• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hollow Fe2O3/Co3O4 microcubes derived from metal-organic framework for enhanced sensing performance towards acetone

    2021-02-23 09:08:12RuixueMoDongqingHnZengRenDzhungYngFeiWngColongLi
    Chinese Chemical Letters 2021年11期

    Ruixue Mo,Dongqing Hn,Zeng Ren,Dzhung Yng,Fei Wng,*,Colong Li,*

    a Key Laboratory of Biomedical Functional Materials,College of Science,China Pharmaceutical University,Nanjing 211198,China

    b Department of Physics,College of Science,China Pharmaceutical University,Nanjing 211198,China

    c Institute of Tibetan Medicine,University of Tibetan Medicine,Lhasa 850000,China

    ABSTRACT In this work,hollow Fe2O3/Co3O4 microcubes have been successfully synthesized through a hydrothermal method followed by an annealing process using metal-organic framework of Prussian blue as a soft template.The morphologies,microstructures,surface area and element compositions have been carefully characterized by a series of techniques.Meanwhile,compared with that of pure Fe2O3 and Co3O4,the gas sensor based on the hollow microcubes exhibits enhanced sensing performances towards acetone, e.g.,a higher response of 21.2 and a shorter response time of 5 s towards 20 ppm acetone at a relatively low working temperature of 200 °C.Moreover,the hollow microcubes-based gas sensor still shows perfect long-term stability,excellent repeatability and the ability of sub-ppm level detection,which provides a possibility for its application in real life.The enhanced gas sensing performances can be attributed to the hollow structure with a high surface area and the formed p-n heterojunctions within the microcubes.

    Keywords:Acetone Fe2O3 Co3O4 Metal-organic frameworks Heterojunctions Gas sensor

    As a widely used volatile organic compound,acetone is regarded as one of the most harmful reagents to human health and environmental safety due to its easy volatilization,toxic and flammable nature[1,2].Clinically,it is also considered to be one of the specific biomarkers for diagnosing human type I diabetes.An individual may be afflicted with diabetes if his expiration product gives an acetone concentration of above 1.8 ppm,whereas it is lower than 0.9 ppm for a healthy one[3,4].Therefore,gas sensors aimed at acetone have been extensively investigated,and it is significant for the environment safety as well as the human health to find an acetone gas sensor with excellent performances.Lately,plenty of metal oxide semiconductors,such as Fe2O3[5],ZnO[6],SnO2[7]and CuO[8],have been used as gas sensing materials to detect acetone.Among them,Fe2O3has been proved to be a more promising n-type semiconductor with excellent gas sensing characteristics[9,10].However,it still has some shortcomings,e.g.,low sensitivity and poor selectivity,which set up great obstacles for its commercial applications.Thus,many fascinating methods have been applied to improve the performances of Fe2O3-based gas sensor towards acetone.

    As is well-known,the morphology of the sensing material plays a key role in its sensing performances for a metal oxide-based gas sensor.Of late,the metal-organic frameworks(MOFs)have been drawing more and more attention since some metal oxides with defined morphology and amazing shapes can be obtained through a high-temperature calcination of metal ions and organic ligands in them[11,12].Generally,the metal oxides derived from MOFs can not only avoid aggregation and provide sufficient reaction sites but also facilitate gas diffusivity so that the gas sensing performances can be enhanced a lot[1,13].In light of the merits of MOFs,many researchers have set their sights on taking advantage of them as precursors to get Fe2O3in the field of gas sensing.For instance,Gaoet al.[14]synthesized Fe2O3porous nanorods with controlled morphologies by thermolysis of Fe-based MOF(MIL-88A),which exhibited better selectivity to acetone compared to the other samples.Yinet al.[15]used MOF of MIL-53 as a self-sacrificing template for preparing PrFeO3/α-Fe2O3composite,and exhibited a high gas response and superior selectivity to ethyl acetate gas.Tianet al.[16]have prepared hollow porous Fe2O3nanoboxes derived from MOF of Prussian blue(PB)and then used for a H2S gas sensor.On the other side,another general route to enhance gas sensing performances of a gas sensor is the surface modification,especially combining with other metal oxides to form an interesting heterojunction.As an attractive p-type material,Co3O4has been reported as a perfect gas sensing material for detecting reduce gases as a result of its strong catalytic oxidation activity[17,18].Besides,the ionic radiuses of the Fe and Co are so similar that lattice mismatches and oxygen vacancies can be obtained easily.Thus,combining Fe2O3with Co3O4to form p-n heterojunctions can effectively enhance the gas sensing performances of a gas sensor theoretically.Although the gas sensors based on n-type metal oxide and Co3O4have received widespread attention,to the best of our knowledge,there are few reports on the hollow Fe2O3/Co3O4microcubes derived from MOF of Prussian blue for improved gas sensing performances towards acetone.

