• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving Na+ transport kinetics and Na+ storage of hierarchical rhenium-nickel sulfide(ReS2@NiS2)hollow architecture by assembling layered 2D-3D heterostructures

    2021-02-23 09:08:06ZelinCiZilinPengXinlongLiuRuiSunZhoxiQinHosenFnYufeiZhng
    Chinese Chemical Letters 2021年11期

    Zelin Ci,Zilin Peng,Xinlong Liu,Rui Sun,Zhoxi Qin,Hosen Fn,*,Yufei Zhng

    a School of Chemistry and Chemical Engineering,Guangzhou University,Guangzhou 510006,China

    b School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China

    ABSTRACT Mixed metal sulfides have been widely used as anode material of sodium-ion batteries(SIBs)because of their excellent conductivity and sodium ion storage performance.Herein,ReS2@NiS2 heterostructures have been triumphantly designed and prepared through anchoring ReS2 nanosheet arrays on the surface of NiS2 hollow nanosphere.Specifically,the carbon nanospheres was used as hard template to synthesize NiS2 hollow spheres as the substrate and then the ultrathin two-dimensional ReS2 nanosheet arrays were uniformly grown on the surface of NiS2.The internal hollow property provides sufficient space to relieve the volume expansion,and the outer two-dimensional nanosheet realizes the rapid electron transport and insertion/extraction of Na+.Owing to the great improvement of the transport kinetics of Na+,NiS2@ReS2 heterostructure electrode can achieve a high specific capacity of 400 mAh/g at the high current density of 1 A/g and still maintain a stable cycle stability even after 220 cycles.This hard template method not only paves a new way for the design and construct binary metal sulfide heterostructure electrode materials with outstanding electrochemical performance for Na+batteries but also open up the potential applications of anode materials of SIBs.

    Keywords:Nanosheet arrays Diffusion kinetics NiS2@ReS2 Sodium storage Heterostructure

    Lithium-ion batteries(LIBs),as the most widely used energy storage equipment,are mass-produced and applied in portable devices,but the storage of lithium resources in the earth’s crust is scarce[1–4].The sodium element has similar physicochemical properties to lithium and has abundant resource storage.Therefore,sodium-ion batteries(SIBs)are considered one of the most attractive alternatives to lithium-ion batteries(LIBs).Transitional metal sulfides(MxSy)have attracted extensive attention in the development of anode materials for sodium-ion batteries due to their excellent properties of sodium storage.Metal sulfides tend to have higher electrical conductivity than those of their oxides and the M--S bond is weaker than that that of the M--O bond.Hence,the conversion reactions can exhibit fast kinetics during the charge and discharge process of SIBs,especially in 2D transition metal sulfides.Layered molybdenum disulfide(MoS2)is such a typical example,which layer structures provide a large interlayer spacing(0.62 nm)combined with the weak van der Waals interactions between neighboring S-Mo-S layers can promote Na+migration and alleviate structural deformation during a redox reaction[5–7].Recently,Rhenium disulfide(ReS2),as a newly emerging member of the 2D TMDs,was found to have similar layer spacing of 0.614 nm to MoS2.Besides,firstprinciples research results show that the weak coupling of the ReS2interlayer is more than 25 times weaker than that of MoS2(18vs.460 meV per unit cell).This reveals that ReS2is more suitable for ionic intercalation for anode material of SIBs[8–10].

    However,the inherent drawback of low electrical conductivity of TMDs severely limits their potential applications in SIB.The simplest and most effective way to solve this shortcoming is to mix metal sulfides[11–13].Compared with single-component metal sulfides,mixed metal sulfides(MMSs)can not only significantly improve the conductivity of the electrode material but also provide abundant lattice mismatches,distortions,and defects at the boundaries of different phases,which can regulate the reaction kinetics of charge carriers[14–17].Furthermore,dissimilar coupling components have different bandgaps to form the internal electric field(E-field)at the hetero-interfaces,which can overcome the defects of ion transport dynamics caused by the larger ionic radius of Na+to a certain extent[18,19].Therefore,the multi-component MMSs anode material with structural heterostructure shows the high reversible capacity and excellent rate performance for Na+storage[20–22].Another unavoidable problem of MMSs material is the drastic volume changes electrode materials during the process of continuous insertion,conversion,and/or alloying reaction in the sodium storage mechanism.To address these issues,constructing hollow nanostructure engineering is a reliable strategy for boosting the stability of MMS sodium storage properties[23–26].Moreover,the large surface area brings by the hollow structure gives accessible electroactive sites and enables the full infiltration of electrolytes[27–30].

    Based on all the advantages discussed above,we designed and constructed ReS2@NiS2heterostructure hollow spheres prepared by hard template method for high-performance SIBs.NiO hollow spheres were synthesized using glucose hydrothermal carbon nanospheres as a sacrificial template.Then few-layered ReS2nanosheet arrays vertically and uniformly grew on the surface of NiS2hollow nanospheres.Ultrathin ReS2nanosheet arrays on the surface can prevent them from restacking and shorten the diffusion distance of sodium ions at the same time.The mixed bimetallic sulfide cannot only improve the electrical conductivity of the electrode material but also promote the electron/ion transport due to the heterostructure.Most importantly,the spherical substrate provides stable support for the overall structure,and the hollow structure provides a buffer space for the volume deformation caused by the subsequent redox reaction.As a result,the NiS2@ReS2heterostructure hollow sphere exhibited a high specific capacity of 400 mAh/g at the current density of 1 A/g and delivered stable cycling performance even after 220 cycles.Moreover,NiS2@ReS2exhibited a higher rate capacity at all tested current densities than those of NiS2and ReS2single components.

