• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution

    2021-02-23 09:07:56XuyunGoBoLiXuzhuoSunBofnWuYnpingHuZhichoNingJunLiNingWng
    Chinese Chemical Letters 2021年11期

    Xuyun Go,Bo Li,Xuzhuo Sun,Bofn Wu,Ynping Hu,Zhicho Ning,Jun Li,*,Ning Wng,*

    a College of Chemistry and Chemical Engineering,Henan University of Technology,Zhengzhou 450001,China

    b Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education,College of Chemistry & Materials Science,Northwest University,Xi’an 710069,China

    ABSTRACT Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction(HER).In this study,a new heterostructure catalyst(Ru/RuS2@N-rGO)with low crystallinity was fabricated by a simple and lowtemperature method for HER in alkaline solution,applying the Na2SO4 as S source and polypyrrole as N source.Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS2,the Ru/RuS2@N-rGO heterocatalyst at the calcining 500°C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm2 and remarkable stability for 24 h in 1.0 mol/L KOH.This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.

    Keywords:Low crystallinity Ru/RuS2 heterostructure Graphene Electrocatalytic hydrogen evolution Alkaline solution

    Hydrogen energy has attracted much attention because of its high calorific value,rich reservesand zero CO2emissions,which is regarded as the most promising clean energy[1–5].Electrocatalytic water splitting,as a significant approach for hydrogen production,has revealed broad application prospects in energy storage and conversion[6–11].Hydrogen evolution reaction(HER)as a one-half reaction of electrocatalytic water splitting can happen in both acidic and alkaline media.However,the HER in alkaline solution suffers from relatively slow kinetics compared to that in acidic solution,thus requiring a high overpotential to drive the reaction[12–14].The sluggish reaction rate of the HER in alkaline solution originates from the initial water dissociation step that provides protons for the subsequent reactions,but this step does not occur in acidic solution[15–17].So,the exploration of novel electrocatalysts with high catalytic activity in alkaline solution is undertaking of great significance for reducing energy consumption.

    Heterostructure[14,17–22],with double or multiple types of the active components,revealed remarkable advantages for HER,which can effectively modify the electron structure of catalytic sites.As a potential HER electrocatalyst,ruthenium(Ru)[23–25]shows higher HER performance in alkaline media than that of Pt/C,attributed to its lower energy barrier for breaking the H--OH bond[26–31].Zhenget al.demonstrated the energy barriers of water dissociation were 0.41 eV and 0.51 eV for Rufccand Ruhcp,respectively,which were much lower than that of Pt(ΔGB=0.94 eV)[26].Yeet al.reported that the alkaline HER activity of RuNCs/BNG surpassed that of Pt/C,even though the intrinsic activity of Ru was inferior to that of Pt,which revealed the importance of the water dissociation barrier concerning the alkaline HER activity[32].As we know,H adsorption/ desorption steps also play an important role in HER kinetics.The moderate M--H bond energy can balance the H-adsorption and H-desorption on the catalyst surface,which can make both of the Hadsorption and desorption happen easily on the catalyst surface[28,33–41].However,according to DFT computations,Ru possessed relatively strong hydrogen binding,which was not favorable for the H-desorption step[15,26,28,42].Recently,ruthenium disulfide(RuS2)has been served as HER catalyst and exhibited moderate electrocatalytic performance,due to the Pt-similar adsorption free energy of hydrogen intermediate H*[40,43–47].Liet al.reported amorphous RuSxnanoparticles supported on sulfurdoped graphene oxide(RuSx/S--GO)required a small overpotential for acidic,neutral,alkaline solution,especially in acidic media(η10=31 mV)[43].Zhuet al.reported that pyrite-type RuS2NPs,exhibited a significant electrocatalytic performance for the HER(η10=78 mV)in 1.0 mol/L KOH[46].Thus,the coupling of the two components Ru and RuS2formed the heterostructure for HER in alkaline solution,it may be desirable for the optimization of energetics for both water dissociation and hydrogen adsorption.

    Besides the intrinsic activity of the catalysts,the number of active sites is also the critical factor for catalytic performance.Low crystalline materials featuring less structural ordering can generate more active unsaturated atoms in the disordered or defect structure,which provides the opportunity to increase the number of active sites[48–51].Sunet al.reported poor crystalline MoS2/C hollow nanosphere with highly exposed active sites was rationally designed for the enhanced HER performance and long-term durability[52].Many efforts have been made to fabricate the disordered or defect structure of MoS2to improve the electrocatalytic performance[52–57].However,to the best of our knowledge,optimizing controllable crystalline engineering for Ru-based electrocatalysts has not yet been reported.

