• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity

    2021-02-23 09:08:30HizhenDingJihuiXuLeiJingChenDongQiMengSjidurRehmnJunfengWngZhishenGeVldimirYuOsipovHongBi
    Chinese Chemical Letters 2021年11期

    Hizhen Ding,Jihui Xu,Lei Jing,Chen Dong,Qi Meng,Sjid ur Rehmn,Junfeng Wng,Zhishen Ge,Vldimir Yu.Osipov,d,Hong Bi,*

    a School of Chemistry and Chemical Engineering,Anhui Key Laboratory of Modern Biomanufacturing,Anhui University,Hefei 230601,China

    b High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    c CAS Key Laboratory of Soft Matter Chemistry,Department of Polymer Science and Engineering,University of Science and Technology of China,Hefei 230601,China

    d Ioffe Institute,Russian Academy of Sciences,St.Petersburg 194021,Russian Federation

    ABSTRACT Up to date,solid-state carbon dots(CDs)with bright red fluorescence have scarcely achieved due to aggregation-caused quenching(ACQ)effect and extremely low quantum yield in deep-red to near infrared region.Here,we report a novel fluorine-defects induced solid-state red fluorescence(λem = 676 nm,the absolute fluorescence quantum yields is 4.17%)in fluorine,nitrogen and sulfur co-doped CDs(F,N,SCDs),which is the first report of such a long wavelength emission of solid-state CDs.As a control,CDs without fluorine-doping(N,S-CDs)show no fluorescence in solid-state,and the fluorescence quantum yield/emission wavelength of N,S-CDs in solution-state are also lower/shorter than that of F,N,S-CDs,which is mainly due to the F-induced defect traps on the surface/edge of F,N,S-CDs.Moreover,the solidstate F,N,S-CDs exhibit an interesting temperature-sensitive behavior in the range of 80–420 K,with the maximum fluorescence intensity at 120 K,unveiling its potential as the temperature-dependent fluorescent sensor and the solid-state light-emitting device adapted to multiple temperatures.

    Keywords:Carbon dots Fluorine defects Solid-state fluorescence Thermosensitivity Red emission

    Carbon dots(CDs),as one of the most promising carbonbased nanomaterials with an excellent photoluminescent property,high photostability and extremely low toxicity,have potential applications in bioimaging,information encryption,photocatalysis,sensors,optoelectronic devices,and so on[1–7].However,similar to many organic fluorophores,the fluorescence of CDs is often quenched in solid state or at aggregated state due to the aggregation-caused quenching(ACQ)effect,which greatly limits the practical applications of CDs in solid-state[8,9].Since Tang and his co-workers first found the aggregation-induced emission(AIE)phenomenon in a certain organic chromophores[10,11],a booming reports on AIE dots have been published in the past decade,but solid-state fluorescence(SSF)of CDs,particularly red-emissive SSF-CDs were seldom reported.Recently,Chenet al.introduced poly(vinyl alcohol)onto CDs to restrict theπ-πinteraction between graphitic cores and thus achieved a yellow-greenish SSF of the CDs[12].Yang and his co-workers proposed that the SSF-CDs might be caused by supramolecular cross-linking between adjacent particles[13,14].More Recently,Yanget al.reported an interesting red AIE of CDs in the solid-state through restriction of the hydrophobic disulfide bonds rotation in the CDs and thus reducing the non-radiative transition[15].So far,synthesis of SSF-CDs with a longer wavelength emission in deep-red to near infrared(NIR)region is still a great challenge,and how to prevent ACQ of CDs in solid-state has not been made clear yet.

    Heteroatoms doping(e.g.,nitrogen(N),sulfur(S),boron(B)phosphorus(P),fluorine(F))is one of the most commonly used methods to tune the optical properties of CDs[16–18].Among them,F-doping has become a general strategy to regulate the surface electronic state and conformation on the CDs,due to the greatest electronegativity of F atoms and the highly polarized nature of C-Fxbonds[19–22].Several recent reports on F-doped CDs all show large absorption and emission red-shifts that can be used forin vivobioimaging[23,24].Notably,the N-CDs-F in a donor-πaccepter conjugated structure showed strong absorption & emission in deep red to NIR region,which can be attributed to the reduced gap between Highest Occupied Molecular Orbital(HOMO)and Lowest Unoccupied Molecular Orbital(LUMO)levels for the N-CDs-F[25].This result agrees well with the Density Functional Theory(DFT)calculation of F,N co-doped carbon microspheres by Zhouet al.,they found that F atoms can induce redistribution of charges of N atoms and then reduce the HOMO-LUMO gap[26].Unfortunately,all of the above-mentioned F-doped CDs or F,N codoped CDs showed no SSF,although they displayed bright fluorescence in solution state.

