• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution

    2021-02-24 06:15:34ZHANGJieZHAOYuWUAilianLIJiaWANGYuxue
    燃料化學學報 2021年2期

    ZHANG Jie ,ZHAO Yu ,WU Ai-lian ,LI Jia ,WANG Yu-xue

    (Institute of Clean Chemical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology,Taiyuan 030024, China)

    Abstract: The preparation of efficient catalysts in hydrogen evolution reaction (HER) is an urgent task at present.In this work, Ni(OH)2/Ni/g-C3N4 composite catalyst was prepared through liquid phase impregnation with in-situ reduction, which was used to compose the cathode with carbon paper (CP) for the microbial electrolysis cell (MEC).With the help of SEM,TEM, XRD, XPS and electrochemical analysis techniques, the structure, properties and electrocatalytic performance in hydrogen evolution of the Ni(OH)2/Ni/g-C3N4 composite were investigated.The results indicate that the Ni(OH)2/Ni/g-C3N4 catalyst exhibits excellent electrochemical activity for hydrogen evolution in the MEC.Using the Ni(OH)2/Ni/g-C3N4 catalyst,the current density reaches 100 A/cm2 at a small overpotential of 1881 mV, with a low charge transfer resistance of 10.86 Ω and a low Tafel slope of 44.3 mV/dec, which is much superior to pure g-C3N4 catalyst and CP, and even comparable to the Pt catalyst, suggesting that the Ni(OH)2/Ni/g-C3N4 composite can be a potential candidate of HER catalyst in MEC.

    Key words: Ni(OH)2/Ni/g-C3N4;hydrogen evolution reaction;microbial electrolysis cell

    Up to date, almost four fifths of current energy supply comes from fossil fuel[1], which may be completely exhausted in hundred years[2].Hydrogen is a pollution-free and renewable energy source, which can be stored and transported easily[3,4].Nevertheless, most of the current hydrogen energy is produced from nonrenewable fossil fuels.Electrolysis system for water splitting is receiving high priority due to its low energy consumption, low cost and pollution-free hydrogen production[5].Microbial electrolytic cell (MEC) is a new electrolysis system to generate hydrogen from organic matter[6,7].It is generally believed that precious metals(such as platinum[8]and palladium[9]) present prominent properties for the hydrogen evolution reaction (HER);however, the expensiveness and scarceness of the precious metals limit their industrial application to a large extent.Consequently, it is extremely urgent to exploit highly efficient non-noble metal catalysts for HER.

    Nickel-based materials (Ni-based alloys and Nibased composites) are one of the most promising nonnoble metal catalysts for HER.Nickel atom possesses an unfilled 3dorbit, which are paired with single electrons in 1S orbital of hydrogen atoms, and hydrogen adsorption bonds are easily formed between Ni atoms and hydrogen atoms[10].Nevertheless, the overall catalytic performance of nickel-based materials still needs to be improved due to the high hydrogen evolution overpotential of Ni.

    Increasing specific surface area is an effective means to reduce hydrogen evolution overpotential.The graphitic carbon nitride (g-C3N4) possesses a twodimensional nano-sheet structure and a large specific surface area.In addition, g-C3N4has abundant N and a unique tri-s-triazine ring structure, which may enhance the electrocatalytic activity toward special electrochemical reactions[11].Bi et al[12]prepared a Ni@g-C3N4composite and its H2-production rate reached 8.41 μmol/h, indicating that the Ni@g-C3N4composite could enhance the H2production activity on the surface of g-C3N4.Wu et al[13]reported a facile co-electrophoretic/electrodeposition method to prepare the O@g-C3N4/Ni(OH)2/NF electrode; the electrochemical impedance measurement (EIS) data revealed that the O@g-C3N4/Ni(OH)2/NF hybrid electrode had low internal resistance and small charge transfer resistance.Cao et al[14]synthesized 2D/3D Ni(OH)2/g-C3N4(Ni/DOMCN) via the electrostatic method; the EIS Nyquist plots displayed the smallest semicircle of 25-Ni/DOMCN, indicating its small charge-migrating resistance.The 3D g-C3N4photocatalyst supported on the Ni(OH)2promoter (30%) exhibited the highest H2evolution rate (ca.87.2 μmol/h), about 76 times higher than that of pure 3D g-C3N4.

    In this work, the Ni(OH)2/Ni/g-C3N4composite catalyst was prepared through liquid phase impregnation within-situreduction[15]and used to compose the cathode of microbial electrolysis cell(MEC) with the carbon paper (CP).With the help of SEM, TEM, XRD, XPS and electrochemical analysis techniques, the structure, properties and electrocatalytic performance in the hydrogen evolution reaction (HER)of the Ni(OH)2/Ni/g-C3N4composite were then investigated.