    Inspired by the above viewpoints,herein we report a low crystalline catalyst Ru and RuS2embedded into N doped graphene(Ru/RuS2@N-rGO)for highly efficient electrocatalytic HER in alkaline condition,which was fabricated through a simple and low-temperature method and applied the Na2SO4as S sources and polypyrrole(ppy)as N source.The effect of the low crystallinity and the composition ratio of Ru and RuS2on the hydrogen evolution performance were discussed.

    Scheme 1 revealed the synthesis route of Ru/RuS2@N-rGO.First,the aerogels composed of 5 mg RuCl3,5 mg ppy,20 mg GO and various quantities Na2SO4were prepared as intermediateviaultrasonic dispersion and freeze-drying.Subsequently,the aerogels were annealed under an N2atmosphere at various temperatures(400-700°C)to produce Ru/RuS2@N-rGO.For comparison,Ru@N-rGO and Ru/RuS2@N-rGO-x were also prepared as reference samples by adjusting the amount of Na2SO4(0 mg,2.5 mg,10 mg and 20 mg).

    Scheme 1.Synthesis process of Ru/RuS2@N-rGO.

    The low crystallinity of synthesized catalysts depends on the calcining temperature,evolving from high crystallinity to low crystallinity with the temperature decreasing.As shown in Fig.1a,Ru/RuS2@N-rGO at various calcining temperatures were discussed by the powder X-ray diffraction(XRD).At 700°C,it showed two sets of obvious and sharp peaks corresponding to Ru(PDF#06-0663)and RuS2(PDF#79-0618),which meant the coexistence of crystalline Ru and RuS2in the catalyst.Moreover,there was a broad peak at 26.4°,originating from the(002)facet of graphitic carbon(PDF#41-1487).When the calcining temperature reduced to 500°C,it revealed three peaks at about 26.4°,31.8°and 44.0°in XRD data,corresponding to the(002)facet of graphitic carbon,the(200)facet of RuS2and the(101)facet of metallic Ru,respectively.The weakening and broadening of diffraction peaks indicate the lower degree of crystallinity and more disorder structures in Ru/RuS2catalysts[46,50,52,57].The reference samples Ru@N-rGO and Ru/RuS2@N-rGO-x were prepared at 500°C,in the presence of various amounts of Na2SO4.As shown in Fig.S1(Supporting information),the XRD of Ru@N-rGO also exhibit a broad peak at 44.0°.With increasing the amount of Na2SO4,it found the peak of RuS2grows up and the peak of Ru decreases in the XRD of Ru/RuS2@N-rGO-20.After decreasing calcining temperature further to 400°C,XRD data of Ru/RuS2@NrGO showed only one broad peak of graphitic carbon’s(002)facet.These indicated that the crystallinity of Ru/RuS2was further damaged.

    Fig.1.(a)XRD pattern of Ru/RuS2@N-rGO with various calcining temperatures.(b)High-resolution XPS spectra of Ru 3p of Ru/RuS2@N-rGO and Ru@N-rGO.(c)The survey spectrum of Ru/RuS2@N-rGO.(d)High-resolution XPS spectra of S 2p of Ru/RuS2@N-rGO.

    Fig.2.(a)TEM,(b-e)HRTEM of Ru/RuS2@N-rGO.

    The morphology of Ru/RuS2@N-rGO at 500°C was systematically investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).In the SEM image(Fig.S2a in Supporting information),it demonstrated Ru/RuS2@N-rGO maintain the clear nanosheet structure of GO after high calcining temperature.According to energy-dispersive X-ray(EDX)elemental mapping analysis(Figs.S2b-g in Supporting information),the catalyst was revealed uniform dispersion of C,N,S,Ru in the whole nanosheet indicating the N atoms have been successfully doped into graphene.Fig.2a presented the TEM images for Ru/RuS2@N-rGO,in which it clearly can be observed that high-density sphere nanoparticles with an average diameter of about 3.2 nm were decorated on the surface of rGO(Fig.S3 in Supporting information).To further identify the composition of the nanoparticles,Ru/RuS2@N-rGO was characterized with highresolution transmission electron microscopy(HRTEM).The lattice fringe spacing of 0.205 and 0.280 nm were revealed in the HRTEM image(Figs.2b-e),matching the D-spacing for the(101)crystallographic plane of Ru and the(200)plane of RuS2,respectively.It further confirms the formation of Ru/RuS2heterostructures.Significantly,both Ru and RuS2lattices show lattice distortion and rich defects.And obviously discontinuous lattice fringes also appear in the lattice of RuS2.Thus,it indicates that defect structure existed in the low crystalline Ru/RuS2@NrGO,which was beneficial for enhancing the catalytic activity[50].