    In this work,we report the synthesis of a novel kind of redemissive SSF-CDs(λem= 676 nm)by F,N and S co-doping through a facile,one-pot solvothermal approach.The yielded F,N,S-CDs show bright fluorescence in both solid-state and solution state.However,the control sample without F-doping(N,S-CDs)shows no SSF at all.Hence,the key role that F-defectson played in facilitating the SSF of CDs is investigated.More interestingly,the SSF of F,N,S-CDs presents an unique temperature-sensitive behavior(80–420 K),showing the maximum fluorescence intensity at 120 K.Besides,the F,N,S-CDs show a "chameleon-like" phenomenon in mixed solvents of H2O/dimethyl sulfoxide(DMSO).

    As shown in Scheme 1,the F,N,S-CDs were synthesized by a simple one-pot solvothermal method at 180 °C,using DMSO as the solvent,citric acid(CA)as the carbon source and 3-fluoroaniline as the F and N doping source.Obviously,the F,N,S-CDs show a red fluorescence in the solid-state while a yellow fluorescence in the solution-state.In contrast,the control sample(N,S-CDs)synthesizedviareplacing 3-fluoroaniline by aniline,show no SSF at all but a green fluorescence in the solution-state.

    Scheme 1.Schematic diagram of the synthesis procedures and optical properties of F,N,S-CDs and N,S-CDs.

    A typical TEM image(Fig.1a)of the as-synthesized F,N,S-CDs and the corresponding size distribution histogram show that the F,N,S-CDs are mono-dispersed with an average size of 5.72 nm.Fig.1b shows a high-resolution TEM(HRTEM)image of an individual F,N,S-CD,which reveals the high crystallinity of the carbon core.The spacing of lattice fringe is 0.204 nm,which corresponds to the(100)plane of graphite carbon[27–29].Compared with the F,N,S-CDs,the N,S-CDs have a smaller average size(2.69 nm),as demonstrated in Fig.S1(Supporting information).Besides,we found that with the addition of poor solvent H2O into the tetrahydrofuran(THF)solution containing the F,N,S-CDs,an aggregation phenomenon occurred.When the volume ratio of THF to H2O is 1:1,as shown in Fig.1c,the tiny F,N,S-CDs will aggregate into larger spherical particles with an average size of 64 nm.While further increasing the proportion of H2O to 1:9,the F,N,S-CDs will aggregate more severely and then crosslink with each other to form a network-like structure(Fig.1d).Attractively,the photographs in Fig.1e show(fwfrom 0 to 95%)under 365 nm UV irradiation(the lower row).The corresponding photoluminescence(PL)spectra(Fig.S2 in Supporting information)confirm that with the increase of H2O fraction in the mixed solvents of H2O/DMSO,the original peak at 550 nm gradually decreases,while the peak at 663 nm has no obvious change.This interesting "smart" AIE phenomenon during the aggregation process may be due to the fluorescence emission(550 nm)from the carbon core or surface states(oxygen- and nitrogen-containing functional groups)of CDs being quenched,while the emission peak of 663 nm caused by F doping can resist self-quenching effect.

    Fig.1.(a)TEM image(inset:the corresponding particle size distribution histogram)and(b)HR-TEM of F,N,S-CDs in THF; TEM image of F,N,S-CDs in the THF/H2O mixtures with volume ratios of(c)1:1 and(d)1:9.(e)Photographs of the F,N,S-CDs in H2O/DMSO mixtures with different H2O fractions(fw = 0-95%)taken under sunlight(upper row)and 365 nm UV irradiation(lower row).

    Fig.2.Raman spectra of(a)F,N,S-CDs and(b)N,S-CDs(λex = 532 nm).(c)FTIR spectra and(d)19F NMR spectra of the F,N,S-CDs and the N,S-CDs.

    Figs.2a and b show the Raman spectra of the F,N,S-CDs and the N,S-CDs under 532 nm excitation,respectively,where two prominent bands at 1390 cm-1(D band)and 1602 cm-1(G band)are observed.The intensity ratio of D band to G band(ID/IG)is a common method to determine the structural changes of graphitic crystalline domains(sp2-hybridized carbon atoms)and disordered domains(sp3-hybridized or amorphous carbon)in CDs[30].Here,a much higherID/IGratio(0.992)for the F,N,S-CDs than that for the N,S-CDs(0.481)indicates an increased content of disordered carbon domains and defects in the former due to F-doping.In addition,we have fitted another A band in the Raman spectra of CDs,which is based on sp2point defects,especially non-hexagonal rings[31,32].The appearance of A band indicates that some five or seven-membered carbon ring defects have been generated in the carbon core during the synthesis of CDs.Compared with that of N,S-CDs,the intensity ratio of A band to G band(IA/IG)of F,N,S-CDs has no obvious change,revealing that the more disordered structure or defects caused by F-doping mainly locate on the surface of F,N,S-CDs,and thus have not affected the carbon cores.Additionally,the broadened XRD pattern of the F,N,S-CDs(Fig.S3 in Supporting information)than that of the N,S-CDs suggests a poorer crystallinity,which is in accordance with the result of Raman spectra analysis[33,34].

