• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction

    2021-02-23 09:07:50XuYuZhixinZhaoChengangPei
    Chinese Chemical Letters 2021年11期

    Xu Yu,Zhixin Zhao,Chengang Pei

    School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225000,China

    ABSTRACT Surface oxidized iron-nickel nanorods coupling with reduced graphene architectures(FeNi-O-rGA)are successfully constructed via hydrothermal,freeze-drying,and thermal activation approaches.The hierarchical structure can provide lots of pathways for fast ion diffusion and charge transfer,and expose abundant catalytic sites.Meanwhile,the activity of FeNi-O-rGA is boosted by the optimized metaloxygen bond strength in FeNi3 alloys.Partial oxidized FeNi nanorods are strongly coupled with rGA by the formation of metal-O-C bonds,which can impede the aggregation of FeNi3 alloys and increase the utilization of active sites.The special structure and partially oxidized FeNi nanorods for FeNi-O-rGA can result in excellent OER activity and catalytic stability.Only 215 mV of overpotential is required to drive the current density of 10 mA/cm2 as well as the Tafel slope of 50.9 mV/dec in 1 mol/L KOH.The change of surface chemistry of FeNi-O-rGA is confirmed by XPS after the OER test,which indicates the highly catalytic stability of FeNi-O-rGA due to the formation of intermediate metal oxyhydroxide.

    Keywords:Architectures Graphene oxides FeNi nanorods Metallic oxide Oxygen evolution reaction

    Exploring renewable energy sources is accepted as an effective strategy to satisfy the fast growth of energy demand as well as alleviate the consumption pressure of fossil fuels[1,2].Oxygen evolution reaction(OER),as a direct electrochemical oxidation process of water-splitting,can provide a clean and long-term energy source by converting the energy modality due to their high overall efficiency[3,4].However,the sluggish kinetics for OER is still the bottleneck for the entire process of electrolytic watersplitting,resulting from the four-electron process by consuming hydroxyl ions or water molecules at the anode[5–9].Iridium oxide(IrO2)and ruthenium dioxide(RuO2)are known to show excellent OER activities[6,10,11],such as low overpotential and high durable stability,but the scarcity of resources and high prices restrict their applications in a large-scale system[12].Therefore,the development of highly active non-precious catalysts with the enhanced OER activity is urgent to solve this issue.

    Recently,cheap transition metal-based OER catalysts,such as Fe,Co,Ni,have been regarded as effective alternative materials to show the modest catalytic activity[13],which is generally determined by exposing amounts of the active sites and the activity of active sites.By synergistically controlling the morphological structure and surface chemical states,the OER performance of Fe- and Ni-based catalysts can be significantly improved in comparison to RuO2and IrO2[14–16].The activity of catalytic sites is related to the electronic structure of catalysts.It is reported that surface metal cations are believed to be the active sites for OER[17].The reaction proceeds through a series of intermediates bound by metal-oxygen(M–O)bond,and the relationship between M–O bond strength and catalytic activity is studied[5].While the M–O bond strength should be optimized for active catalysts neither too strong nor too weak,and the active M–O bond strength presented at the top of the‘volcano map’.Lyonset al.demonstrated the experimental activity trend of metals in an alkaline electrolyte(Ni >Co >Fe)[18],and Delahayet al.reported the OER overpotential trend at 1 A/cm2(Ni <Fe <Co)[19,20],which are related to M–OH strength[21].Fe-Ni compounds have been proved to show the enhanced OER activity by the coordination of Fe at the Ni sites[22–25].However,the catalytic activity is still restricted by their low conductivity and stability resulting from the aggregation and corrosion of active materials in alkaline electrolytes.