    Synthesis of carbon nanosphere(CS)template:Typically,6 g glucose and 0.4 g cetyltrimethylammonium bromide(CTAB)were dissolved in 50 mL of deionized water by ultrasound and stirring.Transfer the above solution to Teflon-lined autoclave and heat it at 180°C for 12 h.The obtained product was centrifuged and then repeatedly washed with deionized water and ethanol several times.After drying overnight at 60°C in an oven,the final product was collected.

    Synthesis of NiO hollow nanosphere:Firstly,prepare 50 mL of 1 mol/L NiCl2solution,where the solvent is a mixture of water and ethanol with a volume ratio of 1:2.1 g of carbon nanosphere template was added into the NiCl2solution at 40°C and stirred for 12 h.The product was collected by centrifugation,washing with deionized water and during in an oven at 60°C overnight.Finally,the product was calcined in a muffle furnace at 500°C for 2 h to remove the template.

    Synthesis of NiS2@ReS2heterostructure:The hollow nanospheres of NiO and sulfur powder were sulfurized at 600°C for 2 h in the argon atmosphere of a tubular furnace with the mass ratio of 1:2.30 mg of the sulfurized product was added to 40 mL deionized water together with 107.3 mg ammonium perrhenate(NH4ReO4),160 mg thiourea(CS(NH2)2),and 71.6 mg hydroxylammonium chloride(NH2OH·HCl)and stirred for 2 h.The above solution was transferred to a Teflon-lined stainless autoclave and heated to 240°C and kept for 24 h.After cooling,the product was collected by centrifugation and washed several times with water and ethanol.In order to improve the crystallinity of the product,NiS2@ReS2was kept at 400°C for 2 h under an argon atmosphere in a tube furnace.The synthesis of pure ReS2uses the same raw materials and preparation process but does not add NiS2hollow nanospheres.

    Fig.1.(a)The schematic diagram of the fabrication process of NiS2@ReS2 hollow heterogeneous structure spheres.FESEM images with a different magnification of(b-d)NiS2@ReS2 heterostructure hollow nanospheres.(e)TEM image and(f)high-resolution TEM(HRTEM)and(g-j)EDS mapping of the NiS2@ReS2 heterostructure.

    Materials characterization:The morphology and internal structure of the sample were characterized by FESEM(JEOL,JSM-7001F)and TEM(JEOL JEM-2100F).The composition and distribution of materials were investigated by energy-dispersive X-ray spectroscopy(EDS).The specific crystal structure and phase identification are performed by XRD(D8 Rigaku9000)at the 2θ range of 5°-80°using Cu-Kα radiation.The chemical bond state of the sample is characterized by XPS(Thermo Scientific K-Alpha)method with Al Kα source.

    Electrochemical measurements:The synthesized active material is mixed with acetylene black and the binder(sodium alginate)in a mass ratio of 7:2:1,ground into a slurry,and then coated on the copper foil.A half-cell was assembled in a glove box in an argon atmosphere to test the electrochemical performance of the electrode,in which 1 mol/L NaPF6in ethylene carbonate(EC),diethyl carbonate(DMC)(1:1,v/v),and 5 vol% of fluoroethylene carbonate(FEC)was used as the electrolyte and Whatman glass fiber as the separator.Galvanostatic charge and discharge test and galvanostatic intermittent titration technique(GITT)are all carried out on the NEWARE battery tester,the voltage range is 0.01 V to 3 V.The GITT test result is the second cycle of the battery.All CV curves and electrochemical impedance spectroscopy(EIS)are performed with an Ivium-n-Stat multichannel electrochemical workstation.

    As the fabrication process of NiS2@ReS2heterostructure shown in Fig.1a,carbon nanospheres were used as sacrificial hard templates to synthesize NiO hollow sphere precursors.The reason why glucose is selected as the raw material to synthesize carbon nanospheres is that the hydrothermal nanospheres contain abundant functional groups on the outer surface such as hydroxyl or carboxyl groups.These functional groups can easily adsorb a large number of positively charged metal ions in solution[31,32].The corresponding hollow metal oxide is obtained after removing the carbon template by calcination in the air.The SEM image shown in Figs.S1a and b(Supporting information)reveals that the carbon nanosphere template presents a uniform spherical morphology as expected.The dispersing effect of CTAB on glucose in the solution is the key reason why the diameter of the carbon nanosphere template remains uniform at about 700 nm.The XRD pattern(Fig.S3 in Supporting information)and SEM image in Fig.S1c(Supporting information)confirm the NiO product with hollow nanospheres structure which inherit the similar morphology of the carbon sphere template.Moreover,the SEM image of the broken NiO nanosphere in Fig.S1d(Supporting information)shows that the shell thickness of the hollow sphere is about 80 nm.After the NiO was sulfurized in a tube furnace,ultrathin ReS2nanosheet arrays were grown on the NiS2hollow nanosphere substrate by hydrothermal method.Figs.1b–d show that the ultrathin ReS2nanosheet arrays successfully and uniformly grows on the outer surface of NiS2hollow nanospheres.Compared with the SEM images of pure ReS2with agglomerated structure(Fig.S2 in Supporting information),it can be clearly found that this synthesis strategy effectively prevents the stacking of ReS2nanosheets.