    The surface groups and chemical compositions of the F,N,S-CDs and N,S-CDs are identified by Fourier transform infrared(FT-IR),Xray photoelectron(XPS)and19F NMR.As shown in Fig.2c,the FTIR spectra indicate the presences of N–H/O–H(3012–3680 cm-1),C=O/C=N(1693 cm-1),C–N(1474 cm-1)and C-S(1173 cm-1)bonds in both samples[35,36],except an unique vibration peak of C–F bond(1242 cm-1)present in the F,N,S-CDs[25,37].Furthermore,Fig.2d shows the19F NMR spectra of the F,N,S-CDs and N,SCDs in deuterated DMSO.Obviously,there are three chemical shifts in the range of -110 to -120 ppm for the sample of F,N,S-CDs,which might be attributed to the C–F bonds[38,39]linked with carbon atoms at different chemical environments,such as i)the six-member carbon ring derived from the 3-fluoroaniline residue group containing aniline-N,ii)the graphitic carbon core,and iii)the five-member ring containing pyrrolic-N.In contrast,the19F NMR spectrum of the N,S-CDs shows no trace of F at all.More evidently,as shown in Fig.S4(Supporting information),the water contact angles of the solid samples of F,N,S-CDs and N,S-CDs are 99.5° and 49.5°,respectively.This result further confirms the existence of hydrophobic C–F bonds on the surface of F,N,S-CDs,which increases the surface hydrophobicity remarkably[40].

    Next,the full-survey XPS spectra(Fig.3a)confirm the existence of F element in the sample of F,N,S-CDs whereas the absence of F in the sample of N,S-CDs.Correspondingly,Table 1 lists the main elements and their atomic ratios in both samples collected from their XPS data.It shows that the sample of F,N,S-CDs is mainly consisted of C(70.44%,atomic percentage),N(8.29%),O(11.33%),S(1.56%)and F(8.39%).Notably,the atomic ratio of F:Nis still approaching to 1:1,originated from the source material of 3-fluoroaniline.In addition,the high-resolution XPS spectrum of C 1s(Fig.3b)shows four peaks at 284.8,285.5,286.7,and 288.6 eV,which can be assigned for C–C/C=C,C–N/C–O/C–S,C=O/C=N,and C–F bonds,respectively[41,42].The N 1s spectrum(Fig.3c)can be de-convoluted into three parts such as pyridinic-N(398.6 eV),aniline-N(399.5 eV)and pyrrolic-N(400.5 eV)peaks[43].The spectrum of O 1s can be de-convoluted into three peaks at 531.3 532.1 and 533.2 eV,ascribed to C=O,C–O and O=C–O,respectively(Fig.3d)[44].The high-resolution spectrum of S 2p(Fig.3e)reveals the presence of C-S-C bond,which is due to the participation of solvent DMSO in the formation of CDs[41].Particularly,the high-resolution spectrum of F 1s(Fig.3f)shows a typical signal of the C–F bond(686.3 eV)[26,37,45].As a control,the XPS highresolution C 1s,N 1s,O 1s and S 2p spectra of the N,S-CDs are also shown in Figs.S5a-d(Supporting information).the N 1s spectra of the F,N,S-CDs and N,S-CDs show the presence of large proportion of aniline-N in both samples,but derived from 3-fluoroaniline and aniline,respectively.

    Table 1 Chemical compositions of the F,N,S-CDs and N,S-CDs(collected from XPS data).

    Table 2 Parameters such as line width and g factor obtained from EPR data of the F,N,S-CDs and N,S-CDs.

    Considering the XPS results such as the high content of F and N,the atomic ratio of F:N(1:1)and the presence of C–F bond,it can be deduced that a large amount of 3-fluoroaniline residues remain on the surface of F,N,S-CD.However,in comparison to the N 1s spectrum of the N,S-CDs,it can be found that the proportion of pyrrolic-N is significantly increased while the proportion of pyridinic-N is reduced in that of the F,N,S-CDs.Pyrrolic-N,which is sp3-hybridized,may lead to a poorer planarity of the graphite skeleton of the sp2-hybridized carbon core and thus the higher proportion of disordered carbon domains in the F,N,S-CDs than that in the N,S-CDs,as evidenced by the Raman spectroscopy(Figs.2a and b)[46].