    In addition to the compositional control,the design of the morphological structure of catalysts is important to provide abundant channels for fast electrolyte diffusion and expose more active sites for compact contact of electrode/electrolyte.The deposition of FeNi compounds on carbon matrix(carbon nanotube,graphitic carbon,etc.)has been demonstrated to show the enhanced OER activity due to the increased conductivity[26].Reduced graphene architectures(rGA),self-assembled by the π-π interaction of graphene oxide nanosheets,can show the hierarchical structure and act as a conductive host to improve the conductivity and stability of transition metal-based catalysts for OER[27].Meanwhile,the surfacefunctionalgroups(hydroxyl,carboxyl)arebeneficialtoform the M–O-C bonds at the metal/graphene interfaces,which can guarantee the stability of catalysts during the OER test.However,FeNi compounds uniformly coupled on graphene architecture as effective catalysts for OER still face challenges.

    Herein,we reported a surface oxidized iron-nickel nanorods coupling on rGA(FeNi-O-rGA)by combining hydrothermal,freezedrying,and thermal activations.FeNi nanorods arein-situgrown on graphene surface during the hydrothermal process and subsequently formed the oxidized states at FeNi nanorods surface after thermal activation,predicting the improved stability of FeNi-O-rGA for OER.As probed by a series of microscopic and spectroscopic technologies,FeNi nanorods with uniform size and partial oxidation are uniformly distributed on graphene surfaces without aggregation.FeNi-O-rGA exhibited superior OER catalytic performance to Fe-O-rGA,Ni-O-rGA,and IrO2/C,including low overpotential to drive the current density of 10 mA/cm2,small Tafel slope,and long-term stability after 1000 cycles,which can be attributed to the synergistic effect of hierarchical structure and modified surface chemistry.

    As illustrated in Fig.1a,FeNi-O-rGA wasin-situsynthesized by a one-step hydrothermal approach following the thermal activation.In brief,the homogeneous solution of metal precursors,oxalic acid,and graphene oxides is important to construct the hierarchical structure with uniform distribution of nanorods.The graphene architectures and FeNi nanorods arein-situformed during the hydrothermal process.Generally,the graphene architecture is formed by the self-assembly of graphene nanosheets through π-π configuration and the formation of hydrogen bonding.Meanwhile,we also anticipate that the FeNi nanorods incorporate with graphene oxide due to the electrostatic force between the oxygencontaining groups of GO and the surface oxidation state of nanorods.As further treatment by a freeze-drying method and thermal activation,the macroscopic structure cylinder FeNi-O-rGA can well remain with small size demolition(Fig.S1 in Supporting information),and the spindly FeNi nanorods are also oxidized during the decomposition of functional groups from graphene oxides.

    Fig.1.(a)The synthetic scheme of FeNi-O-rGA.(b)SEM,(c,d)TEM images,(e)HRTEM and HR-TEM images,(f)STEM image and the related elemental(C,O,Fe and Ni)mapping.

    The morphology and structure of FeNi-O-rGA were characterized by scanning electron microscope(SEM).Fig.1b and Fig.S2a(Supporting information)are the SEM image of FeNi-O-rGA.It was observed that FeNi-O-rGA possesses the hierarchical structure,and the surface oxidized FeNi nanorods are uniformly distributed on microporous walls in direct contact with graphene.Transmission electron microscope(TEM)further revealed that FeNi-O-rGA owns the shrink graphene lattices and uniform nanorods distribution with an average length of 2 μm and width of 40 nm;no aggregated phenomena can be observed even after high-temperature treatment attributing to the existence of FeNi nanorods inhibits the restacking of GO(Fig.1c).The rough surface for FeNi nanorods induces by the surface oxidation and the hybridization with graphene nanosheets(Fig.1d).The stabilized FeNi nanorods are ascribed to the strong coupling of oxidized surface of FeNi with graphene and the formation of strong covalent bond interactionviacondensation reaction during the thermal treatment.As the highresolution TEM is shown in Fig.1e,the interplanar distances of lattice fringes are 0.25 and 0.29 nm corresponding to the(311)and(220)plane of the Fe2O3,the d-spacing of 0.21 nm and 0.33 nm correspond to the(111)plane of FeNi3and(002)plane of graphene.The polycrystalline characteristic of FeNi-O-rGA was further confirmed by the selected area electron diffraction(SAED)pattern,the large diameter diffraction aperture is corresponding to the FeNi3(200)plane,and the other is corresponding to(111)plane of FeNi3(Fig.S2b in Supporting information).The energy dispersive spectroscopy(EDS)displays the obvious peaks implying the existence of C,O,Fe and Ni elements(Fig.S3 and Table S1 in Supporting information).The uniform distribution of all elements is further confirmed by elemental mapping in Fig.1f.The outline of neatly distributed Fe and Ni elements well matches with the shape of nanorods,implying the successful synthesis of nanorods on graphene architectures.