    X-ray photoelectron spectroscopy(XPS)was used to investigate the surface elemental compositions and binding states of Ru/RuS2@N-rGO.The survey spectrum showed the presence of C,N,S and Ru(Fig.1c),which was consistent with the EDX mapping results.The high solution XPS of N 1s of Ru/RuS2@N-rGO confirms the doping of N atoms(Fig.S4 in Supporting information).Fig.1b compared the high-resolution XPS spectra of Ru 3p of Ru/RuS2@NrGO and Ru@N-rGO.In Ru/RuS2@N-rGO,two peaks belonged to Ru 3p3/2(463.1 eV)and 3p1/2(485.4 eV)were found,which could be further fitted to triplets.An apparent couple peaks centered at 462.8 eV and 484.9 eV corresponding to Ru 3p1/2and 3p3/2,which were assigned to Ru°[19].Another set of characteristic peaks of RuS2centered at 464.8 eV and 486.4 eV were observed[43].Therefore,the coexistence of Ru and RuS2in Ru/RuS2@N-rGO can be proven.For comparison,Ru 3p peaks of the sample Ru@N-rGO ascribed to Ru°obviously downshifted to 462.5 and 484.7 eV.It meant that forming the Ru/RuS2heterostructure can result in an obvious the electron transfer from Ru to RuS2,which can prove that the interaction exists between metal Ru and RuS2.In the catalysts Ru/RuS2@N-rGO and Ru@N-rGO,each had one set of doublet peaks fitting at the higher binding energy,which were ascribed as Ru--O bond,presumably owing to surface oxidation by the exposure in the air.Compared Ru 3p spectrum of Ru/RuS2@N-rGO and Ru/RuS2@N-rGO-10 in Fig.S5(Supporting information),it revealed that the Ru 3p peaks moved to a higher region with increasing the amount of Na2SO4,indicating a higher valence state of Ru and higher content of RuS2,which was consistent with the content ratio of Ru and S(Table S1 in Supporting information).The sulfur species were determined from the high resolution XPS spectrum at the S 2p region(Fig.1d).The S 2p XPS spectra revealed that the binding states of sulfur were 2p3/2(163.7 eV),2p1/2(164.8 eV)and-C-SOxpeak(168.1 eV).The doublet at binding energies of 163.7 and 164.8 eV corresponded to the S 2p3/2and S 2p1/2of the Ru--S bond,respectively.It further indicated the existence of RuS2.

    Fig.3.HER performance for Ru/RuS2@N-rGO annealed at various temperatures in 1.0 mol/L KOH solution.(a)Polarization curves;(b)Corresponding Tafel plots;(c,d)Cdl and EIS.

    In order to determine the effects of the degree of crystallinity and the heterostructure of Ru/RuS2on the electrocatalytic HER activity,the relevant electrocatalytic tests were systematically studied using a typical three-electrode electrochemical system in Ar-saturated 1.0 mol/L KOH.For comparison,that of the commercial Pt/C(20 wt%)catalyst was also measured under the same conditions.The electrocatalytic HER performance of Ru/RuS2@NrGO annealed at various temperatures were displayed in Fig.3a.The HER activity of Ru/RuS2@N-rGO varies with the annealing temperature obviously.As the temperature drops from 700°C to 500°C,the activity of the catalyst is significantly improved.Noticeably,the sample calcined at 500°C exhibits the highest catalytic activity towards HER,only 18 mV to reach 10 mA/cm2,which is much lower than Ru/RuS2@N-rGO-700(161 mV),Ru/RuS2@N-rGO-600(132 mV)and Ru/RuS2@N-rGO-400(93 mV).It suggests the low crystalline structure can greatly improve the HER activity.As shown in Table S2(Supporting information),it found that the overpotential of Ru/RuS2@N-rGO is superior to that of Pt/C and comparable with most of the reported electrocatalysts.The HER kinetics behavior of the catalyst was evaluated by the Tafel slope,which showed that the catalyst exhibited the fastest kinetic process at a lower crystallinity(500°C)(Fig.3b).In addition,electrochemically active surface area(ECSA)is a vital factor in determining the HER activity,which was evaluated by doublelayer capacitance(Cdl)based on the cyclic voltammograms at different scan rates.In Fig.3c,Ru/RuS2@N-rGO catalyst had the highestCdlvalue of 42.5mF/cm2,which was nearly 5 times as much as that of Ru/RuS2@N-rGO at 700°C.It can clearly prove that a low crystalline structure can expose more active sites.The Ru/RuS2@N-rGO also reveals the smallestRct,suggesting ultrafast interface electron transfer rate and high conductivity(Fig.3d).According to the results above,it was suggested that low crystallinity can greatly improve HER activity,which was more likely to attribute to increasing the number of active sites.