    The transmission electron microscopy(TEM)image in Fig.1e further confirms the hollow spherical structure of NiS2and the ultrathin sheet of ReS2uniformly coat externally.According to the high-resolution TEM in Fig.1f,it can be clearly seen that the marked interatomic distance 0.439 nm,0.322 nm and 0.608 nm of the external sheet material correspond to the(-1 0 1),(0-1 2)and(1 0 0)planes of ReS2respectively.Besides,there is a lattice distance of 0.283 nm corresponding to the(2 0 0)plane of NiS2in the dark interior.According to the XRD pattern result in Fig.2a,the existence and distribution of the NiS2and ReS2can be proved.As shown in Fig.2a,strong diffraction peaks at 14.5°,29.3°,32.4°,44.6°and 57.8°respectively correspond to the(1 0 0),(2 0 0),(-1 2 0),(3 0 0)and(-1 2 2)planes in the powder diffraction file No.82-1379(ReS2).The other weak diffraction peaks at 31.5°,35.3°,38.8°,45.1°,53.5°and 58.6°correspond to the(2 0 0),(2 10),(2 11),(2 2 0),(3 1 1)and(0 2 3)planes of the powder diffraction file No.89-1495(NiS2),respectively.Furthermore,the EDS images in Figs.1g–j clearly reveal the uniform distribution of the three elements.S element is scattered throughout the material,so the signal is the strongest.The distribution of the Re element clearly shows a hollow shape of the structure.Finally,the signal of the Ni element is weak because it is wrapped by ReS2nanosheets.Hence,the heterostructure of NiS2hollow sphere as the inner core and ReS2as the outer shell is basically established.

    Fig.2.(a)XRD pattern of the NiS2@ReS2 heterostructure.(b)XPS survey spectra of NiS2@ReS2 heterostructure.High-spectra(c)Re 4d,(d)C 1s and(e)S 2p XPS spectra and(f)high-resolution Ni 2p XPS spectra of pure NiS2.

    In order to investigate the elemental composition and surface chemical state of the material,we conducted an X-ray photoelectron spectroscopy(XPS)measurement.The XPS survey spectrum shown in Fig.2b indicates that the material is mainly composed of S,Ni and Re.In Fig.2c,the high-resolution XPS spectrum of the Re 4f shows a set of double peaks at 44.5 eV and 42.2 eV,which correspond to the Re f5/2and f3/2in ReS2,respectively.The S 2p XPS spectrum in Fig.2e shows its two chemical states,in which the strong double peaks correspond to S 2p1/2and S 2p3/2of the Re-S bond at 163.6 eV and 162.3 eV,respectively.Then the weak double peaks at 164.0 eV and 162.8 eV are S 2p1/2and S 2p3/2of the Ni-S bond.Besides,a small satellite peak at 165.3 eV may be caused by partial oxidation on the sample surface.As shown in Fig.2d,the peak of the high-resolution C 1s spectrum at a binding energy of 284.8 eV is sp2hybridized C=C or C--C,and the two other peaks at 287.7 eV and 286.3 eV correspond to two chemical states of O--C=O and C--O[33].It is worth noting that the Ni 2p spectrum of the NiS2@ReS2heterostructure is difficult to be detected because the Ni element is inside the structure.Therefore,we performed XPS measurement on the intermediate NiS2to explore the chemical state of Ni.As can be seen from Fig.2f,there are two chemical states of Ni,including Ni-S bond and Ni-O bond.The strong double peaks at 874.9 eV and 865.9 eV correspond to Ni 2p1/2and Ni 2p3/2of the Ni-S bond.The weak double peaks at 871.4 eV and 853.8 eV correspond to the Ni-O bond due to a small amount of surface oxidation in the air or not complete sulfurization.Finally,there are two satellite peaks due to the shake-up satellites at 879.7 eV and 861.6 eV in the spectrum.

    In order to study the sodium storage performance of NiS2@ReS2,cyclic voltammetry and galvanostatic discharge-charge cycling were used to evaluate the electrochemical performance in the SIB.The three-circle CV curve at a scan rate of 0.1 mV/s is shown in Fig.3a.In the first circle of the CV curve,there are two obvious reduction peaks located at 0.3 V and 1.1 V.The peak at 1.1 V is due to the continuous intercalation of Na+into the interlayer of ReS2and the formation of NaxReS2intermediates,while the peak at 0.3 V corresponds to the continued reaction of NaxReS2to eventually form Na2S and Re.The specific reaction process is as follows[34]:

    The oxidation peak at 1.9 V represents the desodiation of the material and the reformation of the ReS2process,which remains essentially consistent in subsequent CV curves.For NiS2,the peak strength is not as strong as ReS2because it is located in the interior of the structure,and the reaction process is described as follows[38]:

    In the first CV curve,one of the reduction peaks is at 1.4 V,and the other reduction peak exists at 0.9 V in the subsequent CV curve.The pair of oxidation peaks are located at 1.3 V and 2.3 V respectively,corresponding to the two-step reaction of NiS2.

