• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steering spatially separated dual sites on nano-TiO2 through SMSI and lattice matching for robust photocatalytic hydrogen evolution

    2021-02-23 09:08:10MingjunMaHaiqingWangHongLiu
    Chinese Chemical Letters 2021年11期

    Mingjun Ma,Haiqing Wang,*,Hong Liu

    a Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Institute for Advanced Interdisciplinary Research(iAIR),University of Jinan,Ji’nan 250022,China

    b State Key Laboratory of Crystal Materials,Shandong University,Ji’nan 250100,China

    ABSTRACT Spatial isolation of different functional sites at the nanoscale in multifunctional catalysts for steering reaction sequence and paths remains a major challenge.Herein,we reported the spatial separation of dual-site Au and RuO2 on the nanosurface of TiO2(Au/TiO2/RuO2)through the strong metal-support interaction(SMSI)and the lattice matching(LM)for robust photocatalytic hydrogen evolution.The SMSI between Au and TiO2 induced the encapsulation of Au nanoparticles by an impermeable TiOx overlayer,which can function as a physical separation barrier to the permeation of the second precursor.The LM between RuO2 and rutile-TiO2 can increase the stability of RuO2/TiO2 interface and thus prevent the aggregation of dual-site Au and RuO2 in the calcination process of removing TiOx overlayer of Au.The photocatalytic hydrogen production is used as a model reaction to evaluate the performance of spatially separated dual-site Au/TiO2/RuO2 catalysts.The rate of hydrogen production of the Au/TiO2/RuO2 is as high as 84 μmol h-1 g-1 under solar light irradiation without sacrificial agents,which is 2.5 times higher than the reference Au/TiO2 and non-separated Au/RuO2/TiO2 samples.Systematic characterizations verify that the spatially separated dual-site Au and RuO2 on the nanosurface of TiO2 can effectively separate the photo-generated carriers and lower the height of the Schottky barrier,respectively,under UV and visible light irradiation.This study provides new inspiration for the precise construction of different sites in multifunctional catalysts.

    Keywords:Photocatalysis Hydrogen evolution Spatial separation SMSI Lattice matching

    The multifunctional catalysts that combine different active sites can endow the whole catalytic process with improved efficiency in terms of economy,environment and energy consumption[1–4].Currently,the most effective method of constructing advanced multifunctional catalysts is atomic layer deposition(ALD).ALD is extremely dependent on its unique sequential self-limiting surface reactions,thereby being capable of dispersing different functional centers with high spatial uniformity[5,6].However,the use of ALD methods has problems,such as expensive equipment and precursors and complex operation.If the spatial separation of multiple sites can be achieved by a simple impregnation method,it will be of great importance for the design and development of industrial catalyst.Unfortunately,the commonly used one-pot or stepwise impregnation method definitely result in either an alloy or an interfacial structure according to the classical synthetic chemistry theory of materials[7–9],thus encountering significant limitations in the spatial separation of different active sites.Therefore,spatial separation of complementary functional sites at the nanoscale in multifunctional catalysts remains a major challenge aiming at steering reaction sequence and paths.

    Gold-titania(Au/TiO2)nanocatalyst has received special interest in photocatalytic chemistry for solar light-induced hydrogen/hydrocarbon production because of their attractive electronic,optical properties,and excellent structural stability[10–19].When Au/TiO2photocatalyst is irradiated by UV,Au can function as an electron sink to execute the hydrogen evolution half-reaction by accumulating the photo-generated electrons in conduction band of the light-absorbing TiO2.The photo-generated holes will diffuse to the surface of TiO2to complete the oxygen evolution half-reaction,thereby promoting the separation and lifetime of electron-hole pair.However,the remaining high-concentrated and highly active holes trapped in TiO2still have to migrate to the surface to participate in the reaction and suffer from a high chance of recombining with electrons[20,21].Although the surface plasmon resonance(SPR)effect of Au particles is capable of initiating hydrogen evolution exclusively with visible light irradiating,only a small percentage of UV light in real sun light have been proved to lead to a significant improvement in terms of hydrogen production amount for Au/TiO2photocatalysts.Therefore,simultaneously manipulating the separation of photo-generated electron-hole pair through a dual co-catalyst stabilizing is of great importance to achieve a high photocatalytic efficiency of Au/TiO2for the water splitting under UV-irradiation.Moreover,the plasmonic property of Au can induce photocatalytic activity of TiO2under visible-light illumination through hot electron generation and injection,simultaneously resulting in the creation of holes in Au[22,23].As the hot electrons are injected into conduction band of semiconductor,the Schottky barrier is formed at the junction between Au and TiO2and has a negative impact on the photocatalytic activity by hindering the continued injection of hot electrons[24–26].The manipulation of the height of Schottky barrier is of great importance in promoting the photocatalysis efficiency of Au/TiO2under visible-light illumination through accelerating the injection of plasmon-induced electron from Au to semiconductor.Unfortunately,the development of Au/TiO2-based systems has been on the horns of a dilemma in addressing the above key scientific issues because of lacking elaborate structural design[27].Therefore,the precise control of different functional centers on the nanosurface of semiconductor is of great importance in promoting photocatalytic efficiency of Au/TiO2under both UV and visible band of solar light by highly efficient separation and transport of the photo-generated electrons and holes,which is a significant scientific and technological challenge.