    1 Experimental

    1.1 Synthesis of g-C3N4

    The bulk g-C3N4was prepared based on previous report[11].Briefly, 15 g urea was added into an alumina crucible with a cover and heated at 520 °C in a muffle furnace for 2.5 h with a heating rate of 10 °C/min.The solid product was ground into yellow powder and dispersed into deionized water with vigorous ultrasound for 3.0 h, followed by drying at 60 °C for 12 h, to get the g-C3N4nanosheets.

    1.2 Synthesis of Ni(OH)2/Ni/g-C3N4 composite

    Ni(OH)2/Ni/g-C3N4composite was prepared by using the similar liquid phase impregnation combined within-situreduction, as reported in the literature[15].Briefly, 49.53 mg of Ni(NO3)2·6H2O was dissolved in 20 mL of deionized water and 22.58 mg of polyvinyl alcohol (PVA) was then added; the mixture was stirred at room temperature for 1 h.After that, 200 mg of g-C3N4was added to the above solution and stirred for 2 h.In an ice water bath, 4.8 mL of NaBH4(30 mg) was added dropwise and stirred vigorously for 5 h.The precipitate was centrifuged and washed for 3 times with 20 mL of deionized water, followed by drying at 60 °C for 12 h.

    1.3 Microbial electrolysis cell (MEC) construction

    The same single-chamber MECs were used as reported in the reference[16].Plexiglas with a total volume of 80 mL was used in the single-chamber MECs, in which 20 mL of activated sludge from a local coking wastewater treatment plant (Yangjia Fortress,Taiyuan, China) and 60 mL of nutrient solution were injected at the same time.The anode was made of carbon felt (2 × 4 × 1 cm3) that had been running for 3 months in a dual chamber MFCs.In this work, three cathodes were compared, including the bare carbon paper electrode, the Pt electrode and the prepared Ni(OH)2/Ni/g-C3N4composite coating on CP.The distance between the anode and the cathode was 1.5 cm.The anode, cathode, and external power source (HB 17301 SL; HOSSONI, Inc., China) are connected in a loop by using a sheathed copper wire.

    The reactor was operated in batch mode with a voltage of 0.7 V and placed in a constant temperature incubator at 35 °C.When the hydrogen production current of MEC was lower than 0.5 mA, 60 mL fresh nutrient solution was replaced and N2was injected for 15 min, while the electrode was exposed to air to prevent the growth of methanogens[17].After one cycle, all the catholyte were replaced, leaving the microorganisms at the bottom of the chamber.

    1.4 Characterization

    The crystalline phase of all samples was determined by X-ray diffraction (XRD) on a diffractometer (XRD-6000).The morphology, particle size and particle agglomeration were characterized by scanning electron microscopy (SEM) (JSM-7001F) and transmission electron microscopy (TEM) (JEM 2010).The chemical valence of various ions was analyzed by X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi).

    An electrochemical workstation (CHI660D,Chenhua, China) was used to perform all electrochemical tests.A single electrode was electrochemically measured in a three-electrode system with 100 mmol/L phosphate buffer solution (PBS) (pH = 7) as electrolyte,in which the as-prepared cathode electrodes were used as the working electrode.The Ag/AgCl electrode and Pt electrode were used as reference electrodes and counting electrodes, respectively.Linear sweep voltammetry (LSV) tests were conducted by sweeping the potential from -2.0 to 1.0 V with a scan rate of 10 mV/s.The potential sweep of the Tafel curve is-1.0-0.4 V with a scan rate of 10 mV/s.The amplitude of electrochemical impedance measurement (EIS) was 10 mV, and the frequency was 100 kHz to 10 MHz.The current was recorded with a multimeter (UNI-T 803, Uni-Trend Electronics Co., Ltd., Shanghai, China)every half an hour.The gas composition was analyzed by a gas chromatograph (Thermo Fisher Scientific, Wal tham, MA, USA), with argon as the carrier gas and packed TDX-01 column; TCD was used to detect H2and N2, whereas FID was used to measure CH4and CO2.

    The catalytic performance in MEC was evaluated based on hydrogen recovery rate (RH2, %), cathode hydrogen recovery rate (Rcat, %), H2production rate (QH2,m3-H2/(m3·d)), energy recovery rate (ηw) and overall energy recovery rate (ηw+s), as reported in the reference[18].

    2 Results and discussion

    2.1 Physical characteristics of Ni(OH)2/Ni/g-C3N4

    The SEM images shown in Figure 1 indicate that pure g-C3N4presents a flaky shape (Figure 1(a)) and the Ni(OH)2and Ni particles are embedded into the g-C3N4flakes (Figure 1(b)).The Ni(OH)2/Ni/g-C3N4electrode shows the shape of flower-like nanoclusters,with a rougher surface than pure g-C3N4.It is well known that the g-C3N4plane possesses many desirable coordination sites, including nitrogen lone-pair of electrons within its framework and a large number of oxygen-containing groups at the edges[19].Current results suggest that through mixing with g-C3N4nanosheets, the majority of metal ions are bonded to the inner surface of g-C3N4via strong chemical bonds,whereas fewer metal-ions are bound to the edge of g-C3N4by weak electrostatic force[20].

