• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Manipulation and optimization of electron transport by nanopore array targets

    2021-03-01 08:09:38YueYANG楊月BoyuanLI李博原YuchiWU吳玉遲BinZHU朱斌BoZHANG張博ZhimengZHANG張智猛MinghaiYU于明海FengLU盧峰KainanZHOU周凱南LianqiangSHAN單連強(qiáng)LihuaCAO曹莉華ZongqingZHAO趙宗清WeiminZHOU周維民andYuqiuGU谷渝秋
    Plasma Science and Technology 2021年1期
    關(guān)鍵詞:凱南朱斌張博

    Yue YANG(楊月),Boyuan LI(李博原),Yuchi WU(吳玉遲),Bin ZHU(朱斌),Bo ZHANG (張博), Zhimeng ZHANG (張智猛), Minghai YU (于明海),Feng LU (盧峰), Kainan ZHOU (周凱南), Lianqiang SHAN (單連強(qiáng)),Lihua CAO (曹莉華), Zongqing ZHAO (趙宗清), Weimin ZHOU (周維民) and Yuqiu GU (谷渝秋),4

    1 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, People’s Republic of China

    2 Key Laboratory for Laser Plasmas(Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

    3 Institute of Applied Physics and Computational Mathematics,Beijing 100088,People’s Republic of China

    4 Key Laboratory of HEDP of the Ministry of Education & CAPT, Peking University, Beijing 100871,People’s Republic of China

    Abstract The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields, most fast electron beams are proven to be effectively guided and restricted during the propagation.Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations,representing two components:initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams.The critical energy for confined electrons is deduced theoretically.The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design, showing great potential in many applications including ion acceleration, microfocus x-ray sources and inertial confinement fusion.

    Keywords: nanopore array, laser-driven electrons, fast electron transport, electron collimation

    1.Introduction

    Fast electrons generated by ultra-intense laser interacting with solid targets have wide applications in microfocus x-ray source [1], positron generation [2], ion acceleration [3] and inertial confinement fusion [4].However, the self-induced Weibel instability [5] and filamentation [6] during the transport process may inevitably be detrimental to beam divergence and directionality, leading to reduced yield and degenerated beam quality.Therefore, guidance and collimation of laser-driven fast electrons are important to further researches and practical applications.

    To optimize the interactions of laser pulses and targets,several novel targets with structured surface, such as metal nanobrushes [7-15], carbon nanotubes [16-18], silicon[19-24] and oxide nano/microwires [25] are proposed to improve the quality of laser-driven fast electron beams, proton acceleration and x-ray emission [15, 26, 27].Many experiments [11-13, 17-19] and relevant simulations [7, 8,28-31]on femtosecond laser facilities have demonstrated that tailored nano-array structures are helpful to enhance the absorption efficiency of laser energy as well as to guide the propagation of fast electrons.It is believed that the increased absorption depth, surface-to-volume ratio and high local electric fields of these kinds of targets can contribute to the enhancement of laser absorption, thus greatly enhancing the temperature of hot electrons and hard x-ray generation[7, 11, 15, 32].On the other hand, the propagation of fast electrons within nano-arrays is affected by both magnetic fields induced by return currents and sheath electric fields on the target surface [9, 33].Therefore, by using this kind of target,one can artificially construct some aligned micro/nano channels along a certain direction to keep fast electrons propagating inside, and effectively suppress the spread of the beam.

    However, the features of nano-structured targets were intensively investigated using ultra-short pulses, while there are only a few studies on the interaction of nano-structures with picosecond laser pulse [9, 12, 16, 34].Under longer pulse duration, such targets may quickly collapse even with high pulse contrast.Moreover, the ionized plasma density of nano-structures is lower than that of bulk targets, making the subsequent interactions more unstable and uncontrollable.Nevertheless,some preliminary works have already observed enhanced laser absorption and fast electron generation by nano-structured targets irradiated by picosecond lasers[12, 16, 34].Our simulations showed that fast electrons can be effectively collimated for sub-picosecond interactions,attributed to the confinement of earlier magnetic filaments and later resistive magnetic fields[9].Therefore,it is necessary to further explore the characteristics and mechanism of the interactions between nano-structured targets and picosecond lasers.Once the advantages of nano-structured targets under longer laser pulse can be proved, the enhanced conversion efficiency and generation of high-charge collimated fast electrons would bring significant contribution to applications including brilliant x-ray sources, proton acceleration and positron generation.