    The optical properties of the F,N,S-CDs and N,S-CDs in both solution-state and solid-state were investigated.Fig.4a shows the UV–vis absorption(left)and the PL emission(right)of the solution-state F,N,S-CDs(red line)and N,S-CDs(blue line)in DMSO.Both samples show two main absorption peaks at 264 nm and 320 nm,which can be attributed toπ→π*and n→π*transitions,respectively[47,48].However,compared to the N,S-CDs,the F,N,S-CDs have a broader UV–vis absorption range,which could be explained by new defects induced by F-doping[25].Notably,the N,S-CDs and F,N,S-CDs in DMSO show green(λem= 504 nm)and bright-yellow(λem= 556 nm)fluorescence respectively under an UV excitation(λex= 365 nm).Hence,the introduction of F-related sites produces a red-shift emission of at least 50 nm.As shown in Fig.S6(Supporting information),both of the F,N,S-CDs and N,SCDs exhibit an excitation-independent emission behavior in the excitation range of 360–460 nm,and have the same optimal excitation wavelength of 440 nm.Under this optimal excitation,the absolute fluorescence quantum yields(QYs)of the F,N,S-CDs and N,S-CDs in DMSO(Fig.S7 in Supporting information)are 14.57%and 6.57%,respectively.Besides,the time-resolved PL decay curve(Fig.S8 in Supporting information)shows that F,N,S-CDs owns a longer average fluorescence lifetime(τavg= 3.41 ns)than that of the N,S-CDs(τavg= 1.51 ns).The above-mentioned results demonstrate that F-doping resulted in not only a red-shift emission but also a higher fluorescence QY and a longer PL lifetime of the F,N,SCDs in solution-sate.Similarly,as shown in Fig.4b,the solid-state F,N,S-CDs presents a wider UV–vis-NIR(200–1000 nm)absorption range than that of the solid-state N,S-CDs(200–650 nm),although both exhibit a broader absorption than each in the solution-state.Among them,the strong absorption bands at 490 nm and 539 nm can be assigned for the n→π*transition of C=N/C=O,C–O and C–S bonds on the surface of N,S-CDs and F,N,S-CDs,respectively[25,30].

    Fig.3.(a)XPS survey spectra of the F,N,S-CDs and the N,S-CDs.XPS high-resolution(b)C 1s,(c)N 1s,(d)O 1s,(e)S 2p and(f)F 1s spectra of the F,N,S-CDs.

    Fig.4.(a)UV–vis absorption(left)and PL(right)spectra of the F,N,S-CDs and the N,S-CDs in DMSO.(b)UV–vis DRS of the solid-state F,N,S-CDs and N,S-CDs.(c)PL spectra of solid-state F,N,S-CDs measured in the temperature range of 80–420 K(inset:plots of fluorescence intensity with the temperature).

    More intriguingly,as shown in Fig.S9(Supporting information),the solid-state F,N,S-CDs powder displays bright red fluorescence under different wavelength excitations,with a maximum emission near 676 nm.The absolute fluorescence QY of the solid-state F,N,SCDs is 4.17%(Fig.S10 in Supporting information).Its corresponding time-resolved PL decay curve shows an average lifetime of 0.38 ns(Fig.S11 in Supporting information).Oppositely,the solid-state N,S-CDs sample does not show any fluorescence under all of the different wavelength excitations.

    Further,an unusual thermo-sensitive SSF behavior of the F,N,SCDs is discovered.Fig.4c shows the PL spectra of solid-state F,N,SCDs in the temperature range of 80–420 K.While the temperature increasing from 80 to 120 K,the PL intensity enhances continuously and reaches the maximum at 120 K,but begins to decrease monotonically with temperature increasing from 120 K to 420 K,revealing an inflection point near 120 K.The inset of Fig.4c shows a good linear dependency(R2= 0.9522)of the PL intensity decreasing with the temperature in the range of 120–420 K.Moreover,differential scanning calorimetry(DSC)of F,N,S-CDs(Fig.S12 in Supporting information)shows a prominent endothermic peak at about 124.6 K,suggesting that the aggregation state of F,N,SCDs may be changed near this temperature.Although the detailed structural change has not been unclear yet.Furthermore,during the cooling process,the PL intensity of F,N,S-CDs increases with the decrease of temperature(Fig.S13 in Supporting information),but there is no inflection point of fluorescence change,which is a little different from the behavior during the heating process.However,the SSF of CDs exhibits the same temperature-sensitive behavior when we increased the temperature from 80 K to 420 K again.Therefore,the SSF of F,N,S-CDs show a reversible temperaturesensitive behavior in the temperature range of 120–420 K.

    EPR measurements were carried out to gain an insight to electronic spin situation of the solid state F,N,S-CDs(Fig.S14a in Supporting information)and N,S-CDs(Fig.S14b in Supporting information).Both EPR signals attain almost the samegvalue of 2.0016 or 2.0011(approaching to the free electron g value of 2.0023),which means the main paramagnetic centers in carbon cores for both kinds of CDs are identical while F is bonded to C at the edge or on the honeycomb surface of the F,N,S-CDs.In the meantime,as listed in Table 2,the EPR linewidth of F,N,S-CDs is obviously wider than linewidth of the N,S-CDs at temperature of 295 K,this broadening can be attributed to the larger concentration of main paramagnetic centers induced by fluorine doping,and smaller spin-spin and spin-lattice relaxation times in the F-containing CDs.