    Figure 1 SEM images of g-C3N4 (a) and Ni(OH)2/Ni/g-C3N4 catalysts (b); TEM image of Ni(OH)2/Ni/g-C3N4 catalyst (c); XRD patterns of g-C3N4 and Ni(OH)2/Ni/g-C3N4 catalysts (d); survey spectrum and XPS spectrum (inset) of O 1s for the Ni(OH)2/Ni/g-C3N4 catalyst (e); XPS spectra of Ni 2p (f), N 1s (g), and C 1s (h) for the Ni(OH)2/Ni/g-C3N4 catalyst; N2 sorption isotherms of g-C3N4(a) and Ni(OH)2/Ni/g-C3N4 catalysts (i)

    The TEM image of Ni(OH)2/Ni/g-C3N4(Figure 1(c))shows that Ni(OH)2and Ni particles grow uniformly and are staggeredly distributed in the interior of g-C3N4with two-dimensional lamellar structure; this feature can be reserved for subsequent hydrogen evolution reaction, to improve the efficiency of electrochemical reaction of electron transfer and promote the diffusion of hydrogen.

    The XRD pattern of g-C3N4displays two diffraction peaks at 27.4° and 13.1° (Figure 1(d)), which are indexed as (002) and (100) crystal planes of g-C3N4,respectively.The (002) peak represents the characteristic interlayer stacking of conjugated aromatic system,whereas the (100) peak represents the in-plane structural packing motif of tri-s-triazine units[11].The(002) and (100) diffraction peaks can also be clearly observed on Ni(OH)2/Ni/g-C3N4.Besides, Ni(OH)2/Ni/g-C3N4shows three new peaks at 9.5°, 33.4° and 59.3°,which can be assigned to the (003), (101) and (110)crystalline facets of hexagonal α-Ni(OH)2, respectively(JCPDS 22-0444)[21].In contrast, the diffraction peaks at 44.76°, 52.24° and 76.83° are attributed to the (111),(200) and (220) lattice planes of standard Ni (JCPDS 03-1051), respectively[10].

    The surface chemical state and electron transfer of Ni(OH)2/Ni/g-C3N4material were further characterized by XPS, as shown in Figure 1(e)-(h).The survey spectrum (Figure 1(e)) verifies the coexistence of Ni,N, C and O on the electrode surface.The XPS spectrum in Ni region of Ni(OH)2/Ni/g-C3N4shows signals at 855.5 and 861.2 eV, corresponding to the level of Ni 2p3/2, and peaks at 873.0 and 879.6 eV,belonging to the level of Ni 2p1/2.The peak intensity of Ni2+is higher than that of Ni0(ca.852.0 eV); in fact, the calculated ratio of Ni2+to Ni0is 48.5, suggesting that Ni2+probably plays the main catalytic role in hydrogen evolution.The N element exists in three forms of bonds(Figure 1(g)), including C-N=C of 398.4 eV, N-3C of 400.4 eV, and C-N-C of 399.3 eV, similar to those in g-C3N4.The C 1sspectrum (Figure 1(h)) can be deconvolved into two combined species; the peak at 284.8 eV comes from the C-N coordination in g-C3N4,whereas another peak at 287.9 eV belongs to the N-C=N bond.The peak in the O 1sXPS spectrum(Figure 1(e)) at 530.8 eV corresponds to the Ni-oxygen bond of Ni(OH)2/Ni/g-C3N4catalyst[10].All these results strongly suggest that Ni(OH)2and Ni particles have been embedded in g-C3N4.

    The N2adsorption-desorption isotherms (Figure 1(i)) were employed to determine the textural properties.Ni(OH)2/Ni/g-C3N4has a surface area of 72.38 m2/g,much higher than g-C3N4(39.53 m2/g), implying that Ni(OH)2/Ni/g-C3N4could have a better catalytic and adsorption activity than g-C3N4.

    2.2 Electrochemical performance

    The LSV curves of the CP, g-C3N4, Ni(OH)2/Ni/g-C3N4(with a loading ratio of 1/5, 2/5 and 3/5) and Pt catalysts are compared in Figure 2(a).Obviously, both g-C3N4and CP electrodes present lower electrocatalytic activity in HER, with high overpotentials.In contrast,Ni(OH)2/Ni/g-C3N4-1/5, Ni(OH)2/Ni/g-C3N4-2/5 and Ni(OH)2/Ni/g-C3N4-3/5 catalysts demand the overpotentials of 1950, 1881 and 1901 mV, respectively, to obtain the current densities of 100 A/cm2, whereas the Pt cathode needs an overpotential of 1498 mV.In particular,the Ni(OH)2/Ni/g-C3N4-2/5 catalyst exhibits higher electrocatalytic activity than other two Ni(OH)2/Ni/g-C3N4catalysts.g-C3N4presents a flake-like morphology with plenty of irregular interstitial pores[22], in which nickel particles are embedded.With an over high nickel loading, the pores within g-C3N4layers may be blocked,leading to the decline of hydrogen evolution performance.