    Herein,we reported the spatial separation of dual-site Au and RuO2on the nanosurface of TiO2(Au/TiO2/RuO2)viafacile impregnation method by referring to the concept of unique sequential self-limiting surface reactions.The strong metalsupport interaction(SMSI)and the lattice matching(LM)can induce the encapsulation of Au nanoparticles by an impermeable TiOxoverlayer and increase the stability of RuO2/TiO2interface,thereby preventing the aggregation of dual-site Au and RuO2.The resultant Au/TiO2/RuO2exhibits a great enhancement for photocatalytic hydrogen evolution under solar light irradiation without sacrificial agents.The promoted separation efficiency of the photogenerated electron and hole pairs and the lowering height of the Schottky barrier in Au/TiO2/RuO2through the engineering of spatially separated dual-site Au and RuO2are suggested to be responsible for the robust photocatalytic performance.

    Synthesis of Au/TiO2-S:1 g of TiO2(Degussa P25)was firstly added to 40 mL of HAuCl4·4H2O aqueous solution(6.3 mmol/L),and then the pH of the mixture was adjusted to pH 9.0 with 0.1 mol/L NaOH.The slurry was magnetically stirred for 1 h at 65°C.The solid powder was collected after washing with ultrapure water for several times.The Au/TiO2is obtained after an overnight dryness at 60°C and further calcination at 250°C for 2 h in air.

    Synthesis of Au@TiO2/TiO2:An impermeable TiOxoverlayer is wrapped on the surface of Au(Au@TiO2/TiO2)through the strong metal-support interaction(SMSI)between Au and TiO2after a treatment with mixed gas of 10 vol% H2/He at 500°C for 1 h at a heating rate of 2°C/min.

    Synthesis of Au/TiO2:Au/TiO2was prepared through removing the TiOxoverlayer at 400°C in 10%O2/He for 1 h at a heating rate of 2°C/min.

    Synthesis of Au/RuO2/TiO2-m:Au/RuO2/TiO2-m was prepared by mixing the Au and Ru precursors at the beginning.All other steps are the same with the synthetic process of Au/TiO2.

    Synthesis of Au/RuO2/TiO2-c:Au/RuO2/TiO2-c was prepared without the SMSI process,i.e.,the step for preparing Au@TiO2/TiO2.

    Synthesis of Au/TiO2/RuO2:As for the synthesis of Au/TiO2/RuO2,the Ru precursor(RuCl3)was mixed with Au@TiO2/TiO2.All other steps are the same with the synthetic process of Au/TiO2.

    X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer using Cu Kαradiation(λ=1.5418 ?).Scanning electron microscopy(SEM)images were obtained with a Hitachi Regulus-8100 Field Emission Scanning Electron Microscope.Transmission electron microscopy(TEM)images were achieved by using a Hitachi H-7700 TEM operating at 100 kV.Highresolution transmission electron microscopy(HRTEM)was conducted on a FEI Tecnai G2 F20 STwin microscope at 200 kV.X-ray photoelectron spectroscopy(XPS)signals were collected by a Thermo Fisher ESCALAB 250Xi spectrometer applying monochromatic Al KαX-ray sources(1486.6 eV)at 2.0 kV and 20 mA.UV–vis diffuse reflectance spectra(DRS)were recorded on a UV–vis spectrophotometer(UV-3600,Shimadzu).Raman measurements were conducted on the LabRam HR Evolution system.The PL spectra was obtained with a Horiba Luminescence Spectrometer with 375 nm as a laser excitation.The time-resolved PL lifetime was achieved on FLS980,Edinburgh with 375 nm as a laser excitation.

    The photocatalytic activity of samples for hydrogen evolution was evaluated by applying a photocatalytic hydrogen evolution equipment(PerfectLight,Beijing Co.,Ltd.).Typically,0.1 g of catalyst was uniformly dispersed in 100 mL pure water with ultrasonication for 5 min but without using any sacrifice reagents like methanol.The simulated solar is obtained from Xe lamp with AM 1.5 filter,and a uniform power intensity of 100 mW/cm2was calibrated.A homeothermic cooling circulation system was applied to keep the test temperature of 15°C.The online gas chromatography(GC)equipped with a TCD detector was used to quantify the cumulative amount of hydrogen for every 1 h.Photocurrent generation was measured using a three-electrode system.The reference and counter electrodes are saturated calomel electrode(SCE)and Pt sheet,respectively.The Na2SO4aqueous solution(50 mL,0.5 mol/L,pH 6.8)was used as electrolyte.

    Fig.1.(a)Schematic illustration of the preparation process of Au/TiO2/RuO2.The corresponding HRTEM images to the preparation process from(b)TiO2,(c)Au/TiO2,(d)Au@TiO2/TiO2(e)to Au/TiO2/RuO2.(f)HRTEM image of Au/TiO2/RuO2.(g)EDX elemental mapping.(h,i)HRTEM images and line scanning of Au/TiO2/RuO2.(j)XRD pattern.(k)N2 physisorption isotherm of Au/TiO2/RuO2.