    Fig.2.(a)XRD patterns of the rGA,FeNi-O nanorod and FeNi-O-rGA.(b)Raman spectra of the rGA,FeNi-GA and FeNi-O-rGA.High magnification XPS spectra of(c)Fe 2p and(d)Ni 2p.

    The phase composition and crystallinity of the FeNi-O-rGA were characterized by X-ray diffraction(XRD)in Fig.2a and Fig.S4(Supporting information).It can be observed that the peak approximately at 26.38°for GA and 26.28°for FeNi-O-rGA owing to the(002)plane of graphitic carbon,suggesting the successful reduction of graphene oxides[28].The two broad peaks imply the highly amorphous phase of rGA,and the slight peak shift can be attributed to the change of interlayer distance of graphene by hybridization with FeNi nanorods.FeNi-O-rGA shows a series of clear diffraction peaks.The peaks centering at 44.2°,52.0°and 75.7°correspond to the(111),(200),and(220)crystal planes of FeNi3alloys(PDF#38-0419),respectively.Some weak peaks are located at 30.2°and 35.4°attributing to the(220)and(311)planes of Fe2O3(PDF#39-1346),and the effect of activation temperature on the content of Fe2O3is confirmed by XRD(Fig.S5 in Supporting information).These results confirm that FeNi-O-rGA contains not only FeNi3alloys but also the oxidized state of Fe formed during the thermal activation process.Furthermore,the structural change of FeNi-O-rGA was elucidated by Raman in Fig.2b.Two typical peaks at 1344 and 1582 cm-1assign to the defective structure of graphene lattices(D band)and the stretchable bonding of sp2carbons(G band)[29].FeNi-O-rGA exhibits a red-shift of the G band,which can be attributed to stretchable carbon-carbon bond during the reduction process of graphene oxides and the formation of metal-O-C bond at graphene/FeNi nanorods interfaces[30,31].The degree of structure distortion is evaluated by the intensity ratio of the D band and G band(ID/IG).The value ofID/IGfor FeNi-OrGA(1.14)is larger than that of GA(0.95),implying the increased defective density in the hierarchical structure due to the coupling of metal oxide with graphene.