    Fig.4.HER performance in 1.0 mol/L KOH solution.(a)Polarization curves;(b)Corresponding Tafel plots;(c,d)Cdl and EIS for Ru/RuS2@N-rGO with various Na2SO4 salts,Ru@N-rGO and Pt/C;(e)Chronoamperometric curve operated at a fixed current density of 10,20 and 50 mA/cm2;(f)LSV curves for Ru/RuS2@N-rGO before and after the chronoamperometric test of 24 h.

    As shown in Fig.4a,Ru/RuS2@N-rGO exhibited higher catalytic activity than that of Ru@N-rGO(79 mV),Ru/RuS2@N-rGO-10(55 mV),and commercial Pt/C(25 mV).This finding indicated that introducing RuS2into Ru to form heterostructure can improve hydrogen evolution performance.In order to explore the reasons for excellent HER of Ru/RuS2heterostructure,the corresponding Tafel plots were further calculated and fitted based on the polarization curves,as shown in Fig.4b.The Tafel slope of Ru/RuS2@N-rGO was 64.5 mV/dec,lower than that of Ru@N-rGO(94.4 mV/dec),Ru/RuS2@N-rGO-10(91.7 mV/dec)and approach that of Pt/C(47.7 mV/dec),suggesting its favorable reaction kinetics.It can illustrate that Ru/RuS2heterostructure can boost reaction kinetics towards alkaline HER through the coupling of water dissociation on Ru and hydrogen adsorption on RuS2.The ECSA of Ru@N-rGO and Ru/RuS2@N-rGO with various amounts of Na2SO4were evaluated byCdl(Fig.S6 in Supporting information).As shown in Fig.4c,theCdlof Ru/RuS2@N-rGO(42.5mF/cm2)and Ru/RuS2@N-rGO-10(40.6mF/cm2)more than two times that of Ru@N-rGO(23.8mF/cm2).Ru/RuS2@N-rGO also showed a much lower charge transfer resistance in comparison with other catalysts in Fig.4d and Fig.S7b(Supporting information),suggesting that Ru/RuS2@N-rGO possesses excellent conductivity and the faster charge transfer.It is noticeable that the reference catalyst Ru/RuS2@rGO without N doping had much higher charge transfer resistance,which may indicate that N doping also plays an important role in accelerating charge transfer(Fig.S7b).

    The long-term electrocatalytic stability is a crucial requirement for evaluating the electrocatalyst.Fig.4e showed the chronoamperometric curve of Ru/RuS2@N-rGO under the potential at 10,20 and 50 mA/cm2,in which the current density almost kept constant over 24 h.After 24 h electrocatalytic stability test,Ru/RuS2@N-rGO did not show an observable shift in the polarization curve,suggesting that it had superior electrochemical stability upon long-term operating(Fig.4f).Moreover,The Ru 3p XPS peaks of the samples still maintained a similar value after the electrocatalytic test(Fig.S8 in Supporting information).As shown in Figure S9,the morphologies of Ru/RuS2@N-rGO also have no obvious change after 24 h stability test.It indicated that Ru/RuS2@N-rGO had superior electrochemical stability upon long-term operation.

    Ru/RuS2heterostructure with low crystallinity has been successfully synthesized by controlling calcining temperature and adjusting the amount of Na2SO4.The catalyst Ru/RuS2@N-rGO exhibited excellent HER activity and stability under alkaline media.It observed the low η10of 18 mV,superior to benchmark Pt/C catalysts,and remarkable stability for 24 h.The excellent activity can be ascribed to its rationally designed composition with favorable structure morphology.Firstly,the low crystallinity can induce larger electrochemically active surface areas for exposing more active sites.Secondly,the reaction kinetics for alkaline HER are significantly improved by the heterostructural synergy between Ru and RuS2nanoparticles.The synergistic effect of Ru/RuS2heterostructure not only couples the water dissociation on Ru and hydrogen adsorption on RuS2,but also modifies the electron structure and further improves the chemisorption of the different reaction intermediates.Besides,the defect was beneficial for enhancing the catalytic performance.This work provides a new and facile way for improving catalytic activity through synergistically structural and component modulations.