    The difference between the first circle of the CV curve and the following scan curve is attributed to the formation of the irreversible solid-electrolyte interphase(SEI),and the high overlap of the subsequent CV curves proves that the material has good reversible performance in the process of Na+deintercalation.The redox reaction inferred by the CV curve is further confirmed by the NiS2@ReS2heterostructure and its single-component first cycle charge-discharge curve platform shown in Fig.3b and Figs.S4 and S5(Supporting information).It is obviously that the NiS2@ReS2heterostructure displays higher capacity than those of pure NiS2and ReS2electrodes.As shown in Fig.3c,the charge-discharge curves of the different number of cycles at 1 A/g correspond to the peak position in the CV curve.In the first discharge curve,the two obvious plateaus at 1.3-1.1 V and 0.6-0.5 V correspond to the two reduction peak positions of the first cycle of CV,and the slope change position of the charging curve also coincides with the position of the oxidation peak.Meanwhile,after excluding the first 5 cycles of charging and discharging at 0.1 A/g,the hysteresis from the 20thcycle to the 100thcycle is very small,and the specific capacity retention rate is 84.5%.Figs.3d and e show the rate performance of bimetallic sulfide NiS2@ReS2heterostructure hollow spheres and their single components.All the measured current densities were 0.1,0.2,0.5,1,2 and 5 A/g.We can clearly see that the specific capacity of the heterostructure composite material is higher than that of the single-component electrode at all current densities.At the same time,the specific capacity of the NiS2@ReS2electrode is almost the same as that of the initial 2–5 cycles when the current density goes from low to high until the final return to 0.1 A/g.To fully demonstrate the performance of the NiS2@ReS2electrode,the comparison of other recently reported NiS2or ReS2composites materials on SIBs is shown in Fig.3f.Obviously,the NiS2@ReS2electrode materials have better rate performance than those of NiS2and ReS2based electrode materials.At low current density,the specific capacity of NiS2@ReS2is higher than that of other NIS2or ReS2composite materials,while various materials exhibit similar performance at high current densities of 2–5 A/g.This is because at low current density,the enhancement of charge transport by the heterostructure can be more reflected.The long-term cycling performance of the material at a high current density of 1 A/g(the first five cycles at 0.1 A/g)is shown in Fig.3g.Even after 220 cycles,NiS2@ReS2still maintains a higher specific capacity of 287.8 mAh/g with retention rate of 81.6%.

    Fig.3.(a)Cyclic voltammetry curves of NiS2@ReS2 at a scan rate of 0.1 mV/s.(b)First cycle charge-discharge curves of NiS2@ReS2,NiS2 and ReS2 at a current density of 0.1 A/g.Charge-discharge curves of NiS2@ReS2 at(c)different cycle and(d)current densities.(e)Rate performance of NiS2@ReS2 heterostructure,NiS2 hollow sphere,and pure ReS2.(f)Comparisons of rate performance of ReS2/C nanocomposite[34],1D TiO2-Nt@ReS2-NS[10],ReS2 nanosheets/rGO[9],Rgo@ReS2@N-C[8],(NSFHCSs)ReS2@C[35],durianlike NiS2[36]and NiS2@rGO-160[37].(g)Long-term cycling performance of NiS2@ReS2 heterostructure,NiS2 and ReS2 at a current density of 1 A/g.

    Fig.4.(a)CV profiles of NiS2@ReS2 at different scan rate.(b)Pseudocapacitive area under the CV curve at a scan rate 1 mV/s.(c)3D bar graph of pseudocapacitive contribution rate at different scan rates.(d)ln(peak current) versus ln(scan rate)plots at different redox states.

    To further explore the discharge mechanism of NiS2@ReS2electrode in SIB,all the CV curves at different scan rates from 0.1 mV/s to 1 mV/s were summarized and analyzed.As shown in Fig.4a,there are two obvious redox peaks in all CV curves that gradually become apparent with the increase of the scan rate.From the equation:I=avb,the relationship between the current(i)at the redox peak position and the scan rate(v)can be known.The value ofbin the equation ranges from 0.5 to 1.Ifbis close to 0.5,the electrochemical reaction is basically controlled by ion diffusion,on the contrary,the closer to 1,the pseudocapacitive behavior during the reaction is dominant.As shown in Fig.4b,the slope b values are obtained by fitting the redox peaks In(v)-In(i)at different scan rates,and the b value of peaks 1 and 2 are 0.985 and 0.936,respectively.Moreover,the specific pseudocapacitive area can be obtained by the equation:i(V)=k1v+k2v1/2.In the equation,k1vrepresents the capacitive contribution andk2v1/2represents the diffusion-control contribution.The relationship between the current under the corresponding voltage and the scan rate can be fitted by the equation to get can the parametersk1andk2[39].As shown in Fig.4c,the capacitance contribution area at 1 mV/s scan rate accounts for 90.64% of the original CV area.The pseudocapacitive contribution rates at remaining scan rate are summarized in Fig.4d,which are 72%,80%,84%,87%and 88%at 0.1,0.2,0.4,0.6 and 0.8 mV/s,respectively.The NiS2@ReS2electrode exhibits excellent pseudo-capacitance for two reasons.First of all,the spherical substrate inside the material and the ultra-thin sheet outside provide a highly accessible surface area,which is conducive to accommodate more ions embedded so that enhances the surface redox pseudo-capacitance.Secondly,the microelectronic field composed of two sulfides heterostructures at the interface enhances the transport kinetics of ions,while the hierarchical hollow nanostructure is more conducive to the process of concomitant faradaic charge-transfer[40,41].