    X-ray photoelectron spectroscopy(XPS)was probed to analyze the surface composition and elemental states of FeNi-O-rGA,which demonstrates the existence of.C,O,Fe and Ni elements from the full scan XPS spectra(Fig.S6a and Table S2 in Supporting information).Fig.S6b(Supporting information)shows the highresolution C 1s spectra of FeNi-O-rGA.Three fitted peaks centering at 284.7 eV,285.7 eV,and 288.4 eV correspond to the C-C,C-O,and C=O,respectively.The O 1s peak was divided into four major peaks at 530.3 eV,531.5 eV and 532.9 eV,in accordance with metal-O,metal-O-C and C--O configurations,respectively(Fig.S6c in Supporting information).The high content of defective oxygen coordination on the surface of FeNi-O-rGA can modulate the oxidation kinetics to improve the OER properties.To imply the boosted activity,the interaction between Fe and Ni for FeNi-O-rGA is confirmed by Fe 2p and Ni 2p spectra.Fig.2c shows the typical peaks of Fe 2p,the peaks at 706.6 eV and 719.8 eV are attributed to Fe°,which is an account for the reduction of Fe2+,and the peaks at 711.1 eV and 724.6 eV with the satellite peaks at 716.3 eV and 733.1 eV are indexed to Fe3+; while the separation of 2p doublet was 13.7 eV,which is a typical feature of Fe2O3[32,33].As proved by lectures,the electrochemical activity for OER can be improved by the incorporation of Fe3+[34,35].The peaks at 852.5 eV and 869.6 eV indicate the existence of Ni°(Fig.2d).And the peak at 855.9 eV and 877.6 eV can be assigned to Ni2+with the related satellite peaks at 861.4 eV and 873.7 eV.Above all,this phenomenon indicates a large content of metallic Fe and Ni on the surface of the nanocomposites.And the existence of Fe3+and Ni2+may derive from the fact that the FeNi3alloys were active metals and their surface would be oxidized with the oxygen group during the reduced process of the GO.The oxidized states of Fe and Ni indicate the surface oxidation of FeNi3alloys,which is consistent with the XRD result.The conversion of Ni2+to Ni3+during the catalytic process as the electroactive sites for OER operation,which has a significant effect on the electrocatalytic activity[36,37].Furthermore,the high ratio of Fe3+and Ni2+for FeNi-O-rGA is shown by integrating the fitted peak area from related XPS spectra.The surface oxidized FeNi alloys as the dominant active sites can effectively improve the efficiency of hydroxyl adsorption and oxyhydroxide formation,predicting the good electrocatalytic activity of FeNi-O-rGA during the OER test.

    The electrocatalytic activity of FeNi-O-rGA,Ni-O-rGA and Fe-OrGA for OER was initially evaluated by linear sweep voltammetry(LSV)measurement at a scan rate of 5 mV/s.The catalyst is activated and stabilized by cyclic voltammetry(CV).As is shown by the polarization curve(Fig.3a),a typical peak at 1.32 V corresponds to Ni-based catalysts for OER,implying the conversion between Ni2+and Ni3+[31].The LSV curves for FeNi-O-rGA exhibit the best catalytic activity in contrast to the control sample and commercial IrO2/C catalyst.The overpotentials for all catalysts at the catalytic current density of 10 mA/cm2are compared,as shown in Fig.3a.To derive the high current density of 10 mA/cm2,the required overpotential of FeNi-O-rGA is only 215 mV,which is much lower than that of Ni-O-rGA(340 mV),Fe-O-rGA(400 mV),commercial IrO2/C(320 mV)and the recently reported Ni-based OER catalysts(Table S3 in Supporting information).Meanwhile,the change of reduction peak for FeNi-O-rGA caused by the incorporation of Fe into Ni sites,which can elucidate the superior catalytic activity of FeNi-O-rGA to the control catalysts.The catalytic activity of the optimal ratio of metal ions anchoring on graphene architectures is compared,and FeNi-O-rGA is best for OER(Fig.S7 in Supporting information).When the content of metal ions in catalysts is over optimal composition,the OER activity decreases owing to the poor conductivity of the excessive metal oxides.Meanwhile,FeNi-OrGA is thermally activated at different temperatures and the corresponded electrochemical performance is compared(Fig.S8 in Supporting information).At the temperature of 400°C,FeNi-O-rGA shows the lowest overpotential to reach the current density of 10 mA/cm2due to the optimal composition of metal oxides.The hierarchical structure can provide abundant ion transport pathways and expose more effective active sites,and the formation of covalent bonds between FeNi nanorods and GA are favorable for improving the stability of ion adsorption in the alkaline electrolyte during the OER test.