    Declaration ofcompeting interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.21773184 and 21671158),Key Science and Technology Project of Henan(No.202102210238),Natural Science Foundation of Henan(No.212300410339)and Cultivation Program for Young Backbone Teachers in Henan University of Technology(Nos.21420108 and 21420073).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.053.

    青青草视频在线视频观看| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 国产在视频线精品| 久久久精品免费免费高清| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 又粗又硬又长又爽又黄的视频| 尤物成人国产欧美一区二区三区| 国产精品一及| 免费av不卡在线播放| 亚洲精品国产色婷婷电影| 永久免费av网站大全| 少妇人妻精品综合一区二区| 青春草亚洲视频在线观看| av福利片在线观看| 精品一区二区三卡| 亚洲精品成人av观看孕妇| 99热网站在线观看| 成人免费观看视频高清| 国产色爽女视频免费观看| 午夜免费鲁丝| 国产精品.久久久| 欧美 日韩 精品 国产| 色婷婷av一区二区三区视频| 日韩,欧美,国产一区二区三区| 国内精品宾馆在线| 国产成人免费观看mmmm| 国产淫语在线视频| 黑人猛操日本美女一级片| 三级国产精品欧美在线观看| 在线亚洲精品国产二区图片欧美 | 欧美日韩视频精品一区| 免费看日本二区| 深爱激情五月婷婷| 亚洲欧美精品专区久久| 国产高清三级在线| 大片免费播放器 马上看| 午夜福利高清视频| 亚洲av在线观看美女高潮| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| 一区二区三区四区激情视频| 99热网站在线观看| 欧美日韩在线观看h| 1000部很黄的大片| 大陆偷拍与自拍| 少妇高潮的动态图| 午夜视频国产福利| 国产又色又爽无遮挡免| 卡戴珊不雅视频在线播放| 亚洲精品乱久久久久久| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 成人漫画全彩无遮挡| 永久免费av网站大全| 欧美成人午夜免费资源| 精品久久久久久久末码| 男的添女的下面高潮视频| 国产一级毛片在线| 中国国产av一级| 高清黄色对白视频在线免费看 | 蜜桃亚洲精品一区二区三区| 中文精品一卡2卡3卡4更新| 欧美精品人与动牲交sv欧美| 亚洲不卡免费看| 久久青草综合色| 亚洲精品aⅴ在线观看| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 亚洲精品中文字幕在线视频 | 日产精品乱码卡一卡2卡三| 男人添女人高潮全过程视频| 99久久精品国产国产毛片| 草草在线视频免费看| 免费大片黄手机在线观看| 日日摸夜夜添夜夜爱| 国产精品av视频在线免费观看| 身体一侧抽搐| 日韩,欧美,国产一区二区三区| 国产精品久久久久久久久免| 亚洲精品国产成人久久av| 日韩av不卡免费在线播放| 免费黄频网站在线观看国产| 国产乱来视频区| 国产精品成人在线| 国产成人精品福利久久| 啦啦啦中文免费视频观看日本| 久久久成人免费电影| 肉色欧美久久久久久久蜜桃| 国产大屁股一区二区在线视频| 下体分泌物呈黄色| 国精品久久久久久国模美| 26uuu在线亚洲综合色| 久久久久久久久久成人| 韩国av在线不卡| 国产亚洲欧美精品永久| 高清黄色对白视频在线免费看 | av福利片在线观看| 99热这里只有精品一区| 男女边吃奶边做爰视频| 午夜福利在线在线| 黄色日韩在线| 免费黄色在线免费观看| 欧美性感艳星| 日日撸夜夜添| 欧美区成人在线视频| av一本久久久久| 赤兔流量卡办理| 久久久a久久爽久久v久久| 极品教师在线视频| 秋霞在线观看毛片| 在现免费观看毛片| 99久久精品国产国产毛片| 久久97久久精品| 成人影院久久| av一本久久久久| 99久久中文字幕三级久久日本| 亚洲怡红院男人天堂| 亚洲精品自拍成人| 日韩欧美 国产精品| 亚洲精品乱码久久久久久按摩| 永久网站在线| 成人亚洲精品一区在线观看 | 在线播放无遮挡| 国产一区有黄有色的免费视频| 国产91av在线免费观看| 狠狠精品人妻久久久久久综合| 欧美成人午夜免费资源| 国产精品伦人一区二区| 18禁动态无遮挡网站| 国产精品蜜桃在线观看| 国产精品一二三区在线看| 国产片特级美女逼逼视频| 免费观看的影片在线观看| 午夜福利影视在线免费观看| 国产精品女同一区二区软件| 国产亚洲欧美精品永久| 大码成人一级视频| 自拍欧美九色日韩亚洲蝌蚪91 | 婷婷色麻豆天堂久久| av福利片在线观看| 