    The preparation process of Au/TiO2/RuO2with spatially separated dual-site Au and RuO2is schematically illustrated in Fig.1a.The sample of bare Au nanoparticles on TiO2(Au/TiO2)was firstly prepared starting from the pristine TiO2through impregnation-precipitation method and followed by a calcination at 250°C for 2 h in air.The strong metal-support interaction(SMSI)between Au and TiO2triggered the formation of an impermeable TiOxoverlayer on the surface of Au(Au@TiO2/TiO2)after treatment with mixed gas of 10 vol% H2/He at 500°C for 1 h[28].The pre-formed TiOxoverlayer can function as a physical separation barrier to the permeation of the second precursor.And then the RuCl3was added as precursor of RuO2.When treated with oxidation condition of 10 vol% O2/He at 400°C for 1 h,the TiOxoverlayer retreats.Simultaneously,the Au nanoparticle is exposed and the spatially separated RuO2is formed.The lattice matching between RuO2and TiO2can increase the stability of RuO2/TiO2interface and thus prevent the aggregation of dual-site Au and RuO2in the oxidation calcination process.The structure evolution from TiO2,Au/TiO2,Au@TiO2/TiO2to Au/TiO2/RuO2is exhibited in Figs.1b–e in the corresponding HRTEM images.Fig.1b shows clean nanosurface of pristine TiO2.The Au nanoparticle with a size of about 10 nm is formed on the surface of TiO2according to the analysis of lattice spacing(Fig.1c).A uniform coating with a thickness of approximately 2 nm is clearly observed on the surface of Au nanoparticle,implying the formation of SMSI-induced TiOxoverlayer in Au@TiO2/TiO2(Fig.1d).In addition,the unnoticeable size change of Au nanoparticle from Au/TiO2to Au@TiO2/TiO2with a high temperature calcination treatment indicates the SMSIinduced robust sintering-resistant ability of Au nanocatalyst.As shown in Fig.1e,the lattice spacing of 0.20,0.31 and 0.20 nm can be attributed to the(200)plane of Au,(110)plane of RuO2,and(210)plane of TiO2,respectively,signifying the co-existence of spatially separated Au and RuO2nanoparticles on the nanosurface of TiO2.The RuO2nanoparticle is evaluated to be about 3 nm.The spatially distance between dual-site Au and RuO2is about 10 nm,which ensures the spatial separation of the photo-generated electron and hole pairs on TiO2.No visible changes in the morphology are observed between the pristine P25-TiO2and the resultant Au/TiO2/RuO2(Fig.S1 in Supporting information).The low-magnification TEM image(Fig.1f)indicate the high dispersion degree of dual-site Au and RuO2on the surface of TiO2.The EDX elemental mapping(Fig.1g)of Au/TiO2/RuO2demonstrates the uniform distribution of Ti,O,Au and Ru elements throughout the sample,further implying the good spatial conformity.The contents of Au and Ru in Au/TiO2/RuO2are roughly evaluated to be 1.4 wt%and 1.9 wt%based on the EDX result(Fig.S2 in Supporting information).In order to give a stronger evidence about the distribution of Au and RuO2,a more detailed analysis of TiO2/RuO2and Au/TiO2interfaces is provided.As show in Fig.1h,the two crystalline planes of the small nanoparticle with lattice spacing of 0.22 and 0.20 nm,respectively,and an angle of 26.5°are attributed to the features of(200)and(210)planes of RuO2,verifying that the small nanoparticle is RuO2functional site.Importantly,the current result presents the lattice mismatch between RuO2and TiO2is only about 4%.The <5% of lattice mismatch is normally suggested to provide a highly stabilized TiO2/RuO2interface[29].Moreover,the RuO2and rutile TiO2in P25 have the same tetragonal crystalline structure and specially their lattice mismatch along[101]direction is only 2.2%[30].The above analysis signifies the presence of high-level lattice match between RuO2and TiO2,which is capable of preventing the aggregation of RuO2and Au dual sites during calcination process.A line scanning of big nanoparticles in Au/TiO2/RuO2(Fig.1i)is conducted and the positions of Au signal peaks are well matched with the distance of the two nanoparticles,thereby proving that the bigger nanoparticle is Au nanoparticles.Moreover,as exhibited in Fig.1j,XRD pattern of Au/TiO2/RuO2demonstrate the existence of anatase(JCPDS No.21-1272)and rutile(JCPDS No.21-1276)TiO2from P25,and Au(JCPDS No.04-0784)and RuO2(JCPDS No.40-1290)phases.Note that the phases of Au and RuO2are isolated with each other,further verifying the spatial separation of Au and RuO2in Au/TiO2/RuO2.The nitrogen physisorption isotherm of Au/TiO2/RuO2(Fig.1k)indicates a high specific surface area(SBET)of 43 m2/g and the most probable pore size of about 50 nm(inset).Compared with 50 m2/g of the pristine P25-TiO2(Fig.S3 in Supporting information),the result indicates the loading of Au and RuO2nanoparticles.Taken together,the spatially separated dualsite Au and RuO2on the nanosurface of TiO2(Au/TiO2/RuO2)is successfully constructed through programmed strong metalsupport interaction(SMSI)and lattice matching(LM).