    In this work, we study the fast electron transport in tailored nanopore array (NPA) targets irradiated by subpicosecond pulse lasers.The effective guidance of fast electrons has been confirmed in experiments, and two distinct transport patterns in nano-structured targets are found to result in different characteristics of target-back electron beams.The influence factors and parameter requirement for the electron confinement are obtained by theoretical analysis.As expected, we hope to achieve the guidance and collimation of fast electrons by means of pulse modulation and target design.

    This paper is organized as follows.Section 2 introduces the experimental settings and results, which show different electron characteristics after the transport inside NPA targets.Section 3 gives a theoretical model to clarify the underlying mechanism and parameter relation for electron confinement in nano-structured targets.Particle-in-cell (PIC) simulations in section 4 further prove two distinct transport patterns of fast electron bunches in the NPA, and explain the physical phenomena in experiments.Finally, the conclusions are given in section 5.

    Figure 1.Scans of the anodic aluminum oxide NPA perpendicular to(a)and along the axis(b).Transverse area of the sandwiched NPA is 2 mm × 2 mm.

    2.Experiment setup and results

    The experiment was carried out using the sub-picosecond laser [0.8 ps (FWHM), 50-150 J, 1.053 μm wavelength,contrast >5 × 108] at XingGuang-III laser facility [35].The pulse was focused by anf/2.6 off-axis parabola to a 20 μm(FWHM) focal spot on the target surface.The peak laser intensity could get close to 1020W cm?2with the maximum energy of 150 J.At this laser intensity, fast electrons can be effectively accelerated along the laser propagation direction by the J × B heating [36] dominantly or along the target normal by the resonant absorption [37].To clearly identify the beam guiding effect, the laser was set to be s-polarized and incident with an angle of 20°from the target normal.An anodic aluminum oxide template with 250 nm diameter,550 nm distance and 60 μm thickness NPAs was used as the NPA target (see figures 1(a) and (b)).The arrays are perpendicular to the target surface.Generally, the inherent prepulse or amplified spontaneous emission(ASE)before the main pulse irradiating the target may damage the nanostructures and generate a scale of plasmas blocking the nanopores [38].To avoid these adverse effects, we have utilized the magnetron sputtering technique to plate a 2 μm Mo layer (front) and a 3 μm Cu layer (back) on the target surface to protect the NPAs.And later, the experimental results will prove that the level of prepulse and preplasmas could not substantially influence the manipulation and optimization of fast electron transport by the NPA targets.

    The beam guidance of the NPA was first examined by measuring the propagating direction of fast electrons using image plate (IP, Fuji BAS-SR) stacks.Since the proportion and the energy deposition efficiency of x-rays are much less than that of electrons, the x-ray signals on the IPs can be ignored compared to electron signals.The stack consists of Cu filters and four layers of IPs, as shown in figure 2(a).Electrons with energies above 0.2, 0.5, 1.0 and 1.7 MeV can be detected by the four IPs, respectively.The IP stack was 150 mm away from the target.An angular deviation of 6°was set between the normals of the target and stack.As a result,the signals on the first three IPs are mostly saturated.Figure 2(b) shows the image of the 4th IP, which indicates that most fast electrons propagated along the normal of the NPA (at the direction of +6°) instead of the laser axis where they were produced by J × B heating.For comparison, the electron divergence from a 70 μm thick planar Al2O3target is also measured and plotted in figure 2(c).It can be seen that the fast electrons from the planar target mainly transported along the laser axis (at the direction of ?14°) with a large divergence angle.In contrast, the emission angle of electrons from the NPA target is 14° (FWHM), far less than previous measurements of 30°-40° [39].Therefore, properly designed NPA targets can not only guide the fast electrons transporting along the nanopore axis,but improve the beam divergence by effective magnetic confinement, even under sub-picosecond pulse lasers.

    Figure 2.(a) Schematic setup of the experiment.IP stack was 150 mm away from the target.Angular distributions of fast electrons(>1.7 MeV) from the sandwiched NPA (b) and planar target (c).