    Fig.1.The synthetic scheme of the hollow Fe2O3/Co3O4 structures.

    Fig.2.(a)SEM images at a low magnification and(b)a high magnification of the sample.

    Herein,hollow Fe2O3/Co3O4microcubes have been fabricated using MOF of PB through a hydrothermal method along with a calcination process,as shown in Fig.1(more details can be found in Supporting information).In this strategy,the MOF of PB is used as a soft template to get the microcubes as well as the source of Fe.The fabricated hollow Fe2O3/Co3O4microcubes have a side length of around 400 nm and an outer shell of 20-40 nm,and their gas sensing properties towards acetone have been investigated carefully.The results show that the gas sensor based on the hollow microcubes had a higher response of 21.2 and a shorter response time of 5 s when exposed to 20 ppm acetone at a working temperature of 200°C,which is superior to that of pure Fe2O3and Co3O4.The excellent gas sensing properties may be attributed to the hollow structures,the catalytic activity of Co3O4as well as the formed p-n heterojunctions between Fe2O3and Co3O4,and the gas sensor based on the as-prepared microcubes has a potential to find its practical application to detect acetone,especially towards its low concentration.

    Fig.3.(a-c)TEM images at different magnifications and(d)HRTEM image of hollow Fe2O3/Co3O4 microcubes.(e)HAADF image of a hollow Fe2O3/Co3O4 microcube,and its elemental mapping images:(f)Fe,(g)Co and(h)O.

    Fig.4.(a)XRD patterns of the samples,N2 adsorption-desorption isotherms of(b)Fe2O3 and(c)Fe2O3/Co3O4 microcubes(the insets are their respective pore size distributions).XPS spectra of hollow Fe2O3/Co3O4 microcubes:(d)Fe 2p,(e)Co 2p and(f)O 1s.

    A series of techniques have been used to characterize the samples carefully(more details can be found in Supporting information).The morphologies and microstructures of the samples were elucidated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).As shown in Fig.S2(Supporting information),the Fe2O3composites are composed of microcubes,and the Co3O4composites consist of irregular nanoparticles.Fig.2a and b present the SEM images of the obtained sample at low magnification and high magnification,respectively.It can be found that the sample is composed of relatively uniform microcubes,and they have rough surfaces with a side length of 300-400 nm,and quite a number of particles accumulated on the surface of the microcubes.Noticeably,some microcubes have collapsed from the inside,indicating that the microcubes may have a hollow morphology.In order to further confirm this,the microcubes were investigated by TEM.As shown in Figs.3a-c,it is clear that the microcubes are hollow.They have a side length of around 400 nm,which is in good accordance with the SEM results,and an outside shell thickness of 20-40 nm.Fig.3d exhibits a high-resolution transmission electron microscope(HRTEM)image of the microcube,from which it can be seen that the interplanar space ofca.0.28 nm andca.0.27 nm coexisted in the same area,corresponding to the<220>crystal plane of Co3O4and the<104>crystal plane of Fe2O3,respectively.Afterwards,a high angle annular dark field(HADDF)and element mapping spectrogram tests were carried out in order to further study the microcubes.As displayed by Figs.3e-h,the HADDF image also exhibits hollow microcubes,and the element mapping maps clearly reflects that the microcubes contains elements of Co,Fe and O,which are evenly distributed within the microcubes without obvious aggregation.These results illustrate that Co3O4has been successfully combined with Fe2O3to form p-n heterostructures between them.

    Fig.5.(a)Responses of Fe2O3,Co3O4 and Fe2O3/Co3O4 microcubes-based gas sensors towards 20 ppm acetone under different working temperatures.(b)The dynamic curves of the gas sensors towards the acetone of 1-200 ppm and(c)0.1-5 ppm at their optimal working temperature,respectively.(d)The fitting curves of gas sensors to low concentrations of acetone.(e)Repeatability of the microcubesbased gas sensor to 1 ppm acetone gas at 200°C.(f)The responses of the gas sensors towards 20 ppm of acetone,ethanol,methanol,ammonia and toluene at 200°C.