    Figure 2 LSV curves of Ni(OH)2/Ni/g-C3N4 composite catalysts with different Ni loading ratios (a) and coating amounts (b);Tafel plot (points represent raw data, lines represent fitted data) (c); EIS spectra of bare CP, Ni(OH)2/Ni/g-C3N4 and Pt catalysts (d)(the illustration in Graph (d) is the equivalent circuit used to simulate the HER kinetics process); CP curves (e)

    For the Ni(OH)2/Ni/g-C3N4-2/5 catalyst with the optimum Ni loading, the effect of coating amount on the carbon paper on the electrochemical activity was then investigated (Figure 2(b)).For a coating amount of 2,4 and 6 mg, the overpotentials demanded are 1913, 1814 and 1881 mV, respectively, to obtain a current density of 100 A/cm2.In contrast, the Pt cathode demands an overpotential of 1498 mV.To sum up, the Ni(OH)2/Ni/g-C3N4-2/5 catalyst with a Ni loading ratio of 2/5 and coating amount of 4 mg on CP demonstrates the excellent electrocatalytic activity, comparable to that of the Pt electrode.

    The Tafel slope can be used to explore the kinetics of hydrogen evolution through the electrode process[23];low Tafel slopes are indicative of high hydrogen generation rate.As shown in Figure 2(c), the Tafel slopes of CP, g-C3N4, Ni(OH)2/Ni/g-C3N4, and Pt catalysts are 95.27, 85.11, 44.3 and 35.81 mV/dec,respectively.It is widely believed that the mechanism of HER consists of three primary reactions named the Volmer, Heyrovsky and Tafel reactions[24].Volmer reaction is an electrochemical reaction that generates hydrogen atoms adsorbed to the surface of the electrode,Heyrovsky reaction is electrochemical desorption,whereas Tafel reaction undergoes another recombination step.

    Above three electrodes (CP, Ni(OH)2/Ni/g-C3N4,and Pt) should abide by the Volmer-Heyrovsky reaction path, with Volmer reaction as the rate determining step[25].

    To investigate the electrode kinetics, EIS measurements were performed with a cathode overpotential of 1500 mV.The Armstrong’s equivalent circuit on account of the slow discharge mechanism(Figure 2(d)) was obtained by fitting via Zsimpwin software.Charge transfer resistance (Rct) was obtained from the semi-circular diameter of the EIS Nyquist diagram, to evaluate the charge transfer process; small charge transfer resistances are indicative of excellent charge transfer property[26].Obviously, the charge transfer resistance of Ni(OH)2/Ni/g-C3N4(10.86 Ω) is far less than that of CP (30.2 Ω) and g-C3N4(12.25 Ω),and a little more than that of Pt (7.473 Ω), indicating the greatly promoted electron transfer ability and enhanced activity of the Ni(OH)2/Ni/g-C3N4catalyst, in accordance with the LSV and Tafel test results; that is,the Ni(OH)2/Ni/g-C3N4catalyst exhibits high electrocatalytic activity owing to its large surface area and excellent electron transfer ability.

    In addition, the electrochemical stability the Ni(OH)2/Ni/g-C3N4catalyst was also investigated via chronoamperometry (CP) at constant current density of 2 mA/cm2for 1000 s.As shown in Figure 2(e), after experiencing a short voltage decrease, the potential keeps stable within 1000 s, demonstrating the excellent stability of the Ni(OH)2/Ni/g-C3N4catalyst.

    2.3 MEC tests

    Bare CP, Ni(OH)2/Ni/g-C3N4and Pt electrode were applied to MEC which had been running steadily for two months, to record the change of the current,collect the effluent gas, and measure the amount and composition of the effluent gas.As shown in Figure 3(a),for each cycle of the reaction, the current density of all electrodes first increases rapidly, then tends to be stable and finally decreases as nutrients have been depleted.High current densities indicate that additional electrons can be transferred to the cathode to generate hydrogen gas.During the five cycles of operation, the average current density of Ni(OH)2/Ni/g-C3N4catalyst is 16.75 A/m2, 184.4% larger than that of CP (5.89 A/m2)and 40.8% larger than that of Pt (11.89 A/m2), suggesting that the Ni(OH)2/Ni/g-C3N4catalyst possesses high and steady electrocatalytic activity and can be used for practical operation.