    Fig.5.(a)Nyquist plot of the NiS2@ReS2 electrodes before the cycling tests and after different cycles at 1 A/g.(b)Detailed voltage response of NiS2@ReS2 electrode during a single current pulse with time.(c)Diffusion coefficient of Na+and(d)charge-discharge curve in GITT measurement of NiS2@ReS2 electrode.(e)Schematic illustration of the sodiation/desodiation process in NiS2@ReS2 heterostructures.

    As shown in Fig.5a,the electrochemical dynamical behavior of sodium-ion battery with NiS2@ReS2heterostructure electrode was analyzed by electrochemical impedance spectroscopy(EIS).Use the equivalent electrical circuit in the lower right corner of the Fig.5a to fit the EIS data.All curves are composed of a semicircle in the high-frequency region and an inclined straight line in the lowfrequency region.The semicircular curve reflects the charge transfer resistance between electrode and electrolyte,while the straight slope represents the diffusion resistance of Na+.Before the battery cycle,the electrode shows a large resistance,but the resistance after the cycle is far less than before.This is because of the formation of solid electrode interface on the electrode surface after cycling,and the heterostructure microelectronic field provides a positive effect on ion transport.After that,the electrode resistance gradually increases with the battery cycle,which may be attributed to the partial dissolution of the solid electrode interface.However,the electrode resistance is still much lower after 100 cycles than before.Besides,the linear slope of all curves in the lowfrequency region is basically the same,which proves that the diffusion of Na+is always stable.Through a galvanostatic intermittent titration technique(GITT),we further explored the changes in Na+diffusion behavior during charge and discharge.In the GITT measurements shown in Fig.5b,the battery alternates between 10 min of constant current charge and discharge at a current density of 0.1 A/g and 30 min of open-circuit rest until a cycle between 0.01 V and 3 V is completed.The diffusion constant of Na+is calculated by the following equation:

    In the equationmis the mass,Mis molar mass,VMis the molar volume of the sample,Ais the total surface area of the electrode and τ is the time to apply the current pulse[42–46].The value of the voltage drops between the initial state and the steady-state(ΔEs)and the total change of the cell voltage during a constant pulse time(ΔEτ)can be intuitively seen from the detailed voltage response of the electrode during a single current pulse and two holds in Fig.5c.The result of Na+diffusion coefficients(DNa+)calculated during all pulses are shown in Fig.5d.During the discharge process,theDNa+does not change much,and the obvious decrease around 0.3 V and 1.2 V may be attributed to the formation of the mesophase in the reaction of NiS2and ReS2.TheDNa+continues to decrease in the charging process,which is due to the insertion of Na+tends to be saturated gradually.Fig.5e demonstrates the possible sodiation/desodiation process of NiS2@ReS2heterostructure.

    In summary,we have successfully designed and synthesized NiS2@ReS2heterostructure anode materials for sodium-ion batteries with the combination of internal NiS2hollow spheres and external ultrathin ReS2nanosheet arrays.The NiS2@ReS2heterostructure displays excellent electrochemical performance,which are in good line with the design principle of the heterostructure.While assessing as anode materials of SIBs,the NiS2@ReS2heterostructure delivered good rate capacity(238 mAh/g at 5 A/g)and stable long-term cycling performance(287.8 mAh/g at 1 A/g after 220 cycles),which come from the high conductivity of the bimetallic sulfides and the ultrafast Na+transport kinetics at the heterogeneous interface by the two components.Moreover,the surface faradaic charge-transfer reactions brought about by the complex three-dimensional structure gives the material surprising pseudocapacitive properties.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgement

    This work was supported by the Natural Science Foundation of Guangdong Province(No.2020A1515010886).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.04.011.