    In order to explore their phases,powder X-ray diffraction(XRD)technique was performed on the Fe2O3,Co3O4and Fe2O3/Co3O4samples,as presented in Fig.4a.For the two pristine samples,the obvious diffraction peaks match well with pure hematite Fe2O3(PDF#33-0664)and pure spinel Co3O4(PDF#43-1003),respectively[19].With respect to the hollow Fe2O3/Co3O4microcubes,the main diffraction peaks can be well indexed to the crystal planes of hematite Fe2O3and spinel Co3O4,indicating their successful synthesis.In addition,no peaks of other impurities can be observed,illustrating a high purity of the samples.Figs.4b and c present the nitrogen adsorption-desorption isotherms and pore size distribution curves of pure Fe2O3and Fe2O3/Co3O4microcubes.From these figures,it can be seen that an obvious hysteresis loops are formed.They can be assigned to the typical type IV according to the IUPAC classification,indicating the presence of mesopores in the samples.The specific areas of pristine Fe2O3and Fe2O3/Co3O4microcubes are calculated to be 39.9 and 69.5 m2/g,respectively.The microcubes have a much larger specific area than that of pure Fe2O3.Furthermore,to explore the surface elemental compositions,the microcubes were investigated by X-ray photoelectron spectroscopy(XPS).Figs.4d-f present the Fe 2p,Co 2p and O 1s spectra of the microcubes and the peak fitting results.The spectra of Fe 2p in the Fig.4d are composed of two main peaks located at 711.1 eV and 724.5 eV.They originate from Fe 2p3/2and Fe 2p1/2,and two satellite peaks of 719.2 eV and 733.2 eV can be seen[20,21].The peaks of 780.3 eV and 795.6 eV in the Fig.4e can be assigned to Co 2p3/2and Co 2p1/2with a spin energy separation of 15.3 eV[22].There are also two low satellite peaks at 787.2 eV and 803.8 eV,corresponding to Co 2p3/2and Co 2p1/2[23].As for the O 1s spectra in the Fig.4f,the peaks at 530.0 eV,531.5 eV and 533.0 eV can be assigned to the surface lattice oxygen,surface-adsorbed oxygen(O2-,O22-,O-)and physically adsorbed oxygen species(O2),respectively[20,24].

    Fig.6.The resistance of the gas sensors based on(a)Fe2O3,(b)Co3O4 and(c)Fe2O3/Co3O4 microcubes towards 20 ppm acetone at their optimal working temperature,respectively.(d)The long time stability of microcubes-based gas sensor towards 20 ppm acetone at 200°C.