    The gas produced via the cathode in each cycle of MEC operation was collected through the drainage method and its composition was determined by gas chromatography.As shown in Figure 3(b), the Ni(OH)2/Ni/g-C3N4catalyst exhibits the highest gas production(16.5 mL) and the highest hydrogen production rate;the gas consists of H2(90.32%), CH4(7.5%) and CO2(2.18%).In contrast, the gas production by the bare CP is the lowest (only 7.9 mL; 60.13% H2, 10.82% CH4and 29.05% CO2), whereas the Pt cathode produces 10.2 mL of gas (78.80% H2, 7.01% CH4and 16.78%CO2).Consistent with the LSV and Tafel test results,the Ni(OH)2/Ni/g-C3N4catalyst in MEC has a higher hydrogen production rate than CP and Pt, demonstrating the excellent electrocatalytic activity of the Ni(OH)2/Ni/g-C3N4catalyst.Nevertheless, the Ni(OH)2/Ni/g-C3N4catalyst cathode produces 7.5% methane, slightly higher than the Pt cathode (7.01%), which might be ascribed to the enrichment of methanogens resulted from long time oxygen-free operation, leading to a decrease of the hydrogen purity.

    Table 1 gives the hydrogen recovery rate (RH2, %),cathode hydrogen recovery rate (Rcat, %), H2production rateQH2, m3-H2/(m3·d)), energy recovery rate (ηw) and overall energy recovery rate (ηw+s) of different cathodes in MEC.Obviously, the Ni(OH)2/Ni/g-C3N4catalyst exhibits prominent hydrogen evolution activity and can even be used as an alternative of Pt as a highly efficient hydrogen evolution catalyst.

    Figure 3 Current generation for the cathode electrodes in the MEC (a) and the composition of MEC effluent gas per cycle (b)

    Table 1 Energy efficiencies and hydrogen production in the MEC with different cathodes

    3 Conclusions

    The Ni(OH)2/Ni/g-C3N4composite catalyst was prepared through liquid phase impregnation withinsitureduction, which was used to compose the cathode with carbon paper (CP) for the microbial electrolysis cell (MEC).With the help of SEM, TEM, XRD, XPS and electrochemical analysis techniques, the structure,properties and electrocatalytic performance in hydrogen evolution of the Ni(OH)2/Ni/g-C3N4composite were investigated.

    The results indicate that the Ni(OH)2/Ni/g-C3N4catalyst exhibits excellent electrochemical activity for hydrogen evolution in the MEC, owning to the synergy between flake-like C3N4and Ni.In particular, with the optimal Ni/g-C3N4mass ratio of 2/5 and carbon coating amount of 4 mg/cm2, the Ni(OH)2/Ni/g-C3N4-2/5 catalyst displays lower resistance and high H2production rate,even comparable to the Pt catalyst, suggesting that the Ni(OH)2/Ni/g-C3N4catalyst with excellent stability and electrocatalytic activity could be a potential candidate of HER catalyst in MEC.