    Then,the optical transition radiation(OTR)measurement was employed to characterize the electron transport in the NPA.It makes use of the characteristic 527 nm light radiated by the fast electrons at the Cu-vacuum interface.To demonstrate the total experimental layout, we put the diagnostic devices of the IP stack and OTR measurement in the same figure,even though the data were measured in separate shots.As shown in figure 2(a),the optical system was normal to the target with a magnification of 7.9.The light was recorded by a 16-bit optical charge coupled device(CCD).A bandpass filter(527 ± 12 nm) was laid before the CCD to single out the characteristic light, and an electron spectrometer (ESM) was placed at 17° from the target normal to measure the electron spectrum.From the luminance of the OTR, we can get the spatial distribution of fast electron beams at the target back.Figures 3(a) and (b) display the OTR results with laser energies of 140 and 50 J,respectively.The electron spectra of the two cases are shown in figure 3(c).In figure 3(a),a series of equally spaced ring-like signals appear encircling a bright spot,implying that in-target fast electrons transport annularly as multiple bunches surrounding the central collimated beam.The interval between two adjacent rings is roughly 8.2 μm,15 times the nanopore distance.In figure 3(b), the fringe rings become faint as the laser energy and intensity get lower,corresponding to the decreased number of high-energy electrons and lower effective temperature shown in figure 3(c).On the other hand,a pair of twin spots with a distance around 15-20 μm (less than the laser FWHM) are always found in the center of the rings.This beam pattern implies the strong filamentation of collimated fast electrons, and the branch-off may be due to the repulsion of refluxing electrons in the backside Cu layer.

    3.Theoretical analysis

    To explain and discuss the experimental results, we analyze the status of fast electron transport in NPA targets.According to previous researches [7, 9], there are basically two selfgenerated fields in nano-structured targets radiated by ultraintense laser pulses: the sheath electric fields and toroidal magnetic fields.In nanowire targets, fast electrons will be pushed into the vacuum by the magnetic fields produced by return currents within the nanowires,while the sheath electric fields on the target surface tend to pull the fast electrons back towards the wires.The dynamic equilibrium of electric and magnetic forces keeps fast electrons transporting along the nanowire surface, thus effectively guiding the beam.In this case,fast electrons are hardly affected by direct collisions due to their high kinetic energyIn addition,Li[9]found that sheath electric fields around the nanowires are negligible after a few hundred femtoseconds due to the plasma expansion.Therefore,the magnetic fields play a major role in the transport process of fast electrons.

    Similarly, in NPA targets, periodic magnetic fields are generated perpendicular to the propagating direction as return currents transport between nanopores, thus confining the movement of electrons in the vacuum, as shown in figure 4.According to Ampere’s law, the average magnetic field around each filament is,

    Figure 3.(a), (b) OTR results with different laser energies (shown in (c)).Laser was obliquely pointed to the left.(c) Electron spectra for(a) laser energy of 140 J (red) and (b) laser energy of 50 J (blue).ESM signal was denoised by using the median filter.

    Figure 4.Sketch of fast electron movement and magnetic field generation in the NPA.

    whereeis the electron charge,nfis the fast electron density,vfis the fast electron velocity andDnpais the distance between two adjacent nanopores.When a fast electron propagates into the array with a divergence angle θ and Lorentz factor γ,this electron will be confined in a nanopore if its Larmor radiusmeets the condition of,

    Then, substituting the expression(whereIabsis the absorbed laser intensity andTfis the fast electron temperature) into equation (2), we can obtain the critical energy for confined fast electrons:

    above which fast electrons cannot be kept within the original nanopore and will escape from the central region.This expression implies that the ability of an NPA target for electron confinement depends on the laser intensity, electron properties and nano-structure spacing.Therefore, fast electrons of different energy ranges will transport with distinct patterns,and may result in different spatial distributions at the target back.

    Figure 5.(a) Profile of Bz at t = 600 fs, (b) zoom-in of the local magnetic field marked in (a), (c) electron current density Jx in the local region marked in (a).Magnetic field and current density are normalized by meω/e and encc, respectively.

    4.PIC simulation

    Based on the analysis above, we have performed 2D PIC simulations to confirm the physical phenomena of the propagation of fast electrons in NPA targets.We note that the effective temperature and divergence of fast electrons generated by J × B heating are not related to the laser polarization[40].Therefore, the transport of the electron beam, which depends on its temperature, divergence and the target configuration can be assumed isotropic, and the 2D simulations can help to understand and interpret mechanisms of acceleration and transport of fast electrons in NPA targets.The code we use is the Opic2D(2D3V)[41], a relativistic kinetic code that includes relativistic binary collisions(e?e,e?i and i?i) and dynamic ionizations (field and impact ionizations).In the simulation, the target configuration is the same as that in experiments, comprising Mo (2 μm) + Al (20 μm,NPA) + Cu(3 μm)with initial ionization degrees of 6,3 and 2.The NPA consisting of wires and pores of 250 nm width is periodic in the transverse direction.Limited by the computation capacity, the ion density of each layer is 12ncfor Mo,11ncfor Al and 15ncfor Cu, wherencis the critical plasma density.Considering the preplasmas produced on the target surface, and combining actual laser parameters [35], we put molybdenum preplasmas whose density exponentially decreases from 10 to 0.06ncwith a scale length of 2 μm in front of the target.