    In order to evaluate the gas sensing performance of the samples,many tests were carried out on the measurement system(more details can be found in Supporting information).Regarding a gas sensor,working temperatures have a significant impact on its performance.The responses of gas sensors based on pure Fe2O3,Co3O4and Fe2O3/Co3O4microcubes towards 20 ppm acetone at different temperatures are shown in Fig.5a.The results clearly show that the responses of the gas sensors all present a parabolic-like shape.It can be seen that with the working temperature rose,the response of each gas sensor first increased,then reached the maximum and decreased finally.It’not hard to understand that the response towards acetone depends on the balance between the adsorption rate and desorption rate.If the working temperature increases,the adsorption of acetone will be accelerated,thereby enhancing the gas response.When the working temperature rises to a higher level,the desorption rate will be much faster than the adsorption rate,thereby reducing the response.Obviously,from the Fig.5a,the working temperatures of the Fe2O3,Co3O4and Fe2O3/Co3O4microcubes-based gas sensor at their maximum responses towards 20 ppm acetone are 270°C,150°C and 200°C,respectively.These always can be used as their optimal working temperatures.Meanwhile,the response of microcubesbased gas sensor is 21.2,which is almost 2.1 and 5.5 times much higher than that of Fe2O3and Co3O4-based gas sensors at their optimal working temperatures.The above results show that the responses of microcubes-based gas sensor are significantly better than that of Fe2O3and Co3O4-based gas sensors.Hence,the modification of Fe2O3by Co3O4cannot only effectively reduce the working temperature of a Fe2O3-based gas sensor,but also increase its response.Fig.5b displays the responses of the gas sensors to different concentrations of acetone,e.g.,1,5,10,20,50,100 and 200 ppm,at their optimal working temperatures.It is obvious that the microcubes-based gas sensor has the optimum responses towards acetone.As the acetone concentration increases,all the gas sensors show a saturated trend,which is due to the relative saturation of adsorption sites on the sensing materials.Fig.5c gives dynamic curves of the gas sensors towards low acetone concentrations of 0.1,0.5,1,2,3,4,5 ppm at their optimal working temperature.These curves illustrate that all the gas sensors have good response-recovery properties.Among them,microcubes-based gas sensor also showed superior performance than others,and it still has a response of 1.70 when the acetone concentration is as low as 0.1 ppm.Fig.5d presents the fitting curves of the concentration(x)versusthe response(y)obtained from the Fig.5c.A good linear relationship and a perfectR2of 0.995 are given for the microcubesbased gas sensor,indicating a promising application for the quantitative detection of acetone at a low concentration.Fig.5e showed five cycles of microcubes-based gas sensor towards 1 ppm acetone at 200°C,and the response varies slightly,demonstrating its excellent stability for low concentration.In addition,the selectivity is also a key parameter for determining a gas sensor’s effectiveness and accuracy.Fig.5f depicts the responses of the gas sensors to acetone,ethanol,methanol,ammonia and toluene of 20 ppm at 200°C,respectively.The microcubes-based gas sensor had the highest response of 21.2 towards acetone,which isca.1.8,4.2,6.4,16.2 times larger than that of ethanol,methanol,ammonia,and toluene.This indicates the microcubes-based gas sensor has an outstanding selectivity toward acetone against the other four unwanted gases.

    Fig.7.Schematic of the energy band of the Fe2O3/Co3O4 heterojunction(a)before and(b)after contact.

    As a real-time monitoring device,the response and recovery times of a gas sensor are other important parameters to pass judgment on the sensing performance for practical applications.Figs.6a-c illustrate the response and recovery times of the gas sensors to 20 ppm acetone at their optimal working temperatures.Once the acetone was injected into the sealed chamber,the resistance of microcubes-based gas sensor declined swiftly and presents a response time of 5 s,which precedes the Fe2O3-based and Co3O4-based gas sensor by 5 s and 37 s,respectively.When being exposed to the fresh air,the resistances of gas sensors return to their original state gradually,and the recovery time of the microcubes-based gas sensor was 41 s,about 148 s faster than that of the Co3O4-based gas sensor.However,it is 17 s longer than that of the Fe2O3-based gas sensor.This may be due to the high working temperature of Fe2O3-based gas sensor,thus prompting the transmission of gas over its surface and thus leading to a shorter recovery time.Fig.6d depicts the long-time stability of microcubes-based gas sensor to 20 ppm acetone at 200°C.It can be found that the responses to 20 ppm acetone did not change significantly within 37 days,demonstrating that the gas sensor has reliable long-term stability,which will be beneficial to its practical applications.Table S1(Supporting information)is the comparison of some reported Fe2O3-based gas sensors toward acetone.Taking the response,working temperature and response time into consideration,it is obvious that the microcubes- based gas sensor in this work have advantages in detecting acetone.To ascertain the impact of Co3O4on the gas sensing properties,the Fe2O3/Co3O4nanocomposites with different quantity of Co3O4were also synthesized using the same procedure(details in Supporting information).It found that the compound with moderate content of Co3O4possesses better sensing performance.

    The sensing mechanism of the designed acetone gas sensors can be discussed according to the generally accepted principle at their operating temperatures[18,25].Based on the results of gas sensing measurements,the microcubes-based gas sensors have enhanced gas sensing performances compared with that of pure Fe2O3and Co3O4-based gas sensors.This may be explained by the following factors.Firstly,the hollow Fe2O3/Co3O4microcubes have a larger specific surface area,abundant mesopores with smaller sizes and more rough surfaces.This can provide more activated sites,and thus facilitates the gas adsorption on their surface so that the gas sensing performances can be enhanced greatly.Furthermore,as shown in Fig.7,Fe2O3is a typical n-type semiconductor with a work function of 5.9 eV,and Co3O4is p-type with a work function of 6.5 eV[26].The work function of Co3O4is higher than that of Fe2O3,and thus when they contact with each other to form a p-n heterojunction,the electrons will flow from the Fe2O3to the Co3O4,and the holes will be transferred from an opposite direction until their Fermi levels reach equilibrium.During this process,the electron concentration changes,leading to an obvious band bending.The p-n heterostructure will produce enhanced charge separation at their contact interface,resulting in an enhanced conductance modulation[27,28].What is more,the synergistic effect of Fe2O3and Co3O4could be another key aspect in improving gas sensing performances.Due to the adding of Co3O4,more lattice mismatches will be generated,and more defects and dangling bonds will be formed at the interface,which will improve the gas sensing performance apparently.