    Fig.3.(a)The polarization curves and(b)Tafel plots of FeNi-O-rGA,Ni-O-rGA,Fe-O-rGA and IrO2/C catalysts.(c)Nyquist plots and(d)the capacitive current versus the scan rate of FeNi-O-rGA,Ni-O-rGA and Fe-O-rGA.(e)The polarization curves of FeNi-O-rGA at the 1st and 1000th CV cycles.(f)Chronoamperometry measurement of FeNi-O-rGA at the potential of 1.46 V.

    Tafel slope is an important index to verify the electrocatalytic kinetics of the catalysts at a low potential.As shown in Fig.3b,the Tafel slope of FeNi-O-rGA(50.9 mV/dec)is lower than that of Ni-O-rGA(96.7 mV/dec),Fe-O-rGA(138.9 mV/dec)and IrO2/C(74.7 mV/dec),suggesting the low activation energy for FeNi-OrGA to drive an overpotential for OER.Electrochemical impedance spectroscopy(EIS)was employed to evaluate the interfacial behaviors of all catalysts and the equivalent circuit of the electrochemical process is shown in Fig.S9(Supporting information).Fig.3c shows the Nyquist plot of the catalysts,and the semicircle represents the charge transfer resistance(Rct)at the electrolyte/electrode interface or inner the electrode.FeNi-O-rGA shows a smaller diameter of a semicircle and a lowerRctvalue(21.3 Ω)than that of Ni-O-rGA(398 Ω)and Fe-O-rGA(899 Ω),implying the high activity and fast kinetics of FeNi-O-rGA for OER.

    To investigate the enhanced electrocatalytic activity for FeNi-OrGA,the electrochemical surface area(ECSA)is estimated.The CV curves of all catalysts were measured at the given potential window without faradic reaction.The value of ECSA is proportional to the double-layer capacitance(Cdl),which can be calculated by fitting the linear plot of the capacitive current versus the scan rates from CV curves(Fig.S10 in Supporting information).The largerCdlvalue for FeNi-O-rGA(9.8 mF/cm2)than that of Fe-O-rGA(4.5 mF/cm2)and Ni-O-rGA(4.2 mF/cm2)implies the increased electrochemical surface area,which can expose more efficient active sites for fast OER operation(Fig.3d).Besides,the ECSA was also calculated(Table S4 in Supporting information)and FeNi-OrGA owns the highest ECSA(17.15 mA/cm2).The specific activity is obtained by normalizing the apparent current to ECSA(Fig.S11a in Supporting information).The FeNi-O-rGA shows the highest catalytic efficiency of 0.164 mA/cm2at 1.5 V,which is about 12 times of Ni-O-rGA(0.013 mA/cm2)and 23 times of FeNi-O-rGA(0.007 mA/cm2).The turnover frequency(TOF)was calculated to evaluate the intrinsic electrocatalytic activity of FeNi-O-rGA by assuming all Fe and Ni ions as the active sites(Fig.S11b in Supporting information).FeNi-O-rGA possesses the highest TOF value at the given overpotential indicating the high catalytic activity,which is consistent with specific activity(Fig.S9).At the overpotential of 215 mV,the TOF value for FeNi-O-rGA(0.06 s-1)is 7.6 and 25 times higher than Ni-O-rGA(0.0078 s-1)and Fe-O-rGA(0.0024 s-1).Therefore,it can be concluded that the formation of Fe-Ni hydroxide/oxyhydroxide layer on FeNi alloys surface can increase the electroactive surface area,accelerate the charge transfer and reduce the contact resistance between electrode and electrolyte during the OER test.