    女的被弄到高潮叫床怎么办| 亚洲四区av| 如何舔出高潮| 精品99又大又爽又粗少妇毛片| 韩国高清视频一区二区三区| 国产免费视频播放在线视频| √禁漫天堂资源中文www| 国产精品人妻久久久影院| 精品国产一区二区久久| 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 精品一区二区免费观看| av免费在线看不卡| 亚洲国产欧美在线一区| 自拍欧美九色日韩亚洲蝌蚪91| xxx大片免费视频| 国产亚洲午夜精品一区二区久久| 97在线视频观看| 男女国产视频网站| 日韩三级伦理在线观看| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 精品第一国产精品| 丰满迷人的少妇在线观看| 黑人欧美特级aaaaaa片| 国产极品粉嫩免费观看在线| 午夜av观看不卡| 婷婷成人精品国产| 国产精品一二三区在线看| 婷婷成人精品国产| 纯流量卡能插随身wifi吗| 亚洲美女搞黄在线观看| 97在线人人人人妻| 精品国产一区二区三区四区第35| 久久久精品免费免费高清| 亚洲男人天堂网一区| 亚洲人成77777在线视频| 成年美女黄网站色视频大全免费| 香蕉丝袜av| 欧美人与性动交α欧美精品济南到 | 国产探花极品一区二区| 日本色播在线视频| 桃花免费在线播放| 久久综合国产亚洲精品| 十八禁高潮呻吟视频| 久久精品国产a三级三级三级| 97在线人人人人妻| 宅男免费午夜| 久久久久久久久久久免费av| 男女下面插进去视频免费观看| 欧美精品人与动牲交sv欧美| 亚洲精品日韩在线中文字幕| 午夜av观看不卡| 亚洲av.av天堂| 国产精品一区二区在线不卡| 91精品伊人久久大香线蕉| 九色亚洲精品在线播放| 一级黄片播放器| 伊人久久大香线蕉亚洲五| 午夜福利乱码中文字幕| 国产精品不卡视频一区二区| 两个人免费观看高清视频| 久久久久久久亚洲中文字幕| 巨乳人妻的诱惑在线观看| 久久婷婷青草| 亚洲精品美女久久av网站| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡 | 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到 | 亚洲国产精品成人久久小说| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 高清av免费在线| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| 国产片特级美女逼逼视频| 欧美在线黄色| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 建设人人有责人人尽责人人享有的| 国产午夜精品一二区理论片| 免费观看a级毛片全部| av在线播放精品| 女的被弄到高潮叫床怎么办| 一级毛片黄色毛片免费观看视频| 成年女人毛片免费观看观看9 | 可以免费在线观看a视频的电影网站 | 韩国av在线不卡| 亚洲视频免费观看视频| 国产黄频视频在线观看| 中文字幕av电影在线播放| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜制服| 99热网站在线观看| 久久人人爽av亚洲精品天堂| 18+在线观看网站| 久久久久久人妻| 久久精品国产亚洲av天美| 亚洲图色成人| 深夜精品福利| 免费观看在线日韩| 日本av免费视频播放| 在线观看三级黄色| 咕卡用的链子| 一区二区日韩欧美中文字幕| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 日韩制服丝袜自拍偷拍| 久久99一区二区三区| 97在线视频观看| 久久人人爽人人片av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区在线观看99| 狂野欧美激情性bbbbbb| 久久国产精品男人的天堂亚洲| 亚洲成人av在线免费| 国产精品成人在线| 国产精品 欧美亚洲| 亚洲国产精品成人久久小说| 国产乱来视频区| 国产日韩欧美亚洲二区| 91精品三级在线观看| 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| 看免费av毛片| 久久久久久久亚洲中文字幕| 国产精品 国内视频| 在线观看美女被高潮喷水网站| 中文字幕制服av| 色网站视频免费| 亚洲精品国产一区二区精华液| 在线免费观看不下载黄p国产| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 国产综合精华液| 亚洲美女搞黄在线观看| 国产在线视频一区二区| av在线观看视频网站免费| 多毛熟女@视频| 欧美日韩精品网址| 午夜福利视频在线观看免费| 久久亚洲国产成人精品v| 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 9色porny在线观看| av不卡在线播放| 国产精品麻豆人妻色哟哟久久| 国产高清不卡午夜福利| 中文字幕最新亚洲高清| 日韩制服丝袜自拍偷拍| 这个男人来自地球电影免费观看 | 国产精品熟女久久久久浪| 午夜免费观看性视频| 国产黄频视频在线观看| www日本在线高清视频| 亚洲欧美成人精品一区二区| 视频区图区小说| 在现免费观看毛片| 性高湖久久久久久久久免费观看| 免费av中文字幕在线| 丝袜在线中文字幕| 美女大奶头黄色视频| 久久综合国产亚洲精品| 欧美97在线视频| 国产精品偷伦视频观看了| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 热99久久久久精品小说推荐| 超碰97精品在线观看| 丁香六月天网| 性高湖久久久久久久久免费观看| 亚洲三级黄色毛片| 久热这里只有精品99| 精品第一国产精品| 少妇的逼水好多| 欧美日韩av久久| 国产成人a∨麻豆精品| 国产国语露脸激情在线看| 女性生殖器流出的白浆| 国产xxxxx性猛交| 久久国内精品自在自线图片| 亚洲内射少妇av| 亚洲精品久久久久久婷婷小说| 亚洲第一av免费看| 天天躁日日躁夜夜躁夜夜| 少妇精品久久久久久久| 超碰成人久久| www.