    你懂的网址亚洲精品在线观看| 日本一本二区三区精品| 色视频在线一区二区三区| 一边亲一边摸免费视频| 又大又黄又爽视频免费| 蜜臀久久99精品久久宅男| 成人亚洲精品一区在线观看 | av免费在线看不卡| 久久精品久久久久久噜噜老黄| 精品酒店卫生间| 99久久精品一区二区三区| 免费观看无遮挡的男女| 大片电影免费在线观看免费| 白带黄色成豆腐渣| 国产亚洲一区二区精品| 亚洲欧美日韩卡通动漫| a级毛片免费高清观看在线播放| 午夜免费观看性视频| 人人妻人人看人人澡| 亚洲欧美成人精品一区二区| a级一级毛片免费在线观看| 亚洲美女搞黄在线观看| 国产探花在线观看一区二区| 亚洲精华国产精华液的使用体验| 日日摸夜夜添夜夜添av毛片| 成人高潮视频无遮挡免费网站| 特级一级黄色大片| 日本熟妇午夜| 成人亚洲欧美一区二区av| av在线蜜桃| 大话2 男鬼变身卡| 天堂中文最新版在线下载 | 亚洲一级一片aⅴ在线观看| 夫妻午夜视频| 欧美性感艳星| 亚洲最大成人av| 综合色av麻豆| 亚洲精品久久午夜乱码| 亚洲国产最新在线播放| 久久久久国产精品人妻一区二区| 麻豆乱淫一区二区| 亚洲国产精品成人久久小说| 久久久久国产精品人妻一区二区| 国产黄色视频一区二区在线观看| 国产人妻一区二区三区在| 啦啦啦啦在线视频资源| 高清毛片免费看| 大又大粗又爽又黄少妇毛片口| 秋霞伦理黄片| 欧美激情久久久久久爽电影| 天堂中文最新版在线下载 | 国产男女内射视频| 嫩草影院新地址| 亚洲av免费高清在线观看| 好男人视频免费观看在线| 毛片一级片免费看久久久久| 好男人视频免费观看在线| 一级毛片我不卡| 亚洲精品国产av成人精品| 成年人午夜在线观看视频| 久热久热在线精品观看| 欧美97在线视频| 赤兔流量卡办理| 精品酒店卫生间| 神马国产精品三级电影在线观看| 亚洲精品,欧美精品| 七月丁香在线播放| 国产黄a三级三级三级人| 久久精品综合一区二区三区| 国产亚洲精品久久久com| 亚洲成人一二三区av| 男女那种视频在线观看| 国产精品人妻久久久久久| 波多野结衣巨乳人妻| h日本视频在线播放| 免费高清在线观看视频在线观看| 日韩精品有码人妻一区| 又粗又硬又长又爽又黄的视频| 欧美性猛交╳xxx乱大交人| 免费观看无遮挡的男女| 韩国高清视频一区二区三区| 99久久人妻综合| av在线亚洲专区| 亚洲av二区三区四区| 亚洲成人av在线免费| 国产午夜精品久久久久久一区二区三区| 少妇人妻 视频| 国产一区二区三区av在线| 少妇丰满av| 久久综合国产亚洲精品| 久久久久国产精品人妻一区二区| 国产 一区 欧美 日韩| 伊人久久精品亚洲午夜| 一区二区三区精品91| 亚洲熟女精品中文字幕| 国国产精品蜜臀av免费| 亚洲精品日本国产第一区| 高清在线视频一区二区三区| 国产 一区 欧美 日韩| 看免费成人av毛片| 久久热精品热| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区视频9| 亚洲精品日韩av片在线观看| 日日撸夜夜添| 久久久久久久午夜电影| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 午夜福利视频精品| 毛片一级片免费看久久久久| 91在线精品国自产拍蜜月| 午夜爱爱视频在线播放| 热re99久久精品国产66热6| 51国产日韩欧美| 成人无遮挡网站| av在线播放精品| av国产精品久久久久影院| 欧美一区二区亚洲| 一级毛片久久久久久久久女| 亚洲高清免费不卡视频| 极品教师在线视频| 精品久久久久久久人妻蜜臀av| 国产精品人妻久久久久久| 大香蕉久久网| 欧美xxⅹ黑人| 视频区图区小说| 精品久久久久久久久av| 日本欧美国产在线视频| 成年av动漫网址| 天堂网av新在线| 免费大片黄手机在线观看| 国产爱豆传媒在线观看| 26uuu在线亚洲综合色| 精品一区在线观看国产| 国产成人免费无遮挡视频| 久久久久精品性色| 女的被弄到高潮叫床怎么办| 国产视频内射| 男人添女人高潮全过程视频| .国产精品久久| 国产精品无大码| av在线天堂中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲图色成人| 大又大粗又爽又黄少妇毛片口| 一级爰片在线观看| 国产成人一区二区在线| 人人妻人人澡人人爽人人夜夜| 久热这里只有精品99| 久久鲁丝午夜福利片| 日韩av不卡免费在线播放| 深夜a级毛片| 亚洲精品,欧美精品| 欧美日韩精品成人综合77777| 免费高清在线观看视频在线观看| av播播在线观看一区| 国产精品av视频在线免费观看| 丰满人妻一区二区三区视频av| av在线天堂中文字幕| 男男h啪啪无遮挡| 国产成人aa在线观看| 国产高清三级在线| 久久鲁丝午夜福利片| 欧美日韩综合久久久久久| 午夜福利在线在线| 在线观看三级黄色| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 国产男女超爽视频在线观看| 免费播放大片免费观看视频在线观看| 亚洲av免费在线观看| 18禁裸乳无遮挡免费网站照片| 中文字幕制服av| 尾随美女入室| 亚洲av中文av极速乱| av免费在线看不卡| 哪个播放器可以免费观看大片| 日日啪夜夜爽| 久久久久久久久久久丰满| kizo精华| 亚洲电影在线观看av| 七月丁香在线播放| 国产精品精品国产色婷婷| 一级毛片我不卡| 少妇人妻精品综合一区二区| 干丝袜人妻中文字幕| 欧美高清成人免费视频www| 制服丝袜香蕉在线| 亚洲综合色惰| 欧美激情在线99| 久久99热6这里只有精品| 成人综合一区亚洲| 欧美激情久久久久久爽电影| 91午夜精品亚洲一区二区三区| 又大又黄又爽视频免费| 在线观看国产h片| 狂野欧美白嫩少妇大欣赏| 男人添女人高潮全过程视频| h日本视频在线播放| 色网站视频免费| 国产女主播在线喷水免费视频网站| av播播在线观看一区| 久久综合国产亚洲精品| 在现免费观看毛片| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频 | 亚洲自拍偷在线| 国产视频首页在线观看| 在线免费十八禁| 中文在线观看免费www的网站| 免费av观看视频| 两个人的视频大全免费| 亚洲国产av新网站| 一个人观看的视频www高清免费观看| 久久精品国产亚洲网站| 亚洲三级黄色毛片| 国产成人精品久久久久久| 成人黄色视频免费在线看| 欧美性猛交╳xxx乱大交人| 