    In the study,hollow Fe2O3/Co3O4microcubes have been prepared by a hydrothermal method followed by an annealing process taking metal-organic framework of PB as a soft template.The hollow microcubes have a side length of around 400 nm and an outer shell of 20-40 nm.Compared with that of pure Fe2O3and Co3O4,the hollow microcubes-based gas sensor demonstrates enhanced gas sensing performances towards acetone,which could be due to the hollow structure,and the p-n heterojunction formed between Fe2O3and Co3O4.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Key Research and Development Project(No.2019YFC0312602).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.06.062.

    天天躁日日操中文字幕| 内射极品少妇av片p| 夜夜看夜夜爽夜夜摸| 日产精品乱码卡一卡2卡三| 亚洲精品成人久久久久久| 亚洲精品日韩av片在线观看| 久久亚洲精品不卡| 97超视频在线观看视频| 高清av免费在线| 床上黄色一级片| 国产欧美另类精品又又久久亚洲欧美| 日本wwww免费看| 久久精品国产自在天天线| www日本黄色视频网| 久久99热这里只有精品18| 久久久久精品久久久久真实原创| 久久精品夜夜夜夜夜久久蜜豆| 在线观看一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 看非洲黑人一级黄片| 国产私拍福利视频在线观看| 九九热线精品视视频播放| 一区二区三区乱码不卡18| 亚洲av不卡在线观看| 国产伦一二天堂av在线观看| 国产 一区精品| 中文字幕熟女人妻在线| 午夜激情欧美在线| 欧美日韩国产亚洲二区| 26uuu在线亚洲综合色| 少妇裸体淫交视频免费看高清| 久久人人爽人人片av| a级一级毛片免费在线观看| 国产精品一区二区性色av| 日韩大片免费观看网站 | 成人美女网站在线观看视频| 国产精品综合久久久久久久免费| 亚洲熟妇中文字幕五十中出| 能在线免费观看的黄片| 国产精品不卡视频一区二区| 国产 一区精品| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 成人性生交大片免费视频hd| 成人欧美大片| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 99热全是精品| 内射极品少妇av片p| 亚洲国产精品sss在线观看| 18禁在线播放成人免费| 亚洲欧美精品综合久久99| 亚洲在久久综合| 成人三级黄色视频| 欧美成人a在线观看| 亚洲人成网站在线播| 精品少妇黑人巨大在线播放 | 精品人妻一区二区三区麻豆| 一个人看的www免费观看视频| 国产 一区精品| 最近中文字幕高清免费大全6| 欧美3d第一页| 人人妻人人澡人人爽人人夜夜 | 一边亲一边摸免费视频| 国产乱来视频区| kizo精华| 少妇丰满av| 日韩av在线大香蕉| 高清毛片免费看| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 乱系列少妇在线播放| 可以在线观看毛片的网站| 纵有疾风起免费观看全集完整版 | 国产免费福利视频在线观看| 一区二区三区高清视频在线| 人人妻人人澡人人爽人人夜夜 | 亚洲精品456在线播放app| 成人亚洲精品av一区二区| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 最近手机中文字幕大全| 国产成人a区在线观看| 亚洲第一区二区三区不卡| 亚州av有码| 精品欧美国产一区二区三| 啦啦啦观看免费观看视频高清| 成人毛片60女人毛片免费| 国产成人精品婷婷| 午夜精品在线福利| 国产91av在线免费观看| 午夜免费男女啪啪视频观看| 99视频精品全部免费 在线| 国产av在哪里看| 国产一区二区在线观看日韩| 最新中文字幕久久久久| 九色成人免费人妻av| 免费看美女性在线毛片视频| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 国产极品天堂在线| 国产精品久久久久久av不卡| 免费观看精品视频网站| 蜜臀久久99精品久久宅男| 观看美女的网站| 水蜜桃什么品种好| 亚洲天堂国产精品一区在线| av天堂中文字幕网| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 国产毛片a区久久久久| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 成人午夜精彩视频在线观看| 看非洲黑人一级黄片| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 秋霞伦理黄片| 亚洲国产精品sss在线观看| 