    Raman spectroscopy is a highly sensitive analytical method for crystallinity and microstructures of the materials.The Raman spectra of Au/TiO2/RuO2and P25-TiO2is shown in Fig.2a and Fig.S4(Supporting information),respectively.The well-resolved peaks at 146,198,399,516 and 640 cm-1are attributed to the characteristic peaks of Eg,Eg,B1g,A1gand Egin TiO2[31].The optical property of Au/TiO2/RuO2is studied with UV–vis diffuse reflectance spectrum and exhibited in Fig.2b.The absorption in the UV region is attributed to the band transition of TiO2[32].The absorption in the visible region centered at 560 nm is arising from surface plasmon resonance of Au nanoparticles.The uplifted tail after 700 nm should be ascribed to the transition of RuO2band[33].Fig.2c shows two XPS signals of Ti 2p3/2and Ti 2p1/2levels centered at about 458.6 and 464.3 eV in the Ti 2p spectrum[34,35].The O 1s signal in Fig.2d can be fitted into two peaks centered at about 529.7 and 530.6 eV attributed to the lattice oxygen and the adsorbed oxygen species,respectively[31,33,36].The existence of two peaks at 83.4 eV for Au 4f7/2and 87.0 eV for Au 4f5/2in Au 4f spectroscopy(Fig.2e)suggest the purely metallic state Au species[37].The XPS spectroscopy of Ru 3d3/2(Fig.2f)is overlapped with that of C 1s at 284.8 eV.The signal peak at a binding energy of 280.2 eV of Ru 3d5/2demonstrates the presence of Ru4+species in RuO2[33,38].These results further confirmed the co-existence of Au and RuO2in the resultant Au/TiO2/RuO2.

    Fig.2.(a)Raman spectroscopy,(b)UV–vis diffuse reflectance spectrum,XPS results of(c)Ti 2p,(d)O1s,(e)Au 4f and(f)Ru 3d(and C 1s)of Au/TiO2/RuO2.

    The photocatalytic performances of Au/TiO2/RuO2and the reference samples were investigated for water splitting under solar light irradiationwithout methanol as sacrificial reagent.As given in Fig.3a,the amount of hydrogen production is unnoticeable for the pristine P25 without any co-catalyst even after 6 h irradiation.However,Au@TiO2/TiO2that has a TiOxoverlayer on Au nanoparticle gives a promoted photocatalytic hydrogen production of 127 μmol/g for 6 h,which should be attributed to the separation of photo-generated carriers and the surface plasmon resonance(SPR)of Au nanoparticles.By contrast,Au/TiO2with exposed Au nanoparticle shows an obvious improvement in photocatalytic activity,and the hydrogen production can reach to 203 μmol/g for 6 h.Unfortunately,the Au/RuO2/TiO2samples prepared through either mixing the Au and Ru precursors(Au/RuO2/TiO2-m)or canceling the SMSI process(Au/RuO2/TiO2-c)present a slight activity increase compared with Au@TiO2/TiO2.The performance of 157 and 183 μmol/g for 6 h of Au/RuO2/TiO2-m/-c is still lower than 203 μmol/g of the Au/TiO2with exposed Au nanoparticle.The activity differences between Au@TiO2/TiO2,Au/RuO2/TiO2-m/-c and Au/TiO2should be ascribed to the reason that the TiOxoverlayer on Au nanoparticle in Au@TiO2/TiO2and the nonseparated Au and RuO2dual sites could weaken the functions of Au as co-catalyst and SPR site.Interestingly,the Au/TiO2/RuO2with spatial separated Au and RuO2exhibits the highest amount of hydrogen production as high as 504 μmol/g.The calculated rates of hydrogen production(Fig.3b)of P25,Au@TiO2/TiO2,Au/RuO2/TiO2-m,Au/RuO2/TiO2-c,and Au/TiO2/RuO2are 0,21.3,26.2,30.5,33.8 and 84.0 μmol h-1g-1.The performance of Au/TiO2/RuO2is 2.5 times higher than the reference Au/TiO2and non-separated Au/RuO2/TiO2samples.Moreover,as shown in Fig.3c,a long-term photocatalytic test of Au/TiO2/RuO2demonstrate a stable line pattern of hydrogen production,suggesting its excellent stability.Therefore,the Au/RuO2/TiO2has exhibited attractive photocatalytic activity and preferable long-term stability in hydrogen evolution under solar light irradiation without methanol as sacrificial reagent.In order to unveil the potential fate of lightgenerated electron-hole pairs,the charge carrier recombination processes of Au/TiO2and Au/TiO2/RuO2are analyzed by photocurrent response,photoluminescence(PL)emission and PL lifetime.As shown in Fig.3d,the photocurrent of Au/TiO2/RuO2is higher than that of Au/TiO2.The intensity of the PL spectra can signify the recombination amount between electron and holes under emission of photons[33,39].Compared with Au/TiO2,Au/TiO2/RuO2exhibits lower intensity of PL(Fig.3e).Time-resolved PL measurement(Fig.3f)exhibits that the intensity of Au/TiO2/RuO2decays much more slowly than that of Au/TiO2,verifying a longer lifetime of photo-generated elector and hole pairs in Au/TiO2/RuO2[40,41].The above results confirmed that the spatially separated Au and RuO2in Au/TiO2/RuO2can greatly enhance the separation and transport effciency of photo-generated electron-hole pairs,thereby leading to an attractive promotion for water splitting under solar light irradiation without methanol as sacrificial reagent.

    Fig.3.(a,b)Photocatalytic performances.(c)Cycling stability.(d)Photocurrent response.(e)Photoluminescence(PL)emission.(f)Time-resolved PL measurement.