    The s-polarized laser at λ = 1 μm wavelength is obliquely incident with an angle of 20°from the target normal.The pulse has an envelope profile ofwherea0=8.5is the peak amplitude of the laser field, σ =4.2 μm is the laser radius and τ = 800 fs is the laser duration.Fourth-order interpolation is used to relax the restriction on the grid size by Debye length.Each cell contains macro-particles of 16 electrons and four ions.Absorptive boundary conditions are used for both fields and particles.

    We first investigate the electron transport and magnetic confining effects at an earlier time.Figure 5(a) shows the azimuthal magnetic field Bzatt= 600 fs.As expected, the magnetic fields close to the Mo substrate are periodic in theydirection and tend to push fast electrons into the vacuum.Locally,as shown in figures 5(b)and(c),fast electron beams in the central region are brushed into filaments and just encircle the magnetic fields, indicating the constraint of the magnetic fields.However,some electrons are too energetic to be properly restricted, and they may scatter across the nanopores,resulting in macro channels in the fringe region shown in figure 5(a).Moreover,the distribution of fast electrons near the target back becomes disordered due to the beam filamentation and repulsion of refluxing electrons.

    To validate our analysis above, we further explore the transport patterns of fast electrons in the NPA in terms of their energy range.According to our prediction, fast electrons propagating inside the target can be divided into two components: the central confined low-energy electrons and the escaped high-energy electrons.From the electron spectrum,the temperature of fast electrons isTf= 3.86 MeV with a profile ofroughly consistent with Wilks’ ponderomotive scaling law [36].The electron divergence angle of 35° and the absorption efficiency of 30% are also obtained in the simulation.Therefore, the critical confined energy calculated from equation (3) isBased on the critical energy, the spatial distributions of energy density of the two kinds of fast electrons are shown in figure 6.We can find that the low-energy electrons withE< 5 MeV are excellently guided and collimated in the central region, with the beam filamentation in size of the nanopore diameter, far smaller than the focal spot.

    Figure 6.Spatial distributions of energy density of electrons with(a)E < 5 MeV and(b)E > 5 MeV at t = 600 fs.Energy density is normalized by ncmec2.

    On the other hand, high-energy electrons scatter around and form couples of bunches with approximately the same intervals (see figure 6(b)).The bunch spacing gets greater as the transport distance increases, and it becomes 3.5-4 μm at the target back,about 7-8 times the nanopore distance and in accordance with the distribution of magnetic fields in figure 5(a).The underlying physics of the macro self-channeling of energetic electrons can be explained by the accumulated confining effect of magnetic fields.Although the electrons aboveEcrcannot be restricted in one nanopore,they will be re-pinched under the suppression of multiple periodic magnetic fields after traveling across multi-nanopores, thus emerging into bunches with similar intervals.Once macro magnetic channels are generated under the magnetic confining effect, the beam pinch will be further enhanced by the resistive annulus effect [42].

    Compared to experimental results, the simulations reproduce similar forms of electron distributions at the backside of the targets, verifying our theoretical deductions.We note that the different bunch spacings may due to the differences in simulation parameters and dimensions.The faint signal of fast electrons at the fringe region for lowerenergy laser(see figures 3(a)and(b))can be explained,since the energetic electrons (above the critical confined energy),which would transport as annular bunches on the periphery profoundly reduced (see figure 3(c)).These results prove the two distinct transport patterns of fast electrons and the appearance of macro magnetic channels, validating the important role of self-generated periodic magnetic fields.To conclude, fast electrons transporting in the NPA would turn into two components: central confined low-energy beam and fringe annular high-energy bunches.According to our analysis, the critical energy of confined electrons in NPAs could be altered by changing the laser intensity and nanopore distance.Therefore, we can possibly select and obtain fast electrons in terms of their energy and divergence with proper parameter modulation.The transport of fast electrons can be artificially manipulated to provide electron beams with specific characteristics,offering facilities for subsequent practical applications and researches.

    5.Conclusion

    In summary,an NPA target is proposed to guide and collimate fast electrons driven by picosecond pulse lasers.Experimental results proved the effective electron guidance of NPA targets under sub-picosecond-pulse lasers.Different transport patterns of fast electrons are found as we observed the collimated central beams and surrounding ring-like electron bunches at the target back.By theoretical analysis and derivation, we obtained the critical energy for confined fast electrons in NPA,which depends on the laser intensity, electron properties and nano-structure spacing.PIC simulations further confirmed the physical phenomena and intrinsic schemes of electron transport dominated by periodic magnetic fields.It is found that low-energy electrons can be initially restricted in the center,while high-energy scattered electrons would be re-pinched into macro channels by the accumulated magnetic confining effects, in good accordance with the experiments.