    Fig.5.Illustration of the possible mechanism of F-defects induced SSF of the F,N,SCDs.

    Considering that the N,S-CDs showed no SSF while the F,N,SCDs showed strong SSF in deep-red region,a possible mechanism of SSF induced by F-defects is proposed,as illustrated in Fig.5.The marked i),ii)and iii)represent for F-bonded carbon in three different forms,which is in accordance with three signals at different chemical shifts in the19F NMR spectrum(Fig.2d).Combined Raman,XPS data with PL spectra,it can be inferred that the new SSF originates from sp3defects due to the C-F groups attached to the sp2honeycomb carbon core(sites on the periphery and/or in the basal planes of the CDs)[49].The formation of the polarized C–F bonds broke the symmetry of the sp2hybridized carbon lattice(G band),defect-induced Raman scattering of the D band intensity as well as theID/IGof F,N,S-CDs is significantly increased,compared to that of the N,S-CDs[37,49].The fluorine-induced defect traps excitons at the local potential well,make the charge preferentially gather around the defect,where the excitons recombine to produce red SSF.However,in solution-state,the large quantity of S=O groups of the solvent molecules(DMSO)interacted with the surface of F,N,S-CDs[50,51],which weaken the electro-withdrawing capability of surface F-defects.In addition,the HOMO-LUMO energy levels of CDs were investigated by using cyclic voltammetry(Fig.S15 in Supporting information)[52,53].The energy gap between LUMO and HOMO of F,N,S-CDs(1.41 eV)is lower than that of the N,S-CDs(1.74 eV),which reveals that the introduction of Fdefect effectively changes the system of electronic energy levels of CDs,and thus the PL red-shift from green(N,S-CDs)to yellow(F,N,S-CDs)in solution state(as shown in Scheme 1).

    In summary,We have proposed a simple and novel F-strategy for synthesis of solid-state red fluorescent F,N,S-CDs.Both19F NMR spectrum and XPS data confirm the formation of C–F bond at the periphery/edge or on the surface of the F,N,S-CDs.Compared with the N,S-CDs without F doping,the F,N,S-CDs showed an emission redshift and fluorescence QY increase in solution state.Besides,the solution-state F,N,S-CDs exhibited a "chameleon-like"phenomenon(PL emission shifts from yellow to red)in a mixed solvent of H2O/DMSO with different H2O fractions.More remarkably,F-defects are proved by the obvious enhancement of Raman scattering of D band intensity as well as the ratio value ofID/IG.Further,a possible mechanism of F-defects induced SSF is also discussed.Additionally,the F,N,S-CDs showed an unusual thermosensitive-SSF behavior in the temperature range of 80–420 K.It is expected that these red-emissive F,N,S-CDs has the potential applications in temperature-dependent sensors as well as light-emitting devices,particularly,they may be used together with various polymer-like protective coatings having the optical transparency in the red spectral range.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(No.51772001),Anhui Province Key Research and Development Plan Project International Science and Technology Cooperation Special Project(No.202004b11020015).We also acknowledge support of the Key Laboratory of Structure and Functional Regulation of Hybrid Materials(Anhui University),Ministry of Education.A portion of this work was performed on the Steady High Magnetic Field Facilities,High Magnetic Field Laboratory,Chinese Academy of Sciences(CAS).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.04.033.