精华液| 18在线观看网站| 80岁老熟妇乱子伦牲交| 韩国av在线不卡| 国产免费视频播放在线视频| 777米奇影视久久| 欧美精品人与动牲交sv欧美| 人体艺术视频欧美日本| 在线天堂中文资源库| 久久亚洲国产成人精品v| 999久久久国产精品视频| 亚洲一区中文字幕在线| av卡一久久| 国产精品女同一区二区软件| 国产男人的电影天堂91| 五月伊人婷婷丁香| 永久网站在线| 不卡视频在线观看欧美| 欧美97在线视频| 亚洲av在线观看美女高潮| 麻豆乱淫一区二区| 亚洲五月色婷婷综合| 美女国产高潮福利片在线看| 久久精品国产综合久久久| 久久青草综合色| 青春草亚洲视频在线观看| freevideosex欧美| 欧美av亚洲av综合av国产av | 国产一区二区 视频在线| 美女国产视频在线观看| av在线观看视频网站免费| 中文天堂在线官网| 最近最新中文字幕大全免费视频 | 99国产综合亚洲精品| 久久久久国产网址| 熟女av电影| 成年动漫av网址| 天天影视国产精品| 久久久久久久亚洲中文字幕| 亚洲精品国产色婷婷电影| 精品一区在线观看国产| 一边亲一边摸免费视频| 成年女人毛片免费观看观看9 | 午夜久久久在线观看| 亚洲一级一片aⅴ在线观看| 色吧在线观看| 日日撸夜夜添| 中文字幕人妻熟女乱码| 亚洲美女视频黄频| 又粗又硬又长又爽又黄的视频| 精品久久蜜臀av无| 69精品国产乱码久久久| 午夜日本视频在线| 免费高清在线观看视频在线观看| 男的添女的下面高潮视频| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久久大奶| 国产成人精品久久二区二区91 | 免费av中文字幕在线| 多毛熟女@视频| 天堂8中文在线网| 久久精品国产综合久久久| 好男人视频免费观看在线| 国产在视频线精品| www日本在线高清视频| 美女国产高潮福利片在线看| 亚洲精品日本国产第一区| www日本在线高清视频| 国产片特级美女逼逼视频| 下体分泌物呈黄色| 亚洲国产精品成人久久小说| 秋霞在线观看毛片| 精品国产超薄肉色丝袜足j| 啦啦啦啦在线视频资源| 性色av一级| 熟妇人妻不卡中文字幕| 午夜福利一区二区在线看| 18+在线观看网站| 国产男女超爽视频在线观看| 麻豆av在线久日| 免费人妻精品一区二区三区视频| 亚洲精品久久久久久婷婷小说| 国产黄频视频在线观看| 久久99蜜桃精品久久| 婷婷色综合大香蕉| 两性夫妻黄色片| www.精华液| 我的亚洲天堂| 麻豆精品久久久久久蜜桃| 亚洲国产毛片av蜜桃av| www.av在线官网国产| 亚洲精品日韩在线中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜福利影视在线免费观看| 国产精品国产三级国产专区5o| 亚洲欧美色中文字幕在线| 亚洲欧美成人精品一区二区| 黄频高清免费视频| 性少妇av在线| 人妻人人澡人人爽人人| 亚洲欧美精品综合一区二区三区 | 丁香六月天网| 精品少妇黑人巨大在线播放| 伊人亚洲综合成人网| av免费在线看不卡| 在线观看美女被高潮喷水网站| 97人妻天天添夜夜摸| 丝袜喷水一区| 久久鲁丝午夜福利片| 午夜日本视频在线| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡 | 中文字幕精品免费在线观看视频| 婷婷色av中文字幕| 少妇的逼水好多| 香蕉丝袜av| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 国产免费视频播放在线视频| 国产精品不卡视频一区二区| 777米奇影视久久| 涩涩av久久男人的天堂| 香蕉国产在线看| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 久久久久国产一级毛片高清牌| 久久久久久人妻| 一级片免费观看大全| 一本久久精品| 免费大片黄手机在线观看| 国产精品一区二区在线不卡| 男女午夜视频在线观看| 如日韩欧美国产精品一区二区三区| 久久久久国产精品人妻一区二区| 99国产综合亚洲精品| 日日爽夜夜爽网站| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 国产在视频线精品| 在线天堂中文资源库| 日本wwww免费看| 如何舔出高潮| 免费高清在线观看视频在线观看| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线| 亚洲综合精品二区| 日韩熟女老妇一区二区性免费视频| 多毛熟女@视频| 青春草视频在线免费观看| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 亚洲国产最新在线播放| 亚洲成色77777| 国产高清国产精品国产三级| 国产毛片在线视频| 男女高潮啪啪啪动态图| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| 咕卡用的链子| kizo精华| 国产亚洲欧美精品永久| 成年动漫av网址| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 亚洲色图 男人天堂 中文字幕| 热re99久久精品国产66热6| 制服丝袜香蕉在线| 又黄又粗又硬又大视频| 亚洲中文av在线| 久久 成人 亚洲| 热99久久久久精品小说推荐| 男人操女人黄网站| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 亚洲四区av| 国产av码专区亚洲av| videossex国产| 99精国产麻豆久久婷婷| 久久韩国三级中文字幕| 精品国产露脸久久av麻豆| 久久午夜福利片| 蜜桃在线观看..| 成人漫画全彩无遮挡| 1024香蕉在线观看| 日本wwww免费看| 精品亚洲乱码少妇综合久久| 亚洲综合色惰| 黑人巨大精品欧美一区二区蜜桃| 成人国产av品久久久| 人人妻人人添人人爽欧美一区卜| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| h视频一区二区三区| 2018国产大陆天天弄谢| 日本91视频免费播放| 1024视频免费在线观看| 秋霞在线观看毛片| 人成视频在线观看免费观看| 国产精品免费视频内射| 香蕉丝袜av| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 赤兔流量卡办理| 国产精品一区二区在线不卡| 国产av一区二区精品久久| 欧美少妇被猛烈插入视频| 丝袜喷水一区| √禁漫天堂资源中文www| 一个人免费看片子| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 国产成人免费观看mmmm| 国产乱人偷精品视频| 色吧在线观看| 亚洲少妇的诱惑av| 亚洲一级一片aⅴ在线观看| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 高清在线视频一区二区三区| 