    Fig.4.(a)X-ray photoelectron(XPS)valence band spectra.(b)Band alignment of Au/TiO2/RuO2.

    In addition,X-ray photoelectron(XPS)valence band spectra of P25,Au/TiO2and Au/TiO2/RuO2were characterized in Fig.4a to further disclose the changes in electronic structures.The valence band edge of P25 is located at approximately 2.81 eV relative to Fermi level,which is attributed to the top level of rutile-TiO2valence band arising from the band alignment of anatase-TiO2and rutile-TiO2[30,42].The rutile-TiO2features a band gap of 3.03 eV with Fermi level lying within the band range,and its bottom level of conduction band is 0.22 eV above Fermi level[43].The anatase-TiO2has a band gap of 3.20 eV with Fermi level locating right at its conduction band bottom,and its top level of valence band is about 0.39 lower than that of rutile-TiO2.As shown in the spectrum of Au/TiO2/RuO2,the band edge of RuO2is approximately -0.52 eV[30].The result implies that the Fermi level should be lying within its states,but its high-density states are still locating under Fermi level.The level is obviously higher than the valence band of rutile-TiO2,thereby facilitating the separation and transport of electrons from RuO2to rutile-TiO2or holes from rutile-TiO2to RuO2across their interfaces.Taken together,a full description about the separation and transport of photo-generated electron-hole pairs in Au/TiO2/RuO2is given as follows.When the P25-TiO2is irradiated with UV light,the photo-generated electron in conduction band of rutile-TiO2flows to conduction band of anatase-TiO2.While the holes go in the opposite direction from valence band of anatase-TiO2to that of rutile-TiO2.The electrons accumulated in anatase-TiO2side could transfer to Au nanoparticle to trigger hydrogen evolution.The holes accumulated in rutile-TiO2side can further migrate to RuO2nanoparticle,thereby preventing the recombination of photo-generated electron-hole pairs.Therefore,a tandem charge transfer with spatially separated Au and RuO2in Au/TiO2/RuO2(Fig.4b)can further enhance the separation and transport efficiency of photo-generated electron-hole pairs in TiO2-based photocatalysts and thus promote their photochemical performances[44–46].As for visible-light illumination,hot electrons generated from the plasmonic property of Au nanoparticle can transfer toTiO2to participate in photocatalytic hydrogen evolution,and then the Schottky barrier is formed at the junction between Au and TiO2[47,48].The height of Schottky barrier is of great importance in promoting the photocatalysis efficiency of Au/TiO2under visible-light illumination through facilitating the injection of plasmon-induced electron from Au to semiconductor.The valence band maxima of Au/TiO2and Au/TiO2/RuO2shift to lower binding energies by 0.33 and 0.23 eV,respectively,in comparison to pristine TiO2,which should correspond to the Schottky barrier height between Au and TiO2.The surface plasmon resonance of Au nanoparticles can be triggered at about 550 nm of visible light.The energy of generated electrons on the surface of Au nanoparticles is approximately 2 eV,which is sufficient to flow across 0.33 in Au/TiO2and 0.23 eV in Au/TiO2/RuO2of Schottky barrier height to the TiO2(Fig.S5 in Supporting information)[24].Importantly,the lower Schottky barrier height in Au/TiO2/RuO2means that lower energy is needed to induce the transfer of hot electrons from Au to TiO2in comparison with Au/TiO2,which is more conducive to photocatalytic activity under visible light irradiation.Therefore,the spatially separated dual-site Au and RuO2on the nanosurface of TiO2can effectively separate the photo-generated carriers and lower the height of the Schottky barrier,respectively,under UV and visible light irradiation,thus promoting the photocatalytic performance.

    In conclusion,we successfully constructed spatially separated dual-site Au and RuO2on the nanosurface of TiO2(Au/TiO2/RuO2)through the strong metal-support interaction(SMSI)and the lattice matching(LM).The resultant Au/TiO2/RuO2exhibits robust photocatalytic hydrogen evolution as high as 84 μmol h-1g-1under solar light irradiation without sacrificial agents,which is 2.5 times higher than the reference Au/TiO2and non-separated Au/RuO2/TiO2samples.The spatially separated dual-site Au and RuO2on the nanosurface of TiO2can effectively separate the photogenerated carriers through a tandem charge transfer and lower the height of the Schottky barrier through facilitating hot electron migration,respectively,under UV and visible light irradiation.The work provides an attractive approach for spatially separating different function sites by programmed SMSI and LM states to refine catalytic performance.

    Declaration of competing interest

    The authors claim that no conflict of interest exists in the submission of this manuscript,and manuscript is approved by all authors for publication.I would like to declare on behalf of my coauthors that the work described is original research and has not been published previously,which is not under consideration for publication elsewhere in whole or in part.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China(No.2017YFB0405400),Shandong Provincial Natural Science Foundation(Nos.ZR2019BB025 and ZR2018ZC0842),the Project of“20 items of University”of Jinan(No.2018GXRC031).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.04.012.