    99九九在线精品视频| 一区二区三区乱码不卡18| 国产精品一区二区在线不卡| 一级二级三级毛片免费看| 青青草视频在线视频观看| 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 视频在线观看一区二区三区| 日韩av免费高清视频| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区国产| av在线app专区| 欧美人与善性xxx| 欧美精品一区二区大全| 国产片内射在线| 在线 av 中文字幕| 国产淫语在线视频| 国产精品 国内视频| 婷婷色av中文字幕| 亚洲精品一二三| 亚洲av日韩在线播放| 成人国产av品久久久| av天堂久久9| 欧美 亚洲 国产 日韩一| 少妇人妻精品综合一区二区| 欧美一级a爱片免费观看看| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 少妇被粗大猛烈的视频| 亚洲av电影在线观看一区二区三区| 美女cb高潮喷水在线观看| 国产无遮挡羞羞视频在线观看| 国产色婷婷99| 免费高清在线观看日韩| 26uuu在线亚洲综合色| 天堂8中文在线网| 国产精品国产三级国产专区5o| 亚洲三级黄色毛片| 亚洲欧美精品自产自拍| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 精品亚洲乱码少妇综合久久| 久久国产精品大桥未久av| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 丝瓜视频免费看黄片| 大香蕉久久网| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 99久久人妻综合| 亚洲av二区三区四区| av免费观看日本| 天美传媒精品一区二区| 性色av一级| 免费看不卡的av| 久久免费观看电影| 丰满迷人的少妇在线观看| 一级黄片播放器| 美女中出高潮动态图| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 如何舔出高潮| 欧美激情国产日韩精品一区| 亚洲色图 男人天堂 中文字幕 | 久久99热这里只频精品6学生| 韩国av在线不卡| 久久这里有精品视频免费| 交换朋友夫妻互换小说| av一本久久久久| 午夜激情福利司机影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品高潮呻吟av久久| 一级毛片黄色毛片免费观看视频| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 一区二区av电影网| 亚洲成人手机| 丁香六月天网| 大话2 男鬼变身卡| 成人18禁高潮啪啪吃奶动态图 | 亚洲第一区二区三区不卡| 国产精品秋霞免费鲁丝片| 交换朋友夫妻互换小说| 国产黄片视频在线免费观看| 熟妇人妻不卡中文字幕| 美女脱内裤让男人舔精品视频| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 久久av网站| 国产 一区精品| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 欧美变态另类bdsm刘玥| 看非洲黑人一级黄片| 午夜福利视频精品| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 一级毛片电影观看| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 哪个播放器可以免费观看大片| 母亲3免费完整高清在线观看 | 久久ye,这里只有精品| 简卡轻食公司| 一本久久精品| 免费黄色在线免费观看| 亚洲在久久综合| 看非洲黑人一级黄片| 国模一区二区三区四区视频| 精品亚洲成a人片在线观看| 狠狠婷婷综合久久久久久88av| 99热国产这里只有精品6| 午夜福利视频精品| h视频一区二区三区| 男女边摸边吃奶| 亚洲欧洲精品一区二区精品久久久 | 成人无遮挡网站| 午夜精品国产一区二区电影| 免费观看在线日韩| 2018国产大陆天天弄谢| 婷婷成人精品国产| 大陆偷拍与自拍| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 夜夜爽夜夜爽视频| 超色免费av| 成人18禁高潮啪啪吃奶动态图 | 久久久久国产网址| 日韩制服骚丝袜av| 成年人午夜在线观看视频| 久久狼人影院| 日韩av在线免费看完整版不卡| 人人妻人人澡人人看| 国产成人a∨麻豆精品| 一个人免费看片子| av播播在线观看一区| 日日摸夜夜添夜夜爱| 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 国产精品三级大全| 少妇熟女欧美另类| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| www.av在线官网国产| av免费在线看不卡| 麻豆精品久久久久久蜜桃| 国产毛片在线视频| 一级毛片 在线播放| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 亚洲国产精品专区欧美| 女性被躁到高潮视频| 国产又色又爽无遮挡免| 亚洲国产av新网站| 丝袜脚勾引网站| 欧美+日韩+精品| 国产一区二区在线观看日韩| 一本一本综合久久| 亚洲性久久影院| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| 久热这里只有精品99| 男人操女人黄网站| 午夜福利影视在线免费观看| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 国产熟女午夜一区二区三区 | 纵有疾风起免费观看全集完整版| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 九九在线视频观看精品| 国产视频首页在线观看| 日本91视频免费播放| 日韩av在线免费看完整版不卡| 校园人妻丝袜中文字幕| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| av电影中文网址| 国产成人午夜福利电影在线观看| 国产极品粉嫩免费观看在线 | 高清欧美精品videossex| 精品熟女少妇av免费看| 男的添女的下面高潮视频| 女人精品久久久久毛片| 男男h啪啪无遮挡| 免费看av在线观看网站| 久久久久久久亚洲中文字幕| 在线播放无遮挡| 国产欧美亚洲国产| 日韩av在线免费看完整版不卡| 美女国产视频在线观看| 