    This finding provides a way to manipulate the electron transport and spatial distribution by pulse modulation and target design,thus selecting and optimizing fast electrons with specific characteristics, which has great potential in practical applications including microfocus x-ray sources, positron generation, ion acceleration and inertial confinement fusion.

    Acknowledgments

    This work was supported by the National Key R&D Program of China (Grant No.2016YFA0401100), the Science and Technology on Plasma Physics Laboratory (Grant Nos.6142A04180201 and JCKYS2020212006), National Natural Science Foundation of China (Grant No.11975214) and the Science Challenge Program (Grant Nos.TZ2016005 and TZ2018005).

    猜你喜歡
    凱南朱斌張博
    憋住的屁到哪去了
    “愚公移山”新篇
    Influence of water environment on paint removal and the selection criteria of laser parameters
    “斗雞眼”
    對(duì)善舉的尊重
    “愚公移山”新篇
    “遏制”概念與冷戰(zhàn)史研究范式
    學(xué)林新語
    讀者(2018年4期)2018-02-02 17:59:06
    一道高考試題的四次拓展
    “冷戰(zhàn)之父”與斯大林女兒的特殊友情
    南方周末(2015-03-26)2015-03-26 02:16:12
    在线av久久热| 黄色片一级片一级黄色片| 大香蕉久久成人网| 国产黄色免费在线视频| 欧美日韩视频精品一区| 别揉我奶头~嗯~啊~动态视频| 操出白浆在线播放| 熟女少妇亚洲综合色aaa.| 看免费av毛片| 一本综合久久免费| 女同久久另类99精品国产91| 国产亚洲一区二区精品| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院 | 亚洲中文av在线| 女人久久www免费人成看片| 久久久久久久久久久久大奶| 久久精品成人免费网站| 丝袜人妻中文字幕| 性少妇av在线| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 欧美乱色亚洲激情| 亚洲国产欧美日韩在线播放| 91成人精品电影| 大型黄色视频在线免费观看| 女性被躁到高潮视频| 热99国产精品久久久久久7| 老司机深夜福利视频在线观看| 九色亚洲精品在线播放| 亚洲精品国产区一区二| 亚洲精品在线观看二区| 午夜福利一区二区在线看| 深夜精品福利| 51午夜福利影视在线观看| 国产精品偷伦视频观看了| 香蕉国产在线看| 女人被狂操c到高潮| 亚洲人成伊人成综合网2020| 国内久久婷婷六月综合欲色啪| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 999久久久国产精品视频| 国产一区有黄有色的免费视频| 亚洲男人天堂网一区| 天天添夜夜摸| 丝袜人妻中文字幕| 丝袜人妻中文字幕| 少妇的丰满在线观看| 午夜免费鲁丝| 两个人看的免费小视频| a级毛片黄视频| 涩涩av久久男人的天堂| 1024香蕉在线观看| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 极品人妻少妇av视频| 国产精品美女特级片免费视频播放器 | 亚洲熟妇熟女久久| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女 | 亚洲国产精品一区二区三区在线| 久久性视频一级片| 99riav亚洲国产免费| 精品福利永久在线观看| 中文字幕av电影在线播放| 97人妻天天添夜夜摸| 午夜免费成人在线视频| 亚洲第一青青草原| 日本黄色日本黄色录像| 久久精品国产亚洲av高清一级| 人成视频在线观看免费观看| 亚洲五月天丁香| 免费观看a级毛片全部| 两人在一起打扑克的视频| 欧美大码av| 国产成人av激情在线播放| 成人精品一区二区免费| 欧美日韩av久久| 国产99白浆流出| 婷婷精品国产亚洲av在线 | 久久久国产成人免费| 大码成人一级视频| 男女高潮啪啪啪动态图| 怎么达到女性高潮| 一边摸一边抽搐一进一出视频| 老熟女久久久| 女人高潮潮喷娇喘18禁视频| 99re在线观看精品视频| 99re6热这里在线精品视频| 露出奶头的视频| 大型av网站在线播放| 桃红色精品国产亚洲av| 首页视频小说图片口味搜索| 男女高潮啪啪啪动态图| 久久 成人 亚洲| 午夜激情av网站| 91成人精品电影| 精品视频人人做人人爽| 捣出白浆h1v1| 性色av乱码一区二区三区2| 久久天躁狠狠躁夜夜2o2o| 精品熟女少妇八av免费久了| 欧美大码av| 在线观看舔阴道视频| 久热爱精品视频在线9| 伊人久久大香线蕉亚洲五| 