽又黄一区二区| 亚洲一区高清亚洲精品| 波多野结衣高清作品| 99久久九九国产精品国产免费| 简卡轻食公司| 丰满的人妻完整版| 成人精品一区二区免费| 色播亚洲综合网| 成人国产一区最新在线观看| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 亚洲 欧美 日韩 在线 免费| 美女高潮的动态| avwww免费| 久久久久久久亚洲中文字幕 | 免费人成在线观看视频色| 99久久无色码亚洲精品果冻| ponron亚洲| 亚洲久久久久久中文字幕| 亚洲最大成人av| 熟女电影av网| 亚洲精品456在线播放app | 两个人视频免费观看高清| 亚洲专区中文字幕在线| 亚洲天堂国产精品一区在线| 最近中文字幕高清免费大全6 | 一级a爱片免费观看的视频| 国产精品野战在线观看| 最后的刺客免费高清国语| 久久国产乱子免费精品| 看片在线看免费视频| 嫩草影院新地址| 日本成人三级电影网站| 亚洲成av人片免费观看| 欧美+亚洲+日韩+国产| 久久99热6这里只有精品| eeuss影院久久| 91在线观看av| 18禁裸乳无遮挡免费网站照片| 亚洲美女黄片视频| 丰满人妻熟妇乱又伦精品不卡| 少妇裸体淫交视频免费看高清| 欧美一区二区精品小视频在线| 日韩欧美国产在线观看| 狠狠狠狠99中文字幕| 国产精品久久久久久亚洲av鲁大| 国产成人a区在线观看| 99久久无色码亚洲精品果冻| 国产三级在线视频| 美女被艹到高潮喷水动态|