日日摸夜夜添夜夜爱| 中文字幕制服av| 国产成人精品福利久久| 又大又黄又爽视频免费| 天美传媒精品一区二区| 一边摸一边做爽爽视频免费| 人妻 亚洲 视频| 成人毛片a级毛片在线播放| 少妇人妻久久综合中文| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 日本与韩国留学比较| 美女福利国产在线| 国产不卡av网站在线观看| 极品人妻少妇av视频| 麻豆乱淫一区二区| 插逼视频在线观看| 亚洲精品av麻豆狂野| 精品一品国产午夜福利视频| 久久久久久伊人网av| 狂野欧美激情性bbbbbb| 国产精品一区二区在线观看99| 午夜激情久久久久久久| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 人妻人人澡人人爽人人| 看免费成人av毛片| 丰满乱子伦码专区| 亚洲精品国产av蜜桃| 中文天堂在线官网| 一本久久精品| 99国产精品免费福利视频| 国产欧美另类精品又又久久亚洲欧美| 美女视频免费永久观看网站| 母亲3免费完整高清在线观看 | 婷婷色综合大香蕉| 一本一本综合久久| 99视频精品全部免费 在线| 国产视频首页在线观看| 成年女人在线观看亚洲视频| 国产精品国产三级国产av玫瑰| 国产免费视频播放在线视频| 欧美日韩视频精品一区| 亚洲av成人精品一二三区| 国产亚洲最大av| 2021少妇久久久久久久久久久| 久热久热在线精品观看| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 多毛熟女@视频| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 亚洲av.av天堂| videossex国产| 免费黄频网站在线观看国产| 人妻夜夜爽99麻豆av| 成人18禁高潮啪啪吃奶动态图 | 99久久人妻综合| 精品人妻熟女毛片av久久网站| 我的老师免费观看完整版| xxx大片免费视频| 在线 av 中文字幕| 国产亚洲午夜精品一区二区久久| 久久热精品热| 欧美xxⅹ黑人| 久久久久久伊人网av| 能在线免费看毛片的网站| 欧美成人午夜免费资源| 国产精品99久久久久久久久| 熟女电影av网| 国产精品嫩草影院av在线观看| av黄色大香蕉| 国产毛片在线视频| 一区在线观看完整版| 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 精品久久久久久电影网| 丰满少妇做爰视频| 久久国产精品男人的天堂亚洲 | 亚洲熟女精品中文字幕| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 超碰97精品在线观看| 欧美精品一区二区大全| av女优亚洲男人天堂| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 九草在线视频观看| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频| 少妇的逼好多水| 亚洲不卡免费看| 亚洲av国产av综合av卡| 在现免费观看毛片| 夫妻性生交免费视频一级片| 亚洲高清免费不卡视频| 不卡视频在线观看欧美| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 日韩大片免费观看网站| av黄色大香蕉| 日韩不卡一区二区三区视频在线| 婷婷色av中文字幕| 国产 一区精品| 国产精品99久久99久久久不卡 | av女优亚洲男人天堂| 亚洲av二区三区四区| 9色porny在线观看| 欧美老熟妇乱子伦牲交| 在线观看三级黄色| 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 18禁裸乳无遮挡动漫免费视频| 香蕉精品网在线| 亚洲精品亚洲一区二区| 夜夜骑夜夜射夜夜干| .国产精品久久| 色视频在线一区二区三区| 国产成人午夜福利电影在线观看| 色哟哟·www| 国产日韩欧美亚洲二区| 少妇人妻 视频| 久热久热在线精品观看| 国产一区二区在线观看日韩| 婷婷成人精品国产| 精品久久久久久久久亚洲| 亚洲成人一二三区av| 18在线观看网站| 欧美日韩av久久| 高清黄色对白视频在线免费看| 丰满少妇做爰视频| 高清午夜精品一区二区三区| av电影中文网址| 亚洲成人av在线免费| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 亚洲精品aⅴ在线观看| 久久久久久久久久久免费av| 观看av在线不卡| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| 97在线视频观看| 日韩电影二区| 午夜久久久在线观看| 青春草视频在线免费观看| 最近最新中文字幕免费大全7| 天堂俺去俺来也www色官网| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 人妻夜夜爽99麻豆av| 一本一本综合久久| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 国产精品.久久久| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 中文字幕av电影在线播放| 十八禁网站网址无遮挡| 国产免费视频播放在线视频| 色网站视频免费| 国模一区二区三区四区视频| 欧美日韩综合久久久久久| 一级毛片我不卡| 久久久久久久久久人人人人人人| 精品少妇内射三级| 国产高清不卡午夜福利| 午夜91福利影院| 精品国产露脸久久av麻豆| 亚洲欧美清纯卡通| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 黄色配什么色好看| 午夜免费鲁丝| 久久精品人人爽人人爽视色| av电影中文网址| 免费观看在线日韩| 热99国产精品久久久久久7| 亚洲第一区二区三区不卡| 人妻人人澡人人爽人人| 午夜福利网站1000一区二区三区| 日韩亚洲欧美综合| 亚洲国产精品一区二区三区在线| 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 青春草国产在线视频| 超色免费av| 超碰97精品在线观看| 欧美日韩精品成人综合77777| 另类精品久久| 久久精品久久久久久噜噜老黄| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| 91精品国产九色| 欧美精品一区二区免费开放| 午夜精品国产一区二区电影| 免费高清在线观看视频在线观看| 综合色丁香网| 