免费少妇av软件| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 欧美日韩福利视频一区二区| 国产精品欧美亚洲77777| 欧美人与性动交α欧美软件| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人精品巨大| 老司机影院毛片| 久久精品91无色码中文字幕| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 欧美激情久久久久久爽电影 | 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 99在线人妻在线中文字幕 | 午夜福利乱码中文字幕| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 亚洲美女黄片视频| 午夜福利在线观看吧| 9色porny在线观看| 午夜影院日韩av| 交换朋友夫妻互换小说| 99精品在免费线老司机午夜| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 国产精品免费视频内射| 91成年电影在线观看| 中出人妻视频一区二区| 身体一侧抽搐| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久| 国产99白浆流出| 色94色欧美一区二区| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| 国产精品.久久久| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 又黄又爽又免费观看的视频| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点 | 波多野结衣av一区二区av| 男女下面插进去视频免费观看| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 欧美亚洲 丝袜 人妻 在线| 国产精品电影一区二区三区 | 久久久久精品国产欧美久久久| 黄色 视频免费看| 日韩视频一区二区在线观看| 久久午夜综合久久蜜桃| 精品久久久久久,| 亚洲精品自拍成人| 亚洲av成人一区二区三| 国产又色又爽无遮挡免费看| 啪啪无遮挡十八禁网站| 午夜精品在线福利| 欧美 日韩 精品 国产| 日本精品一区二区三区蜜桃| 电影成人av| 国产精品永久免费网站| 女同久久另类99精品国产91| 精品电影一区二区在线| 国产蜜桃级精品一区二区三区 | 亚洲色图综合在线观看| 99国产精品一区二区三区| 日韩中文字幕欧美一区二区| 国产蜜桃级精品一区二区三区 | 999久久久国产精品视频| 男女免费视频国产| 免费观看精品视频网站| 久热这里只有精品99| 欧美黄色淫秽网站| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 一级a爱视频在线免费观看| 大香蕉久久网| 国产高清国产精品国产三级| 91成人精品电影| 黄片大片在线免费观看| 亚洲国产精品合色在线| 久久精品人人爽人人爽视色| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 一区在线观看完整版| 亚洲专区字幕在线| 美女高潮到喷水免费观看| av网站在线播放免费| 午夜视频精品福利| 99riav亚洲国产免费| 天天躁日日躁夜夜躁夜夜| 国产91精品成人一区二区三区| 国产国语露脸激情在线看| 亚洲色图av天堂| 女性生殖器流出的白浆| 淫妇啪啪啪对白视频| 亚洲国产毛片av蜜桃av| 99久久国产精品久久久| 国产一区二区三区视频了| 精品免费久久久久久久清纯 | 欧美激情高清一区二区三区| 国产99久久九九免费精品| 一级a爱片免费观看的视频| 国产精品影院久久| 成人手机av| av不卡在线播放| 中文字幕人妻丝袜一区二区| 黑人猛操日本美女一级片| 好男人电影高清在线观看| a级毛片在线看网站| 色播在线永久视频| 99re6热这里在线精品视频| 色综合欧美亚洲国产小说| 欧美 日韩 精品 国产| av网站免费在线观看视频| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| av片东京热男人的天堂| 91字幕亚洲| 一级片免费观看大全| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 777米奇影视久久| 日韩免费av在线播放| 亚洲五月天丁香| 亚洲欧美一区二区三区久久| 美女高潮到喷水免费观看| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 午夜福利在线观看吧| 精品卡一卡二卡四卡免费| 国产一卡二卡三卡精品| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 日韩大码丰满熟妇| 激情在线观看视频在线高清 | 色老头精品视频在线观看| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 国产精品影院久久| av网站免费在线观看视频| 午夜免费鲁丝| 日本黄色视频三级网站网址 | 看黄色毛片网站| 久久人人97超碰香蕉20202| 黄色视频,在线免费观看| 国产亚洲欧美精品永久| 手机成人av网站| 日韩欧美三级三区| 嫁个100分男人电影在线观看| 久久午夜综合久久蜜桃| 久热爱精品视频在线9| 国产一区二区三区综合在线观看| 欧美丝袜亚洲另类 | 久热爱精品视频在线9| 精品国产乱码久久久久久男人| 国产99久久九九免费精品| 国产av一区二区精品久久| 国产成人免费观看mmmm| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 