国产探花极品一区二区| kizo精华| 麻豆成人av视频| 小蜜桃在线观看免费完整版高清| 亚洲精品乱码久久久v下载方式| 欧美+日韩+精品| 97在线人人人人妻| 国产免费又黄又爽又色| 涩涩av久久男人的天堂| 成人美女网站在线观看视频| 久久精品国产a三级三级三级| 中文字幕亚洲精品专区| 亚洲精品一区蜜桃| 久久精品国产鲁丝片午夜精品| 成年av动漫网址| 人妻系列 视频| av女优亚洲男人天堂| 国产片特级美女逼逼视频| 大香蕉97超碰在线| 国产淫片久久久久久久久| 在线 av 中文字幕| 国产无遮挡羞羞视频在线观看| 国产欧美日韩一区二区三区在线 | 人妻夜夜爽99麻豆av| 两个人的视频大全免费| 亚洲真实伦在线观看| 日本与韩国留学比较| 国产黄色免费在线视频| 精华霜和精华液先用哪个| 日韩伦理黄色片| 亚洲伊人久久精品综合| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 午夜激情福利司机影院| 如何舔出高潮| 蜜桃久久精品国产亚洲av| 国产亚洲av片在线观看秒播厂| 高清在线视频一区二区三区| 美女中出高潮动态图| 亚洲av二区三区四区| 我的老师免费观看完整版| 国产 一区精品| 亚洲精品色激情综合| 久久久久久久精品精品| 国产69精品久久久久777片| 中文字幕制服av| 小蜜桃在线观看免费完整版高清| 国产成人午夜福利电影在线观看| 在线观看一区二区三区激情| 国产精品人妻久久久久久| 18+在线观看网站| 国产男女超爽视频在线观看| 一个人看的www免费观看视频| 亚洲在久久综合| 成人综合一区亚洲| 少妇高潮的动态图| 欧美日韩视频精品一区| 99久久中文字幕三级久久日本| 亚洲国产精品专区欧美| 各种免费的搞黄视频| 亚洲一级一片aⅴ在线观看| 精品久久国产蜜桃| 国产av国产精品国产| 国产精品国产三级国产专区5o| 久久婷婷青草| www.av在线官网国产| 亚洲av二区三区四区| 中文天堂在线官网| 亚洲真实伦在线观看| 在线观看免费日韩欧美大片 | 日韩成人av中文字幕在线观看| 欧美xxxx黑人xx丫x性爽| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 欧美极品一区二区三区四区| 99国产精品免费福利视频| 免费观看在线日韩| 91aial.com中文字幕在线观看| 亚洲欧美日韩无卡精品| 久久99热这里只有精品18| 高清av免费在线| 2021少妇久久久久久久久久久| 久久精品国产a三级三级三级| 久久国产精品男人的天堂亚洲 | 国产精品一二三区在线看| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 亚洲在久久综合| 亚洲色图av天堂| 人人妻人人澡人人爽人人夜夜| 国产黄色免费在线视频| 亚洲av成人精品一二三区| 国产精品人妻久久久影院| 成人漫画全彩无遮挡| 国产人妻一区二区三区在| 亚洲人成网站高清观看| 久久久久久久久久成人| 精品熟女少妇av免费看| 搡女人真爽免费视频火全软件| 亚洲自偷自拍三级| 丰满少妇做爰视频| 国产精品蜜桃在线观看| 亚洲久久久国产精品| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 成年人午夜在线观看视频| 新久久久久国产一级毛片| 99久久人妻综合| 国产亚洲91精品色在线| 91午夜精品亚洲一区二区三区| 美女国产视频在线观看| 亚州av有码| 卡戴珊不雅视频在线播放| 亚洲欧美日韩另类电影网站 | 亚洲国产精品国产精品| 午夜精品国产一区二区电影| 性色av一级| 久久99热6这里只有精品| 亚洲国产成人一精品久久久| 国产精品伦人一区二区| 亚洲国产毛片av蜜桃av| 国产成人freesex在线| 成人毛片a级毛片在线播放| 久久久亚洲精品成人影院| 大话2 男鬼变身卡| 在线观看国产h片| 久久毛片免费看一区二区三区| 中文字幕久久专区| 久久精品国产亚洲av天美| 国产人妻一区二区三区在| 大香蕉97超碰在线| 美女cb高潮喷水在线观看| 婷婷色综合www| 超碰av人人做人人爽久久| 综合色丁香网| 国产免费视频播放在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩另类电影网站 | 欧美zozozo另类| xxx大片免费视频| 2018国产大陆天天弄谢| 超碰av人人做人人爽久久| 最后的刺客免费高清国语| 免费观看的影片在线观看| 人妻系列 视频| 国产免费又黄又爽又色| 国产精品人妻久久久久久| 少妇的逼水好多| 成人亚洲欧美一区二区av| 精品人妻视频免费看| 黄片wwwwww| 高清av免费在线| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 亚洲欧美日韩无卡精品| 最黄视频免费看| 久久精品国产自在天天线| 亚洲av福利一区| 777米奇影视久久| 国国产精品蜜臀av免费| 一二三四中文在线观看免费高清| 欧美xxxx性猛交bbbb| 乱系列少妇在线播放| 国产黄色视频一区二区在线观看| 欧美日韩亚洲高清精品| 免费看日本二区| 精品久久久噜噜| 人妻 亚洲 视频| 久久久欧美国产精品| 岛国毛片在线播放| 亚洲精品久久久久久婷婷小说| 精华霜和精华液先用哪个| www.