    亚洲va在线va天堂va国产| 欧美高清成人免费视频www| 成年女人在线观看亚洲视频| 女人久久www免费人成看片| 国内少妇人妻偷人精品xxx网站| 街头女战士在线观看网站| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 九九爱精品视频在线观看| 国产探花极品一区二区| 亚洲欧美日韩无卡精品| 久久久久人妻精品一区果冻| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 伦理电影大哥的女人| 亚洲真实伦在线观看| 爱豆传媒免费全集在线观看| 丰满少妇做爰视频| 中文在线观看免费www的网站| 五月开心婷婷网| 欧美日韩在线观看h| 日韩av免费高清视频| 美女cb高潮喷水在线观看| 国产深夜福利视频在线观看| 国产高清不卡午夜福利| 高清日韩中文字幕在线| 亚洲国产欧美在线一区| 五月天丁香电影| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 成人黄色视频免费在线看| 国产高清国产精品国产三级 | 国产有黄有色有爽视频| 亚洲自偷自拍三级| 在线免费十八禁| 成人美女网站在线观看视频| 亚洲精品aⅴ在线观看| 97超视频在线观看视频| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 少妇精品久久久久久久| 熟女电影av网| 国产亚洲91精品色在线| 亚洲av免费高清在线观看| 精品亚洲成国产av| 国产有黄有色有爽视频| 精品久久国产蜜桃| 人妻系列 视频| 另类亚洲欧美激情| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 久久精品夜色国产| 欧美人与善性xxx| 免费人妻精品一区二区三区视频| 精品少妇久久久久久888优播| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 精华霜和精华液先用哪个| 久久久久久久精品精品| 亚洲美女搞黄在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 日韩欧美精品免费久久| 精品亚洲成a人片在线观看 | 久久精品久久久久久久性| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| av卡一久久| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 成人国产麻豆网| 亚洲aⅴ乱码一区二区在线播放| 婷婷色av中文字幕| av福利片在线观看| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 精品久久久噜噜| 国产成人精品久久久久久| 在线观看三级黄色| 51国产日韩欧美| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 91精品伊人久久大香线蕉| av线在线观看网站| 国产免费福利视频在线观看| 国产高清国产精品国产三级 | 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 成人综合一区亚洲| 男人舔奶头视频| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 国产精品99久久久久久久久| 日日啪夜夜撸| 午夜福利视频精品| 中文字幕久久专区| 久久精品人妻少妇| 亚洲,一卡二卡三卡| 欧美极品一区二区三区四区| 免费观看在线日韩| 国产亚洲最大av| a级毛色黄片| 一个人看视频在线观看www免费| 亚洲天堂av无毛| 国产av国产精品国产| 国产91av在线免费观看| 插逼视频在线观看| 国产精品人妻久久久影院| 99久国产av精品国产电影| 中文字幕久久专区| 久久国产乱子免费精品| 亚洲成人手机| 黄色欧美视频在线观看| 亚洲av欧美aⅴ国产| 舔av片在线| 久久久久久久大尺度免费视频| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 最近的中文字幕免费完整| 日韩成人伦理影院| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 看免费成人av毛片| 国产亚洲91精品色在线| 日韩一区二区三区影片| 伊人久久精品亚洲午夜| 大码成人一级视频| 色视频www国产| 中文资源天堂在线| 亚洲av.av天堂| 亚洲精品日本国产第一区| kizo精华| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看| 精品一品国产午夜福利视频| 最黄视频免费看| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 午夜福利高清视频| 一区二区三区四区激情视频| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 男女免费视频国产| av视频免费观看在线观看| 久久人妻熟女aⅴ| 午夜福利网站1000一区二区三区| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 高清毛片免费看| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 亚洲精品色激情综合| 成人18禁高潮啪啪吃奶动态图 | 嫩草影院入口| 国产精品一二三区在线看| 伊人久久国产一区二区| 欧美老熟妇乱子伦牲交| 身体一侧抽搐| 国产黄频视频在线观看| 爱豆传媒免费全集在线观看| 国产av国产精品国产| 中文乱码字字幕精品一区二区三区| 亚洲精品456在线播放app| 观看免费一级毛片| 日韩成人伦理影院| 一级毛片黄色毛片免费观看视频| 交换朋友夫妻互换小说| 久久国产乱子免费精品| 亚洲av福利一区| 黄色怎么调成土黄色| 国产精品熟女久久久久浪| 干丝袜人妻中文字幕| 亚洲图色成人| 男女无遮挡免费网站观看| 性高湖久久久久久久久免费观看| 寂寞人妻少妇视频99o| 日本色播在线视频| 美女主播在线视频| av一本久久久久| 热99国产精品久久久久久7| 国产一级毛片在线| 精品亚洲乱码少妇综合久久| 亚洲,欧美,日韩| 亚洲av日韩在线播放| 国产黄频视频在线观看| 亚洲自偷自拍三级| 日韩强制内射视频| 美女内射精品一级片tv| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 99re6热这里在线精品视频| 边亲边吃奶的免费视频| 久久久午夜欧美精品| 亚洲av福利一区| 