麻豆成人av在线观看| 免费观看人在逋| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕 | 午夜福利免费观看在线| 亚洲精品av麻豆狂野| 国产一卡二卡三卡精品| 伦理电影免费视频| 国产免费av片在线观看野外av| 精品国产一区二区久久| 成年人午夜在线观看视频| 婷婷精品国产亚洲av在线 | 亚洲国产毛片av蜜桃av| 久久精品91无色码中文字幕| 脱女人内裤的视频| 日本欧美视频一区| 老鸭窝网址在线观看| 亚洲精品久久午夜乱码| 精品人妻1区二区| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 如日韩欧美国产精品一区二区三区| 91在线观看av| 国产高清激情床上av| 久久午夜亚洲精品久久| 超碰成人久久| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 女同久久另类99精品国产91| 日韩熟女老妇一区二区性免费视频| 老司机福利观看| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 国产精品影院久久| 亚洲精品自拍成人| 在线国产一区二区在线| av欧美777| 69精品国产乱码久久久| 午夜日韩欧美国产| 国产一区在线观看成人免费| 久9热在线精品视频| 老司机亚洲免费影院| 国产精品二区激情视频| 免费观看a级毛片全部| 国产在视频线精品| 国产精品免费一区二区三区在线 | 91精品国产国语对白视频| 亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 在线视频色国产色| 亚洲精品自拍成人| 免费一级毛片在线播放高清视频 | 午夜福利欧美成人| 午夜精品在线福利| 欧美乱色亚洲激情| 免费在线观看完整版高清| 国产成人av教育| 欧美日韩精品网址| 五月开心婷婷网| 夫妻午夜视频| 国产高清视频在线播放一区| 亚洲av日韩在线播放| 脱女人内裤的视频| 欧美在线黄色| 欧美人与性动交α欧美精品济南到| 欧美精品啪啪一区二区三区| 亚洲成人国产一区在线观看| 99热网站在线观看| 精品一区二区三区视频在线观看免费 | 久久久水蜜桃国产精品网| 亚洲在线自拍视频| www.999成人在线观看| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 久久青草综合色| 99国产精品免费福利视频| 91老司机精品| 老汉色av国产亚洲站长工具| 在线观看免费高清a一片| 在线天堂中文资源库| 91老司机精品| 欧美激情极品国产一区二区三区| 一区二区三区国产精品乱码| 国产av精品麻豆| 天天躁日日躁夜夜躁夜夜| 99精国产麻豆久久婷婷| 欧美乱色亚洲激情| 久久久久久久精品吃奶| 手机成人av网站| av网站免费在线观看视频| 9热在线视频观看99| 欧美精品人与动牲交sv欧美| 亚洲专区国产一区二区| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 国产精品成人在线| ponron亚洲| 欧美日韩福利视频一区二区| 精品人妻1区二区| 99热网站在线观看| 国产xxxxx性猛交| 中出人妻视频一区二区| 两个人免费观看高清视频| 成人18禁在线播放| 99精品欧美一区二区三区四区| 淫妇啪啪啪对白视频| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 一本综合久久免费| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 久久午夜亚洲精品久久| 韩国精品一区二区三区| 狂野欧美激情性xxxx| 国产一区在线观看成人免费| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 亚洲 欧美一区二区三区| 亚洲中文av在线| 亚洲av成人一区二区三| 亚洲欧美一区二区三区黑人| 欧美日韩精品网址| 国产色视频综合| 丝袜在线中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲美女黄片视频| 午夜久久久在线观看| 亚洲视频免费观看视频| 久久青草综合色| 久久精品人人爽人人爽视色| 天天躁日日躁夜夜躁夜夜| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 国产成人影院久久av| 精品一区二区三区视频在线观看免费 | 亚洲aⅴ乱码一区二区在线播放 | www.999成人在线观看| 日日爽夜夜爽网站| 日韩欧美免费精品| 亚洲色图av天堂| 99riav亚洲国产免费| 婷婷成人精品国产| 99久久精品国产亚洲精品| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 大码成人一级视频| 亚洲午夜精品一区,二区,三区| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 欧美国产精品一级二级三级| 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 夜夜爽天天搞| 真人做人爱边吃奶动态| 成年人免费黄色播放视频| 人人澡人人妻人| 久久狼人影院| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 天天操日日干夜夜撸| 搡老熟女国产l中国老女人| 久久久水蜜桃国产精品网| 9色porny在线观看| 欧美午夜高清在线| 国产成人欧美在线观看 | 日韩三级视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产精华一区二区三区| 