51国产日韩欧美| 秋霞伦理黄片| 91久久精品电影网| 国产一区亚洲一区在线观看| 在现免费观看毛片| 成人欧美大片| 日本-黄色视频高清免费观看| 日韩欧美精品v在线| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 欧美日韩国产mv在线观看视频 | 天美传媒精品一区二区| 18禁裸乳无遮挡免费网站照片| 三级国产精品片| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 深夜a级毛片| 午夜免费鲁丝| 在线免费观看不下载黄p国产| 亚洲国产成人一精品久久久| a级一级毛片免费在线观看| 亚洲国产日韩一区二区| 国产午夜精品久久久久久一区二区三区| 日韩av免费高清视频| 午夜老司机福利剧场| 涩涩av久久男人的天堂| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 国产精品三级大全| 老司机影院成人| 夜夜爽夜夜爽视频| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 欧美一区二区亚洲| 成人二区视频| .国产精品久久| 亚洲av男天堂| 最后的刺客免费高清国语| 高清在线视频一区二区三区| 国产黄片美女视频| 中文欧美无线码| 国产黄片视频在线免费观看| av国产精品久久久久影院| 中文字幕免费在线视频6| 黄色欧美视频在线观看| 亚洲成色77777| 精华霜和精华液先用哪个| 久久综合国产亚洲精品| 熟妇人妻不卡中文字幕| 久久久久久久久久成人| 亚洲精品自拍成人| 日本猛色少妇xxxxx猛交久久| 国产av国产精品国产| 美女高潮的动态| 亚洲精品一二三| 免费看a级黄色片| 啦啦啦中文免费视频观看日本| 香蕉精品网在线| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| 69人妻影院| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 春色校园在线视频观看| 亚洲在线观看片| 午夜福利网站1000一区二区三区| 麻豆国产97在线/欧美| 99热这里只有是精品在线观看| 内射极品少妇av片p| 精品国产三级普通话版| 插阴视频在线观看视频| 日韩视频在线欧美| av播播在线观看一区| 丝袜美腿在线中文| 欧美成人午夜免费资源| 尾随美女入室| 看非洲黑人一级黄片| 日本av手机在线免费观看| 国产爽快片一区二区三区| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 人人妻人人看人人澡| 在线看a的网站| 亚洲精品色激情综合| 亚洲色图综合在线观看| 欧美高清性xxxxhd video| 在线天堂最新版资源| 欧美精品国产亚洲| 亚洲av免费高清在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲内射少妇av| 丝袜脚勾引网站| 国产欧美日韩精品一区二区| 国产永久视频网站| 久久久久久久午夜电影| 国产精品久久久久久精品电影小说 | 99精国产麻豆久久婷婷| 看免费成人av毛片| 亚洲精品日韩在线中文字幕| 噜噜噜噜噜久久久久久91| 午夜激情福利司机影院| 特级一级黄色大片| 精品国产三级普通话版| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 一个人看的www免费观看视频| 一区二区av电影网| 欧美日韩国产mv在线观看视频 | 欧美一级a爱片免费观看看| 日韩一本色道免费dvd| 国产av国产精品国产| 欧美潮喷喷水| 精品人妻视频免费看| 婷婷色综合www| 中文资源天堂在线| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| 国产久久久一区二区三区| 成人毛片60女人毛片免费| 97热精品久久久久久| 日韩,欧美,国产一区二区三区| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 狂野欧美激情性xxxx在线观看| tube8黄色片| 免费av毛片视频| 亚洲图色成人| av免费在线看不卡| 国产成人精品一,二区| av免费在线看不卡| 国产日韩欧美在线精品| 国产男女内射视频| 看黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 国产综合懂色| 亚洲精品色激情综合| av在线老鸭窝| 国产av不卡久久| 国产免费又黄又爽又色| 国产成人精品婷婷| 国产淫语在线视频| 丰满乱子伦码专区| 国产伦理片在线播放av一区| 欧美一区二区亚洲| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 久久女婷五月综合色啪小说 | 人人妻人人看人人澡| 亚洲欧洲日产国产| 在线播放无遮挡| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品50| 在线观看三级黄色| 人妻 亚洲 视频| 97在线视频观看| 久久久精品免费免费高清| 国产男女内射视频| 免费av观看视频| av在线天堂中文字幕| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 精品少妇黑人巨大在线播放| 久久97久久精品| 成年版毛片免费区| 国产在视频线精品| 交换朋友夫妻互换小说| 99热全是精品| 免费观看a级毛片全部| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 又爽又黄a免费视频| 色吧在线观看| 男女无遮挡免费网站观看| 一级片'在线观看视频| 久久这里有精品视频免费| av一本久久久久| 亚洲精华国产精华液的使用体验| 久久久精品欧美日韩精品| 人妻一区二区av| 综合色丁香网| 伦理电影大哥的女人| 王馨瑶露胸无遮挡在线观看| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 99热全是精品| 黄片wwwwww| 久久久久久久久久久丰满| 日韩大片免费观看网站| 成年女人在线观看亚洲视频 | 国产成人freesex在线| 欧美zozozo另类| 成人亚洲精品一区在线观看 | 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 