高清不卡的av网站| 热re99久久精品国产66热6| 国产成人a区在线观看| 三级经典国产精品| 婷婷色麻豆天堂久久| 久久久久视频综合| 久久 成人 亚洲| 免费在线观看成人毛片| 久久国产精品男人的天堂亚洲 | 成人免费观看视频高清| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线不卡| 欧美成人一区二区免费高清观看| 日韩亚洲欧美综合| 久热久热在线精品观看| 久久久久久久亚洲中文字幕| 亚洲精华国产精华液的使用体验| av天堂中文字幕网| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| av女优亚洲男人天堂| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av天美| 国产伦精品一区二区三区四那| 国产一区二区三区综合在线观看 | h视频一区二区三区| 大香蕉久久网| 大话2 男鬼变身卡| 观看av在线不卡| 少妇的逼好多水| 一级毛片久久久久久久久女| 国产精品久久久久久av不卡| 精品久久久精品久久久| 国产精品一区www在线观看| 国产91av在线免费观看| 美女中出高潮动态图| 亚洲,欧美,日韩| 欧美日韩一区二区视频在线观看视频在线| 久久精品人妻少妇| 九九久久精品国产亚洲av麻豆| 日韩av免费高清视频| 天美传媒精品一区二区| 国产精品一区二区在线不卡| 亚洲欧洲日产国产| 在线观看三级黄色| 爱豆传媒免费全集在线观看| 久久影院123| 亚洲综合精品二区| 麻豆成人午夜福利视频| a级毛色黄片| 九九爱精品视频在线观看| 国产在线男女| 久久久久久久久久久免费av| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| av又黄又爽大尺度在线免费看| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 美女中出高潮动态图| 人人妻人人澡人人爽人人夜夜| 日韩人妻高清精品专区| 精品一区二区免费观看| 久久99热这里只频精品6学生| 在线免费十八禁| 亚洲婷婷狠狠爱综合网| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲网站| 精品亚洲成a人片在线观看 | 男女下面进入的视频免费午夜| 日韩av免费高清视频| 高清不卡的av网站| 免费黄色在线免费观看| 高清在线视频一区二区三区| 高清视频免费观看一区二区| 午夜福利高清视频| 色吧在线观看| 国产综合精华液| 黄色视频在线播放观看不卡| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av涩爱| 精品熟女少妇av免费看| 男女下面进入的视频免费午夜| 我要看日韩黄色一级片| 色婷婷久久久亚洲欧美| 国产在线一区二区三区精| 亚洲经典国产精华液单| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 免费观看性生交大片5| 秋霞在线观看毛片| 夜夜爽夜夜爽视频| 人体艺术视频欧美日本| 久久精品久久久久久噜噜老黄| 欧美另类一区| 一本一本综合久久| 亚洲av不卡在线观看| 97超碰精品成人国产| 亚洲欧美精品自产自拍| 少妇丰满av| 超碰av人人做人人爽久久| 色婷婷久久久亚洲欧美| 涩涩av久久男人的天堂| 成人亚洲精品一区在线观看 | 国产亚洲91精品色在线| 一区二区三区免费毛片| 亚洲精品456在线播放app| 欧美变态另类bdsm刘玥| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片| 久久 成人 亚洲| 美女视频免费永久观看网站| 亚洲精品一二三| 久久久久久九九精品二区国产| av又黄又爽大尺度在线免费看| 美女内射精品一级片tv| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 男女边摸边吃奶| 男女边吃奶边做爰视频| 国产片特级美女逼逼视频| 国产高清三级在线| .国产精品久久| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 性色av一级| 欧美老熟妇乱子伦牲交| 国产黄色免费在线视频| 有码 亚洲区| 春色校园在线视频观看| 97超碰精品成人国产| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 久久久久网色| 中文在线观看免费www的网站| 女人久久www免费人成看片| 欧美日韩视频精品一区| 成人18禁高潮啪啪吃奶动态图 | 国产精品国产三级国产专区5o| 国产色婷婷99| 交换朋友夫妻互换小说| 亚洲内射少妇av| 亚洲欧美一区二区三区国产| av视频免费观看在线观看| 亚洲av国产av综合av卡| 国产精品精品国产色婷婷| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 亚洲真实伦在线观看| 欧美国产精品一级二级三级 | 亚洲精品日本国产第一区| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 丰满少妇做爰视频| 国产大屁股一区二区在线视频| 黄色日韩在线| av又黄又爽大尺度在线免费看| 国产片特级美女逼逼视频| 联通29元200g的流量卡| 人妻夜夜爽99麻豆av| 日本av免费视频播放| 黑人高潮一二区| 国产亚洲最大av| 亚洲国产最新在线播放| 国产成人精品一,二区| 久久热精品热| 国产精品欧美亚洲77777| 亚洲人与动物交配视频| 欧美老熟妇乱子伦牲交| 深夜a级毛片| 久久97久久精品| 久久精品国产a三级三级三级| h日本视频在线播放| 日本vs欧美在线观看视频 | 中国国产av一级| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区| 久久精品人妻少妇| 夫妻午夜视频| a级毛色黄片| 九草在线视频观看| 99热网站在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品999| 寂寞人妻少妇视频99o| 有码 亚洲区| 99热6这里只有精品| 久久av网站| 久久精品国产自在天天线| av国产精品久久久久影院| 欧美高清性xxxxhd video| 亚洲欧美精品自产自拍| 国产男女内射视频| 最近2019中文字幕mv第一页| 国产成人一区二区在线| 亚洲天堂av无毛| 精品久久久久久久末码| 一级爰片在线观看| 亚洲精品自拍成人| 青青草视频在线视频观看| 成年av动漫网址| 欧美区成人在线视频| 啦啦啦在线观看免费高清www| 