    Except for the high catalytic activity,the long-life durability is another significant concern to evaluate the catalysts in practical application.The catalytic durability of FeNi-O-rGA is measured by CV curves and chronoamperometric(CA).After a continuous scan for 1000 cycles,the polarization curves for FeNi-O-rGA is well overlapped with its initial cycle(Fig.3e).It is observed that the reduction peak of Ni2+/Ni3+is slightly blue-shifted by the anion coordination around the transition metal center.The overpotential is nearly no skewing to reach the current density of 10 mA/cm2and slightly increased from 260 mV for the initial cycle to 265 mV for the 1000th cycle to obtain the current density of 40 mA/cm2,indicating the superior catalytic durability for FeNi-O-rGA.Furthermore,the CA is measured at the given potential of 1.46 V(10 mA/cm2)for 15 h in Fig.3f.The negligible change of current density implies that FeNi-O-rGA is highly active with stable electrocatalytic behaviors.

    The abovementioned physical characterization and electrochemical behaviors demonstrate that FeNi-O-rGA shows the hierarchical structure and excellent catalytic performance for OER reaction,which could be ascribed to the following reasons:1)graphene architecture improves not only the electrical conductivity but also the stability of FeNi nanorods by the electrostatic interaction.2)The hierarchical structure can increase the surface area by exposing more efficient catalytic active sites for OER and provide abundant pathways for fast ion diffusion and charge transfer.3)The surface oxidation on FeNi nanorods,especially during the electrochemical activation in alkaline electrolyte,can improve the surface hydrophilicity and promote the formation of electroactive sites for OER.4)The Fe incorporation can optimize the surface chemistry of FeNi nanorod to enhance the kinetics behaviors for OER,like the smaller Tafel andRctvalues.5)The strong coupling of FeNi nanorods with graphene architectures can significantly improve the catalytic stability of FeNi-O-GA,as demonstrated by CA after 15 h in alkaline electrolyte.

    The change of surface morphology and chemical states of FeNi-O-rGA after the OER test for 15 h were evaluated by TEM,XRD,and XPS in Fig.4.Fig.4a shows the well-maintained nanorod structure,and the rough surface corresponds to the surface oxidation during the OER process.The lattice fringe for FeNi nanorods and the boundary at graphene/FeNi nanorods interface is more obscure than the initial state,attributing to the further electro-oxidation and the conversion of intermediate metal oxyhydroxide.As is further confirmed by XRD spectra(Fig.4b),the strong typical XRD patterns of FeNi alloys become much weak after the OER test,and some of the original weak patterns disappear,implying the weak polycrystalline characteristic with the formation of amorphous structure.A little peak shift for FeNi-O-rGA after the OER test is ascribed to the formation of intermediate metal oxyhydroxide.These features strongly confirmed the good catalytic stability for FeNi-O-rGA.XPS analysis was also carried out on the samples after the electrochemical test.The appearance of C–F bond in C 1s spectra and O--F bond in O 1s spectra is from the residual binder(Fig.S12 in Supporting information).By comparison,the change of XPS spectra is ascribed to the further oxidation and formation of metal oxyhydroxide on graphene nanosheet,which is caused by the intermetallic forces to make the electronic structure more stable(Figs.4c and d).

    Fig.4.(a)TEM image of FeNi-O-rGA after 1000 CV curves.(b)XRD of FeNi-O-rGA before and after OER test.XPS spectra of(c)Fe 2p and(d)Ni 2p for FeNi-O-rGA after OER test.

    In conclusion,we successfully fabricated the hierarchically structured FeNi-O-rGA catalyst for OERviahydrothermal and thermal activation.The partial oxidation of FeNi nanorods wasinsitugrown on graphene surface during the treatment,which is favorable to increase the electrical conductivity and stability of FeNi-O-rGA catalyst.The surface oxidation of FeNi nanorods can provide abundant active sites.Due to the hierarchical structure and the boosted activity by Fe incorporation,FeNi-O-rGA exhibited an excellent catalytic activity for OER.To derive the current density of 10 mA/cm2,FeNi-O-rGA required a low overpotential of 215 mV.The CA result confirmed that FeNi-O-rGA showed highly catalytic stability,and the change of surface morphology and chemical states were confirmed by various microscopic and spectroscopic analyses.This method can provide an effective strategy to construct the graphene architectures with coupling transitionmetal based catalysts for OER.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work is supported by the National Natural Science Foundation of China(No.21805239);the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB150034); ‘Six Talent Peaks Project’ in Jiangsu Province(No.XCL-104); ‘High-End Talent Project’ of Yangzhou University,and the ‘Lvyang Jinfeng’ Talents Attracting Plan.We also acknowledge the technical support at the Testing Center of Yangzhou University.