久久久精品94久久精品| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 亚洲av二区三区四区| 神马国产精品三级电影在线观看| 国产黄a三级三级三级人| 好男人视频免费观看在线| 欧美色视频一区免费| 国产精品永久免费网站| 亚洲人成网站在线观看播放| 亚洲成色77777| 欧美一区二区精品小视频在线| 少妇人妻一区二区三区视频| 免费电影在线观看免费观看| 久久综合国产亚洲精品| 99久国产av精品国产电影| 成年免费大片在线观看| 观看免费一级毛片| 国产成人午夜福利电影在线观看| 在线天堂最新版资源| 日韩av在线免费看完整版不卡| 97人妻精品一区二区三区麻豆| 国产男人的电影天堂91| 日韩高清综合在线| 秋霞在线观看毛片| 中文字幕久久专区| 国产精品国产三级专区第一集| 69人妻影院| 在线播放国产精品三级| 韩国高清视频一区二区三区| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费观看精品视频网站| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 久久韩国三级中文字幕| 麻豆一二三区av精品| 免费观看a级毛片全部| 午夜福利在线观看吧| 啦啦啦韩国在线观看视频| 日韩av不卡免费在线播放| 视频中文字幕在线观看| 联通29元200g的流量卡| 国产一区二区在线观看日韩| 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 少妇丰满av| 国内精品宾馆在线| 久久久久国产网址| 床上黄色一级片| 国产一级毛片在线| 1000部很黄的大片| 国产免费视频播放在线视频 | 天堂中文最新版在线下载 | 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 波多野结衣巨乳人妻| 少妇丰满av| 精品一区二区三区视频在线| 国产免费男女视频| АⅤ资源中文在线天堂| 亚洲不卡免费看| 1000部很黄的大片| 一区二区三区四区激情视频| 99热这里只有是精品50| 26uuu在线亚洲综合色| 精品欧美国产一区二区三| 高清视频免费观看一区二区 | 欧美成人一区二区免费高清观看| 赤兔流量卡办理| 在线观看一区二区三区| 三级国产精品片| 免费无遮挡裸体视频| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 91久久精品电影网| 亚洲高清免费不卡视频| 免费av观看视频| 热99在线观看视频| 国产视频内射| 身体一侧抽搐| 亚洲婷婷狠狠爱综合网| 中文资源天堂在线| 亚洲av成人av| 色尼玛亚洲综合影院| 亚洲精品自拍成人| 99久久精品国产国产毛片| 国产伦理片在线播放av一区| 亚洲av成人av| videos熟女内射| 欧美又色又爽又黄视频| 春色校园在线视频观看| av在线亚洲专区| 美女黄网站色视频| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 欧美zozozo另类| 精品国内亚洲2022精品成人| 九九久久精品国产亚洲av麻豆| 亚洲欧美一区二区三区国产| 日本黄色视频三级网站网址| 日本av手机在线免费观看| 久久人妻av系列| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 国产精品一区二区三区四区免费观看| 九色成人免费人妻av| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 看免费成人av毛片| av在线天堂中文字幕| 九草在线视频观看| 久久久久久久午夜电影| 精品久久久噜噜| www日本黄色视频网| 亚洲成人久久爱视频| av天堂中文字幕网| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久 | 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添av毛片| 色哟哟·www| 亚洲不卡免费看| 日本五十路高清| 一区二区三区四区激情视频| 日韩欧美国产在线观看| 寂寞人妻少妇视频99o| 床上黄色一级片| 国内精品宾馆在线| 国产高清三级在线| 一个人看的www免费观看视频| 亚洲怡红院男人天堂| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| www.av在线官网国产| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 嘟嘟电影网在线观看| 国产免费男女视频| 国产不卡一卡二| 精品久久久久久久末码| 国产在线一区二区三区精 | 有码 亚洲区| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 久久久久性生活片| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡免费网站照片| 高清视频免费观看一区二区 | 最近的中文字幕免费完整| 欧美日韩综合久久久久久| 免费大片18禁| 一级毛片aaaaaa免费看小| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| av国产免费在线观看| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆 | 春色校园在线视频观看| 欧美不卡视频在线免费观看| 亚洲av电影在线观看一区二区三区 | 国产高清视频在线观看网站| 精品人妻一区二区三区麻豆| 午夜a级毛片| 桃色一区二区三区在线观看| 亚洲精品乱码久久久久久按摩| 男女视频在线观看网站免费| 久久久久国产网址| 超碰av人人做人人爽久久| 国产精品电影一区二区三区| 高清av免费在线| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 又爽又黄无遮挡网站| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 日本黄色视频三级网站网址| 最近手机中文字幕大全| 全区人妻精品视频| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 日韩av在线大香蕉| 成年版毛片免费区| 嫩草影院新地址| 欧美高清成人免费视频www| 国产男人的电影天堂91| 欧美一级a爱片免费观看看| 日本wwww免费看| 国产精品蜜桃在线观看| 2021天堂中文幕一二区在线观| 成人性生交大片免费视频hd| 中文天堂在线官网| 国产成人aa在线观看| 三级国产精品欧美在线观看| 插阴视频在线观看视频| av.在线天堂| 欧美成人a在线观看| 久久久久国产网址| 日韩av在线大香蕉| 亚洲成色77777| 欧美激情在线99| 国产又色又爽无遮挡免| 亚洲精品国产成人久久av| 国产探花在线观看一区二区| 国产一区二区在线av高清观看| 午夜精品一区二区三区免费看| 久久久成人免费电影| 欧美成人免费av一区二区三区| 中文欧美无线码| 国产中年淑女户外野战色| 男的添女的下面高潮视频| 日韩亚洲欧美综合| 欧美精品一区二区大全| 亚洲人与动物交配视频| 男女啪啪激烈高潮av片| 99热6这里只有精品| 日韩av不卡免费在线播放| 国产真实乱freesex| 欧美日韩综合久久久久久| av卡一久久| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 欧美一区二区国产精品久久精品| 日韩欧美在线乱码| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 亚洲欧美日韩卡通动漫| 人人妻人人澡人人爽人人夜夜 | 1024手机看黄色片| 国产女主播在线喷水免费视频网站 | 大香蕉97超碰在线| 亚洲欧美精品自产自拍| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 一区二区三区乱码不卡18| 小说图片视频综合网站| 2021少妇久久久久久久久久久| 你懂的网址亚洲精品在线观看 | 日本免费一区二区三区高清不卡| 熟女人妻精品中文字幕| 男人舔奶头视频| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看 | 91精品国产九色| 中文欧美无线码| 女人被狂操c到高潮| 久久99蜜桃精品久久| 欧美3d第一页| av国产免费在线观看| 亚洲国产成人一精品久久久| 亚洲怡红院男人天堂| 国产av一区在线观看免费| 日日撸夜夜添| 欧美97在线视频| 久久精品影院6| 日韩视频在线欧美| 91久久精品国产一区二区三区| 免费大片18禁| 成人高潮视频无遮挡免费网站| 免费观看性生交大片5| 少妇熟女aⅴ在线视频| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 亚洲国产最新在线播放| 天堂中文最新版在线下载 | 日本免费一区二区三区高清不卡| 亚洲国产色片| 麻豆久久精品国产亚洲av| 成人午夜高清在线视频| 亚洲,欧美,日韩| 视频中文字幕在线观看| h日本视频在线播放| videossex国产| 夜夜看夜夜爽夜夜摸| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区 | 精品熟女少妇av免费看| 熟女人妻精品中文字幕| 天天躁夜夜躁狠狠久久av| 国产中年淑女户外野战色| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 亚洲av成人精品一二三区| 色尼玛亚洲综合影院| 美女黄网站色视频| 国产伦精品一区二区三区四那| 噜噜噜噜噜久久久久久91| 尾随美女入室| 色播亚洲综合网| 精品国产一区二区三区久久久樱花 | 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 国产亚洲91精品色在线| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| 在线观看66精品国产| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 99热6这里只有精品| 深夜a级毛片| 欧美成人午夜免费资源| 爱豆传媒免费全集在线观看| 波多野结衣巨乳人妻| 免费大片18禁| .