国产精品一区二区免费欧美| 午夜福利一区二区在线看| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 黄色片一级片一级黄色片| 午夜福利视频在线观看免费| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色日本黄色录像| 无限看片的www在线观看| 高清黄色对白视频在线免费看| 国产亚洲av高清不卡| 一区在线观看完整版| videos熟女内射| 午夜成年电影在线免费观看| 91精品三级在线观看| 色综合婷婷激情| 国产成人精品久久二区二区91| 亚洲三区欧美一区| 老司机午夜十八禁免费视频| av欧美777| 人人妻人人添人人爽欧美一区卜| 国产男女超爽视频在线观看| 成年版毛片免费区| 国产欧美日韩一区二区精品| 无遮挡黄片免费观看| 男女高潮啪啪啪动态图| 国产亚洲欧美在线一区二区| av不卡在线播放| 十八禁人妻一区二区| 自线自在国产av| 欧美成人免费av一区二区三区 | 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 国产成人精品久久二区二区免费| 高清黄色对白视频在线免费看| 国产亚洲一区二区精品| 亚洲成a人片在线一区二区| 欧美黑人精品巨大| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 在线观看www视频免费| 色婷婷av一区二区三区视频| 久久精品aⅴ一区二区三区四区| 亚洲欧美日韩高清在线视频| 国产精品av久久久久免费| 久热爱精品视频在线9| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 欧美大码av| 亚洲av电影在线进入| 下体分泌物呈黄色| 久99久视频精品免费| 国产真人三级小视频在线观看| 欧美大码av| 老司机影院毛片| 黄色成人免费大全| 国产精品秋霞免费鲁丝片| 亚洲色图av天堂| 国产熟女午夜一区二区三区| 免费少妇av软件| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩乱码在线| 国产亚洲一区二区精品| 首页视频小说图片口味搜索| 人妻一区二区av| 一本综合久久免费| 国产精品成人在线| 欧美精品高潮呻吟av久久| 国产人伦9x9x在线观看| 国产精品自产拍在线观看55亚洲 | 操出白浆在线播放| 一区福利在线观看| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 自线自在国产av| 国产精品 欧美亚洲| 视频区欧美日本亚洲| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 欧美日韩av久久| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 一边摸一边抽搐一进一出视频| 欧美日韩乱码在线| 韩国av一区二区三区四区| 久久中文字幕一级| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 欧美不卡视频在线免费观看 | 午夜福利乱码中文字幕| 伦理电影免费视频| 人妻一区二区av| 99精品在免费线老司机午夜| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 男女免费视频国产| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一小说 | 欧美乱妇无乱码| 纯流量卡能插随身wifi吗| 日韩一卡2卡3卡4卡2021年| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| 亚洲成人国产一区在线观看| 精品国内亚洲2022精品成人 | 一本综合久久免费| 制服诱惑二区| 国产又色又爽无遮挡免费看| 美女福利国产在线| 一边摸一边抽搐一进一小说 | 制服人妻中文乱码| 黄频高清免费视频| 一进一出抽搐gif免费好疼 | 久久香蕉精品热| 18禁裸乳无遮挡动漫免费视频| 亚洲熟妇中文字幕五十中出 | 国产免费av片在线观看野外av| 精品国产国语对白av| 国产黄色免费在线视频| 亚洲国产毛片av蜜桃av| 亚洲精品av麻豆狂野| 久久精品91无色码中文字幕| 精品亚洲成国产av| 99精品在免费线老司机午夜| 国产精品久久视频播放| 午夜福利视频在线观看免费| 精品国内亚洲2022精品成人 | 757午夜福利合集在线观看| 国产精品美女特级片免费视频播放器 | 777久久人妻少妇嫩草av网站| 久久这里只有精品19| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 久久这里只有精品19| 亚洲男人天堂网一区| 一边摸一边抽搐一进一出视频| 日本wwww免费看| 精品乱码久久久久久99久播| 欧美激情久久久久久爽电影 | 在线观看免费午夜福利视频| 日韩欧美一区二区三区在线观看 | 国产成人精品在线电影| 女同久久另类99精品国产91| 精品久久蜜臀av无| 亚洲av日韩精品久久久久久密| 黄网站色视频无遮挡免费观看| 色综合欧美亚洲国产小说| 91成年电影在线观看| 999久久久精品免费观看国产| 国产激情久久老熟女| 国产精品av久久久久免费| 成人av一区二区三区在线看| 国产精品永久免费网站| 免费女性裸体啪啪无遮挡网站| 午夜精品国产一区二区电影| 中文字幕最新亚洲高清| 久久99一区二区三区| 日韩欧美国产一区二区入口| 黄色a级毛片大全视频| 色精品久久人妻99蜜桃| 亚洲欧美色中文字幕在线| 热re99久久国产66热| 国产av又大| 少妇被粗大的猛进出69影院|