一区二区av电影网| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 97在线人人人人妻| 大码成人一级视频| 国产亚洲av片在线观看秒播厂| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 免费高清在线观看视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 精品视频人人做人人爽| 在线观看三级黄色| 欧美亚洲日本最大视频资源| 欧美bdsm另类| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 曰老女人黄片| 纵有疾风起免费观看全集完整版| 天天躁日日躁夜夜躁夜夜| 亚洲在久久综合| 青春草亚洲视频在线观看| 欧美人与善性xxx| 国产高清国产精品国产三级| 国产成人精品福利久久| 久久人人爽av亚洲精品天堂| 亚洲国产成人一精品久久久| 电影成人av| 超碰成人久久| 男女边摸边吃奶| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 在现免费观看毛片| 丝袜人妻中文字幕| 97精品久久久久久久久久精品| 国产一区二区三区av在线| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 亚洲av综合色区一区| 日韩人妻精品一区2区三区| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡| 好男人视频免费观看在线| 亚洲国产精品一区二区三区在线| 成年人午夜在线观看视频| 久久99精品国语久久久| 国产精品国产三级国产专区5o| 午夜av观看不卡| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 99热全是精品| 99热国产这里只有精品6| 免费看av在线观看网站| 国产一区二区在线观看av| 18禁动态无遮挡网站| 成人国产av品久久久| 日日摸夜夜添夜夜爱| 午夜福利,免费看| 美女福利国产在线| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 99国产综合亚洲精品| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| av卡一久久| 永久网站在线| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 青草久久国产| 国产无遮挡羞羞视频在线观看| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 欧美国产精品一级二级三级| 少妇的逼水好多| 日日摸夜夜添夜夜爱| 岛国毛片在线播放| av女优亚洲男人天堂| 在线看a的网站| 国产亚洲一区二区精品| 两性夫妻黄色片| 涩涩av久久男人的天堂| 在线观看三级黄色| 精品人妻熟女毛片av久久网站| 久久热在线av| 丝袜美腿诱惑在线| 国产精品熟女久久久久浪| 街头女战士在线观看网站| 在线观看www视频免费| 日韩一卡2卡3卡4卡2021年| 久久精品国产亚洲av天美| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 男男h啪啪无遮挡| videosex国产| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 蜜桃国产av成人99| 亚洲欧美成人综合另类久久久| 久久国产精品男人的天堂亚洲| 中文精品一卡2卡3卡4更新| 在线精品无人区一区二区三| 91在线精品国自产拍蜜月| 狠狠婷婷综合久久久久久88av| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线观看免费高清www| 美女中出高潮动态图| 综合色丁香网| 看十八女毛片水多多多| 下体分泌物呈黄色| 亚洲精品自拍成人| av线在线观看网站| 各种免费的搞黄视频| 国产伦理片在线播放av一区| 亚洲国产精品一区三区| 精品国产一区二区三区久久久樱花| 少妇 在线观看| 91国产中文字幕| 精品人妻一区二区三区麻豆| 2018国产大陆天天弄谢| 黄色一级大片看看| 丝袜美足系列| 汤姆久久久久久久影院中文字幕| 久热久热在线精品观看| 一边亲一边摸免费视频| 热99久久久久精品小说推荐| 咕卡用的链子| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 又大又黄又爽视频免费| videos熟女内射| 在线观看国产h片| 99re6热这里在线精品视频| 在现免费观看毛片| 丝袜人妻中文字幕| 老女人水多毛片| 国产男人的电影天堂91| 美女高潮到喷水免费观看| 丰满少妇做爰视频| 91aial.com中文字幕在线观看| 精品少妇一区二区三区视频日本电影 | 成人18禁高潮啪啪吃奶动态图| 看免费成人av毛片| 啦啦啦在线免费观看视频4| 亚洲人成77777在线视频| 夫妻性生交免费视频一级片| 国产日韩欧美视频二区| 99久久中文字幕三级久久日本| 午夜免费观看性视频| 精品国产国语对白av| 久久人妻熟女aⅴ| 欧美日韩亚洲高清精品| 日韩精品有码人妻一区| 80岁老熟妇乱子伦牲交| 午夜激情久久久久久久| 成人亚洲精品一区在线观看| 在线免费观看不下载黄p国产| 国产一区二区三区av在线| 亚洲国产看品久久| 黄片播放在线免费| 边亲边吃奶的免费视频| 三级国产精品片| 国产精品人妻久久久影院| 日韩一区二区视频免费看| 亚洲成人手机| 在线看a的网站| 日韩制服丝袜自拍偷拍| 国产高清国产精品国产三级| 看十八女毛片水多多多| 青春草国产在线视频| 看非洲黑人一级黄片| 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 国产精品 国内视频| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 黄色 视频免费看| 99热网站在线观看| 赤兔流量卡办理| 我要看黄色一级片免费的| 日本av免费视频播放| 国产亚洲精品第一综合不卡| 免费观看性生交大片5| 色网站视频免费| 如何舔出高潮| av福利片在线| 热99久久久久精品小说推荐| 一本大道久久a久久精品| 亚洲一区二区三区欧美精品| 亚洲欧美色中文字幕在线| 亚洲国产精品一区三区| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 亚洲内射少妇av| 在线精品无人区一区二区三|