国产精品久久| 插阴视频在线观看视频| 国产乱人视频| 国产精品久久久久久久久免| 精品久久久久久电影网 | 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 69av精品久久久久久| 99视频精品全部免费 在线| 1000部很黄的大片| 成人性生交大片免费视频hd| 亚洲成人精品中文字幕电影| 99久久人妻综合| 日韩大片免费观看网站 | 日本欧美国产在线视频| 少妇高潮的动态图| 美女黄网站色视频| 国产精品久久电影中文字幕| av福利片在线观看| 91在线精品国自产拍蜜月| 特级一级黄色大片| 美女黄网站色视频| 国产大屁股一区二区在线视频| 日本wwww免费看| 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 国产精品一区二区三区四区久久| 又爽又黄a免费视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产淫语在线视频| 久久婷婷人人爽人人干人人爱| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 免费看日本二区| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 国产精品一区二区性色av| 午夜福利在线观看吧| 91狼人影院| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 午夜福利在线在线| 人妻少妇偷人精品九色| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 中文资源天堂在线| 亚洲av成人av| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频 | 亚洲精品成人久久久久久| 成人二区视频| 亚洲精品久久久久久婷婷小说 | 亚洲成av人片在线播放无| 亚洲av成人av| 级片在线观看| 日韩精品有码人妻一区| 欧美极品一区二区三区四区| 日日啪夜夜撸| 国产亚洲一区二区精品| 两个人的视频大全免费| 一本一本综合久久| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| 日本免费在线观看一区| 国产在视频线精品| 亚洲国产高清在线一区二区三| 午夜福利视频1000在线观看| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 纵有疾风起免费观看全集完整版 | av在线播放精品| 色综合色国产| 嫩草影院入口| 欧美日韩综合久久久久久| 插阴视频在线观看视频| 亚洲中文字幕日韩| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 69人妻影院| .国产精品久久| 免费观看的影片在线观看| 精品国产露脸久久av麻豆 | 日日干狠狠操夜夜爽| www.av在线官网国产| 日韩av在线大香蕉| 老司机影院毛片| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| www.av在线官网国产| av国产久精品久网站免费入址| 国产午夜福利久久久久久| 老司机影院成人| ponron亚洲| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说 | .国产精品久久| 亚洲精品国产av成人精品| 日本黄大片高清| 人妻少妇偷人精品九色| 午夜福利在线在线| 免费黄色在线免费观看| 国产午夜精品久久久久久一区二区三区| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 久久久久性生活片| 日本与韩国留学比较| 美女高潮的动态| 3wmmmm亚洲av在线观看| 午夜福利成人在线免费观看| 国内揄拍国产精品人妻在线| 国产在线一区二区三区精 | 久久精品夜色国产| 人人妻人人澡欧美一区二区| 18禁动态无遮挡网站| 亚洲av男天堂| 啦啦啦观看免费观看视频高清| 国产精品人妻久久久影院| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 欧美xxxx黑人xx丫x性爽| 你懂的网址亚洲精品在线观看 | 国产av码专区亚洲av| 精品欧美国产一区二区三| 男人舔奶头视频| 久久久久久久国产电影| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 久久久久久国产a免费观看| 赤兔流量卡办理| 最近中文字幕高清免费大全6| 白带黄色成豆腐渣| 亚洲四区av| 国产女主播在线喷水免费视频网站 | 91久久精品国产一区二区三区| 欧美激情国产日韩精品一区| 亚洲av熟女| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 国产精品无大码| 晚上一个人看的免费电影| 热99在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲国产欧美人成| 亚洲在久久综合| 丰满少妇做爰视频| 日韩欧美 国产精品| 免费在线观看成人毛片| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 久久精品影院6| 国产伦一二天堂av在线观看| 97热精品久久久久久| 国内少妇人妻偷人精品xxx网站| 三级国产精品片| 久久精品久久久久久噜噜老黄 | 亚洲精品色激情综合| 91精品一卡2卡3卡4卡| 少妇裸体淫交视频免费看高清| 免费无遮挡裸体视频| 久久国内精品自在自线图片| av在线蜜桃| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 国产久久久一区二区三区| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 深爱激情五月婷婷| 免费av不卡在线播放| 国产真实乱freesex| 国产不卡一卡二| 日韩一区二区视频免费看| 久久6这里有精品| 国内精品美女久久久久久| 麻豆av噜噜一区二区三区| 国产成人91sexporn| 欧美变态另类bdsm刘玥|