色视频.com| 舔av片在线| 亚洲国产最新在线播放| 久久久久精品性色| 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 欧美精品亚洲一区二区| 国产日韩欧美亚洲二区| 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| 各种免费的搞黄视频| 少妇猛男粗大的猛烈进出视频| 美女cb高潮喷水在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 亚洲欧美一区二区三区黑人 | 久久人人爽人人片av| 久久久a久久爽久久v久久| 久久女婷五月综合色啪小说| 三级国产精品欧美在线观看| 少妇丰满av| 成人影院久久| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 五月开心婷婷网| 街头女战士在线观看网站| 久久久国产一区二区| 99久久精品国产国产毛片| 性色av一级| 蜜桃久久精品国产亚洲av| 人人妻人人爽人人添夜夜欢视频 | 中文字幕久久专区| 久久这里有精品视频免费| 日日摸夜夜添夜夜添av毛片| 一级毛片黄色毛片免费观看视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美成人综合另类久久久| 深爱激情五月婷婷| 秋霞在线观看毛片| a级一级毛片免费在线观看| 国产av码专区亚洲av| 美女国产视频在线观看| 成人无遮挡网站| 免费黄频网站在线观看国产| av福利片在线观看| 免费播放大片免费观看视频在线观看| 国产亚洲最大av| 亚洲国产精品成人久久小说| 少妇精品久久久久久久| 网址你懂的国产日韩在线| 亚洲精品视频女| 伦理电影免费视频| 久久国内精品自在自线图片| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 91午夜精品亚洲一区二区三区| 国产成人免费观看mmmm| 国产av国产精品国产| 国产亚洲一区二区精品| 国产av一区二区精品久久 | 日韩伦理黄色片| 91精品国产国语对白视频| 亚洲精品乱码久久久v下载方式| 成人高潮视频无遮挡免费网站| 黄片无遮挡物在线观看| 卡戴珊不雅视频在线播放| 国产乱人偷精品视频| 波野结衣二区三区在线| 国产精品一及| 我要看黄色一级片免费的| 又黄又爽又刺激的免费视频.| 伦理电影大哥的女人| 色吧在线观看| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 亚洲精品aⅴ在线观看| 久久ye,这里只有精品| 国产视频内射| 欧美激情国产日韩精品一区| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 欧美日韩亚洲高清精品| 美女脱内裤让男人舔精品视频| 亚洲国产精品专区欧美| 国产精品熟女久久久久浪| 国产免费又黄又爽又色| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 建设人人有责人人尽责人人享有的 | 深爱激情五月婷婷| 狠狠精品人妻久久久久久综合| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 国产视频内射| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 六月丁香七月| 国产高清三级在线| 日韩av不卡免费在线播放| 成人18禁高潮啪啪吃奶动态图 | 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| 在线观看国产h片| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 成人18禁高潮啪啪吃奶动态图 | 欧美变态另类bdsm刘玥| 婷婷色麻豆天堂久久| 久久 成人 亚洲| 中文字幕久久专区| 国产 一区精品| 最近手机中文字幕大全| 国产成人午夜福利电影在线观看| 免费观看a级毛片全部| 国产精品熟女久久久久浪| 欧美日本视频| 婷婷色综合大香蕉| 在线 av 中文字幕| 国产淫语在线视频| 欧美日韩在线观看h| 91精品国产国语对白视频| 国产 一区 欧美 日韩| 成人毛片a级毛片在线播放| 深爱激情五月婷婷| 日日啪夜夜爽| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 亚洲高清免费不卡视频| 精品一品国产午夜福利视频| 深夜a级毛片| 在线 av 中文字幕| 久久亚洲国产成人精品v| 久久久成人免费电影| 成年人午夜在线观看视频| 国产在线视频一区二区| 国产成人免费观看mmmm| 干丝袜人妻中文字幕| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 亚洲成人手机| 免费看不卡的av| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 