性色av一级| 亚洲精品日韩av片在线观看| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 成人综合一区亚洲| 久久影院123| 亚洲国产日韩一区二区| 一级毛片我不卡| av在线蜜桃| 国产精品99久久99久久久不卡 | 亚洲精品国产av蜜桃| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 精品久久久久久久久av| 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 成年版毛片免费区| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 久久人人爽人人片av| 精品人妻视频免费看| 亚洲美女搞黄在线观看| av又黄又爽大尺度在线免费看| 免费少妇av软件| 欧美国产精品一级二级三级 | 成人综合一区亚洲| 中国国产av一级| 岛国毛片在线播放| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 26uuu在线亚洲综合色| 亚洲天堂国产精品一区在线| 国产av不卡久久| 日韩成人伦理影院| av卡一久久| 亚洲欧美精品自产自拍| 日韩一区二区三区影片| 久久精品国产自在天天线| 中文在线观看免费www的网站| 亚州av有码| 成人午夜精彩视频在线观看| av国产精品久久久久影院| 在线a可以看的网站| 在线 av 中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产欧美日韩一区二区三区在线 | 日韩欧美一区视频在线观看 | 久久久国产一区二区| 欧美日本视频| 69av精品久久久久久| 免费观看av网站的网址| 97精品久久久久久久久久精品| 日日啪夜夜撸| 久久精品国产亚洲av天美| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高清三级在线| 高清午夜精品一区二区三区| 大香蕉97超碰在线| 亚洲精品乱码久久久久久按摩| 建设人人有责人人尽责人人享有的 | 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| av.在线天堂| 狂野欧美激情性bbbbbb| 久久久久精品久久久久真实原创| 欧美成人午夜免费资源| 麻豆国产97在线/欧美| 特级一级黄色大片| 男插女下体视频免费在线播放| 成人毛片a级毛片在线播放| 国产精品一二三区在线看| 精品人妻视频免费看| 乱码一卡2卡4卡精品| 九色成人免费人妻av| 91精品一卡2卡3卡4卡| 亚洲aⅴ乱码一区二区在线播放| 日韩一本色道免费dvd| 亚洲av成人精品一二三区| 国产爽快片一区二区三区| 又大又黄又爽视频免费| 国产一级毛片在线| 神马国产精品三级电影在线观看| 嫩草影院新地址| 小蜜桃在线观看免费完整版高清| 久久久久久久亚洲中文字幕| 寂寞人妻少妇视频99o| 王馨瑶露胸无遮挡在线观看| 九草在线视频观看| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 色视频在线一区二区三区| 国产精品人妻久久久久久| 亚洲av一区综合| 色5月婷婷丁香| 久久久久久久精品精品| 国产在线男女| 亚洲精品乱久久久久久| 亚洲美女搞黄在线观看| 亚洲自拍偷在线| 免费在线观看成人毛片| 成年女人看的毛片在线观看| 国精品久久久久久国模美| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 免费看日本二区| 免费播放大片免费观看视频在线观看| 中文字幕制服av| 国产精品福利在线免费观看| 大香蕉97超碰在线| 大陆偷拍与自拍| 少妇猛男粗大的猛烈进出视频 | 亚洲欧洲国产日韩| av线在线观看网站| 国产伦精品一区二区三区视频9| 九九爱精品视频在线观看| www.色视频.com| 国产成人精品一,二区| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 看黄色毛片网站| 少妇裸体淫交视频免费看高清| 人人妻人人爽人人添夜夜欢视频 | 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 国产精品国产av在线观看| 一级二级三级毛片免费看| 黄色配什么色好看| av国产久精品久网站免费入址| .国产精品久久| 日韩亚洲欧美综合| 日韩人妻高清精品专区| 99热全是精品| 国产精品无大码| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 久久影院123| 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 国产有黄有色有爽视频| 麻豆成人午夜福利视频| 日韩av在线免费看完整版不卡| 麻豆精品久久久久久蜜桃| av国产免费在线观看| 国产日韩欧美亚洲二区| 亚洲内射少妇av| 99re6热这里在线精品视频| 国产免费一区二区三区四区乱码| 亚洲国产高清在线一区二区三| 亚洲最大成人手机在线| 日日啪夜夜撸| 熟妇人妻不卡中文字幕| 欧美精品国产亚洲| 国产毛片在线视频| 性插视频无遮挡在线免费观看| 插逼视频在线观看| 51国产日韩欧美| 精品国产乱码久久久久久小说| 久久精品国产鲁丝片午夜精品| 一级毛片 在线播放| 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 久久久久久久久久久免费av| 国产老妇伦熟女老妇高清| 街头女战士在线观看网站| 精品人妻一区二区三区麻豆| 久久久久久久午夜电影| 国产成人精品福利久久| 五月天丁香电影| 国产真实伦视频高清在线观看| 特大巨黑吊av在线直播| 亚洲一级一片aⅴ在线观看| 欧美高清成人免费视频www| 国产成人a∨麻豆精品| 亚洲精品aⅴ在线观看| 成人鲁丝片一二三区免费| 成人国产av品久久久| 精品久久久噜噜| 我的女老师完整版在线观看| 亚洲在线观看片| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| 岛国毛片在线播放| 亚洲av免费高清在线观看| 亚洲自拍偷在线| 在线观看人妻少妇| 成人漫画全彩无遮挡| 国产精品一区二区在线观看99| 99久久精品国产国产毛片| 亚洲欧美精品专区久久| av在线app专区|