久久ye,这里只有精品| 亚洲精品国产av蜜桃| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 免费观看无遮挡的男女| 精品视频人人做人人爽| 亚洲怡红院男人天堂| 一边摸一边做爽爽视频免费| 久久久久久久久久人人人人人人| 日韩精品有码人妻一区| av电影中文网址| 国产成人一区二区在线| 美女xxoo啪啪120秒动态图| 一区二区日韩欧美中文字幕 | 精品久久久久久久久亚洲| 熟妇人妻不卡中文字幕| 久久久久视频综合| 少妇的逼水好多| 丰满乱子伦码专区| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| 人妻制服诱惑在线中文字幕| 精品少妇内射三级| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 99久久人妻综合| 在线观看三级黄色| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 少妇高潮的动态图| av国产久精品久网站免费入址| 国产精品人妻久久久影院| 免费少妇av软件| 欧美国产精品一级二级三级| 十八禁网站网址无遮挡| 亚洲国产最新在线播放| 国产永久视频网站| 久热久热在线精品观看| 成人国产av品久久久| 各种免费的搞黄视频| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 高清不卡的av网站| 在线天堂最新版资源| 一本一本综合久久| 在线观看免费日韩欧美大片 | 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 观看美女的网站| 免费大片黄手机在线观看| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 欧美日韩在线观看h| 99久久人妻综合| 啦啦啦在线观看免费高清www| 久热这里只有精品99| 观看美女的网站| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 男女边摸边吃奶| 欧美日韩亚洲高清精品| 精品久久蜜臀av无| 人妻一区二区av| 大片免费播放器 马上看| 国产成人精品无人区| 三级国产精品片| 亚洲欧美成人综合另类久久久| 精品人妻一区二区三区麻豆| 黑人猛操日本美女一级片| 亚洲国产日韩一区二区| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 国产精品久久久久久精品古装| 又大又黄又爽视频免费| 大又大粗又爽又黄少妇毛片口| 欧美少妇被猛烈插入视频| 日本黄色日本黄色录像| 99久久精品国产国产毛片| 亚洲av日韩在线播放| 日本黄色片子视频| 国产精品秋霞免费鲁丝片| 男女无遮挡免费网站观看| 一级二级三级毛片免费看| 免费av不卡在线播放| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 免费看av在线观看网站| 精品一区二区免费观看| 日韩精品免费视频一区二区三区 | 日韩欧美精品免费久久| 亚洲精品aⅴ在线观看| 欧美亚洲日本最大视频资源| 久久久久视频综合| 久久久久久久久久成人| 亚洲成人手机| 日韩av在线免费看完整版不卡| 亚洲精品中文字幕在线视频| 一本色道久久久久久精品综合| 一级爰片在线观看| 七月丁香在线播放| 一个人免费看片子| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 日日撸夜夜添| 国产日韩欧美亚洲二区| 最近最新中文字幕免费大全7| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 国产成人午夜福利电影在线观看| 免费久久久久久久精品成人欧美视频 | 伊人亚洲综合成人网| 最近2019中文字幕mv第一页| av.在线天堂| 国产成人免费无遮挡视频| 亚洲中文av在线| 卡戴珊不雅视频在线播放| 国产欧美亚洲国产| 91久久精品国产一区二区成人| 99re6热这里在线精品视频| 日韩成人av中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 秋霞伦理黄片| 亚洲国产精品一区三区| 久久精品国产亚洲av涩爱| 免费观看无遮挡的男女| .国产精品久久| 美女内射精品一级片tv| 国产熟女欧美一区二区| 人妻人人澡人人爽人人| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 久久免费观看电影| 天堂俺去俺来也www色官网| 国产一区二区三区av在线| 精品99又大又爽又粗少妇毛片| 制服诱惑二区| 国产精品蜜桃在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 五月玫瑰六月丁香| 精品人妻在线不人妻| 99久久综合免费| 纵有疾风起免费观看全集完整版| 如何舔出高潮| 国产成人精品婷婷| 女性生殖器流出的白浆| 久久人人爽人人片av| 99久久中文字幕三级久久日本| 97超碰精品成人国产| av电影中文网址| 欧美日韩视频精品一区| 亚洲精品久久成人aⅴ小说 | 美女中出高潮动态图| 男男h啪啪无遮挡| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| 一级二级三级毛片免费看| 午夜福利在线观看免费完整高清在| 久久99热6这里只有精品| av免费在线看不卡| 精品人妻熟女毛片av久久网站| 国内精品宾馆在线| 欧美日韩视频精品一区| 精品一品国产午夜福利视频| 国产免费一区二区三区四区乱码| 这个男人来自地球电影免费观看 | 久久人人爽人人爽人人片va| 国产成人freesex在线| 在现免费观看毛片| 欧美人与性动交α欧美精品济南到 | 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 日韩一区二区三区影片| av又黄又爽大尺度在线免费看| 99国产精品免费福利视频| 欧美日韩av久久| 久久久久久伊人网av| 日日摸夜夜添夜夜添av毛片| 国产精品熟女久久久久浪| 成人国产麻豆网| 热99久久久久精品小说推荐| 我要看黄色一级片免费的| 少妇丰满av| 欧美变态另类bdsm刘玥| 高清欧美精品videossex| 99热国产这里只有精品6| 亚洲欧美成人精品一区二区| 日韩亚洲欧美综合| 少妇丰满av| 久久毛片免费看一区二区三区| 精品国产国语对白av| 国产黄频视频在线观看| 成年女人在线观看亚洲视频| 一级毛片我不卡| 最黄视频免费看| 欧美老熟妇乱子伦牲交|