视频中文字幕在线观看| 国产v大片淫在线免费观看| 成人免费观看视频高清| 一级片'在线观看视频| 久久精品国产亚洲网站| 久久女婷五月综合色啪小说| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 亚洲国产高清在线一区二区三| 国产精品一区二区在线不卡| 直男gayav资源| 国产黄频视频在线观看| 最后的刺客免费高清国语| 亚洲欧美成人精品一区二区| 国产成人91sexporn| 欧美丝袜亚洲另类| 日日摸夜夜添夜夜添av毛片| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 在线天堂最新版资源| 久久青草综合色| 亚洲精华国产精华液的使用体验| 色吧在线观看| 国产人妻一区二区三区在| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图 | 国产白丝娇喘喷水9色精品| 777米奇影视久久| 欧美高清性xxxxhd video| 日本与韩国留学比较| 熟女人妻精品中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 在线精品无人区一区二区三 | 久久精品国产亚洲网站| 国产免费福利视频在线观看| 卡戴珊不雅视频在线播放| 久久亚洲国产成人精品v| 久久人人爽人人爽人人片va| 国产乱人偷精品视频| 少妇人妻一区二区三区视频| 国产淫片久久久久久久久| 成人亚洲欧美一区二区av| 天堂8中文在线网| 中文字幕久久专区| 精品一区二区免费观看| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 久久 成人 亚洲| 亚洲,欧美,日韩| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产精品av视频在线免费观看| 久久精品夜色国产| 久久久久久九九精品二区国产| 日韩免费高清中文字幕av| 看十八女毛片水多多多| 观看美女的网站| 高清视频免费观看一区二区| 日韩av免费高清视频| 精品亚洲成国产av| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 99热这里只有是精品在线观看| 亚洲欧美精品自产自拍| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 成人18禁高潮啪啪吃奶动态图 | 全区人妻精品视频| 欧美成人a在线观看| 日韩,欧美,国产一区二区三区| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| 亚洲真实伦在线观看| 亚洲欧美一区二区三区国产| 永久网站在线| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 熟女av电影| 国产精品爽爽va在线观看网站| a级一级毛片免费在线观看| 少妇的逼好多水| 久久久a久久爽久久v久久| 色婷婷av一区二区三区视频| 久久久久久久大尺度免费视频| 国产 一区精品| 干丝袜人妻中文字幕| 蜜臀久久99精品久久宅男| 久久人人爽人人片av| 亚洲精品乱码久久久久久按摩| 在线免费十八禁| 国产熟女欧美一区二区| 亚洲高清免费不卡视频| 国产高清不卡午夜福利| 嫩草影院入口| h日本视频在线播放| 免费观看性生交大片5| 亚洲久久久国产精品| 国产亚洲最大av| 人人妻人人看人人澡| 亚洲国产欧美人成| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人妻| 亚洲怡红院男人天堂| 丝瓜视频免费看黄片| 精品一区二区免费观看| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 又爽又黄a免费视频| 中国三级夫妇交换| 国产一区有黄有色的免费视频| 日本vs欧美在线观看视频 | 国产亚洲一区二区精品| 精品人妻视频免费看| 国产精品伦人一区二区| 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 亚洲欧美精品专区久久| 热re99久久精品国产66热6| 国产精品无大码| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 简卡轻食公司| 国产永久视频网站| 老司机影院成人| 男的添女的下面高潮视频| 亚洲国产色片| 在线观看av片永久免费下载| 久久久久国产精品人妻一区二区| 汤姆久久久久久久影院中文字幕| 久久人人爽人人片av| 国产午夜精品久久久久久一区二区三区| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕| 干丝袜人妻中文字幕| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 日本vs欧美在线观看视频 | 九九爱精品视频在线观看| 亚洲av男天堂| 国产成人精品一,二区| 国产男人的电影天堂91| 久久婷婷青草| 成人漫画全彩无遮挡| 国产伦在线观看视频一区| 偷拍熟女少妇极品色|