一级黄片播放器| www.av在线官网国产| 中国三级夫妇交换| 久久久久精品性色| 色5月婷婷丁香| 日韩伦理黄色片| 日韩免费高清中文字幕av| 黄色欧美视频在线观看| 久久精品人妻少妇| 精品少妇久久久久久888优播| 精品99又大又爽又粗少妇毛片| 人体艺术视频欧美日本| 国产男女内射视频| 超碰97精品在线观看| 看十八女毛片水多多多| 色吧在线观看| 少妇人妻精品综合一区二区| 国产探花极品一区二区| 一级毛片 在线播放| 欧美精品亚洲一区二区| 久久久欧美国产精品| 成人黄色视频免费在线看| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 在线观看免费日韩欧美大片 | 国产精品国产av在线观看| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 91狼人影院| 国产成人91sexporn| 久久精品夜色国产| 色综合色国产| 久久人人爽人人爽人人片va| 免费看av在线观看网站| 插逼视频在线观看| 在线观看国产h片| 欧美成人午夜免费资源| 久久久久久九九精品二区国产| 国产黄片视频在线免费观看| 中文在线观看免费www的网站| 这个男人来自地球电影免费观看 | 深爱激情五月婷婷| 日本黄色片子视频| 插逼视频在线观看| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 国内少妇人妻偷人精品xxx网站| 免费观看性生交大片5| 国产一区有黄有色的免费视频| 自拍偷自拍亚洲精品老妇| 欧美日韩国产mv在线观看视频 | 深夜a级毛片| 国产在视频线精品| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 亚洲精品国产色婷婷电影| av在线播放精品| 久久久久久人妻| 夜夜看夜夜爽夜夜摸| 国产精品三级大全| 亚洲国产成人一精品久久久| 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 日本av免费视频播放| 国产精品嫩草影院av在线观看| 亚洲在久久综合| 18禁裸乳无遮挡动漫免费视频| 色视频www国产| 国产高清不卡午夜福利| 多毛熟女@视频| 尤物成人国产欧美一区二区三区| 22中文网久久字幕| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| 国产真实伦视频高清在线观看| 毛片女人毛片| 亚洲人成网站在线观看播放| 最新中文字幕久久久久| 一本一本综合久久| 五月开心婷婷网| 久久久国产一区二区| 久久精品久久久久久久性| 国产精品一区二区性色av| 久久青草综合色| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 精品一区二区三区视频在线| 成人亚洲精品一区在线观看 | 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| 日本黄大片高清| 一区二区三区免费毛片| 午夜视频国产福利| 99热国产这里只有精品6| 久久久国产一区二区| 亚洲第一av免费看| 午夜福利网站1000一区二区三区| 欧美性感艳星| 又爽又黄a免费视频| freevideosex欧美| 欧美zozozo另类| 蜜桃在线观看..| 亚州av有码| 九九爱精品视频在线观看| 三级国产精品欧美在线观看| 六月丁香七月| 高清视频免费观看一区二区| 一级a做视频免费观看| 高清毛片免费看| 免费人妻精品一区二区三区视频| 男人和女人高潮做爰伦理| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | 51国产日韩欧美| 看十八女毛片水多多多| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 亚洲精品视频女| 久久久久网色| 精品酒店卫生间| 久久青草综合色| 亚洲最大成人中文| av国产精品久久久久影院| 欧美+日韩+精品| 欧美另类一区| 精品视频人人做人人爽| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 久久久久网色| 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 国产成人a区在线观看| 久久久久久伊人网av| 欧美极品一区二区三区四区| 欧美精品一区二区免费开放| 乱系列少妇在线播放| 寂寞人妻少妇视频99o| 一级毛片我不卡| 久久鲁丝午夜福利片| 国产综合精华液| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 国产欧美日韩一区二区三区在线 | 国产老妇伦熟女老妇高清| 免费av不卡在线播放| 91精品国产国语对白视频| 男人爽女人下面视频在线观看| 久久精品国产a三级三级三级| 中文欧美无线码| 国产视频内射| 一区二区三区精品91| 久久精品夜色国产| 成人毛片a级毛片在线播放| 日本一二三区视频观看| 亚洲成人av在线免费| 99久久综合免费| 亚洲中文av在线| 在线观看美女被高潮喷水网站| 亚洲欧美成人精品一区二区| 日韩av免费高清视频| 成年女人在线观看亚洲视频| 一本色道久久久久久精品综合| 尤物成人国产欧美一区二区三区| 久久久久精品久久久久真实原创| 国产91av在线免费观看| 欧美bdsm另类| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 天堂俺去俺来也www色官网| 蜜臀久久99精品久久宅男| 国产视频内射| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 亚洲av欧美aⅴ国产| 在线免费十八禁| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 狠狠精品人妻久久久久久综合| 亚洲精品久久久久久婷婷小说| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 婷婷色麻豆天堂久久| 午夜福利视频精品| 久久毛片免费看一区二区三区| 亚洲欧洲日产国产| tube8黄色片| 99久久精品热视频| 秋霞在线观看毛片| 国产高潮美女av| 亚洲综合色惰| 国模一区二区三区四区视频| 高清视频免费观看一区二区| 噜噜噜噜噜久久久久久91| 午夜免费观看性视频| 久久人人爽人人爽人人片va| 丝袜喷水一区| 国产精品人妻久久久影院| 日日啪夜夜爽| 亚州av有码| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看|