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.040.

    精品一区二区三区视频在线| 亚洲国产精品成人久久小说| 99久国产av精品国产电影| 嫩草影院新地址| 大片免费播放器 马上看| 国产亚洲午夜精品一区二区久久 | 在线观看免费高清a一片| 日韩成人av中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 深爱激情五月婷婷| 亚洲av免费高清在线观看| 97精品久久久久久久久久精品| 人妻少妇偷人精品九色| 美女视频免费永久观看网站| 成人综合一区亚洲| 日韩国内少妇激情av| 成人高潮视频无遮挡免费网站| a级一级毛片免费在线观看| 亚洲精华国产精华液的使用体验| 国产毛片a区久久久久| 欧美三级亚洲精品| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 亚洲aⅴ乱码一区二区在线播放| 五月伊人婷婷丁香| 又粗又硬又长又爽又黄的视频| 欧美一区二区亚洲| av在线播放精品| 一级毛片我不卡| 最近2019中文字幕mv第一页| 99久久人妻综合| 成人一区二区视频在线观看| 国产精品一区二区在线观看99| 亚洲色图av天堂| 婷婷色麻豆天堂久久| 男女下面进入的视频免费午夜| 最新中文字幕久久久久| 夫妻午夜视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品日本国产第一区| 亚洲欧美清纯卡通| 乱系列少妇在线播放| 日韩免费高清中文字幕av| 麻豆精品久久久久久蜜桃| 别揉我奶头 嗯啊视频| 久久精品熟女亚洲av麻豆精品| 久久久久国产网址| 只有这里有精品99| 国产精品人妻久久久影院| 色哟哟·www| 69人妻影院| 能在线免费看毛片的网站| 蜜桃久久精品国产亚洲av| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 亚洲精品影视一区二区三区av| 亚洲精品乱码久久久v下载方式| 国产欧美亚洲国产| 自拍偷自拍亚洲精品老妇| 久久久久久伊人网av| 国产精品爽爽va在线观看网站| 97热精品久久久久久| 简卡轻食公司| 午夜精品国产一区二区电影 | 日产精品乱码卡一卡2卡三| 久久久久精品久久久久真实原创| 中国国产av一级| 午夜老司机福利剧场| 亚洲精品成人av观看孕妇| 别揉我奶头 嗯啊视频| 久热这里只有精品99| 国产高清不卡午夜福利| av播播在线观看一区| 在线观看一区二区三区| 各种免费的搞黄视频| 精品少妇久久久久久888优播| 亚洲最大成人手机在线| 亚洲天堂国产精品一区在线| 欧美变态另类bdsm刘玥| 深夜a级毛片| 亚洲av福利一区| 午夜福利视频精品| 97精品久久久久久久久久精品| 国产一级毛片在线| 国产一区二区三区综合在线观看 | 天堂网av新在线| 国产一区二区三区综合在线观看 | 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 精品人妻偷拍中文字幕| 各种免费的搞黄视频| 欧美日韩视频高清一区二区三区二| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品在线观看| av黄色大香蕉| 日韩,欧美,国产一区二区三区| 日韩人妻高清精品专区| 国产一区二区亚洲精品在线观看| 六月丁香七月| 亚洲久久久久久中文字幕| 啦啦啦啦在线视频资源| 伦精品一区二区三区| 寂寞人妻少妇视频99o| 五月伊人婷婷丁香| 亚洲欧洲日产国产| 美女cb高潮喷水在线观看| 婷婷色av中文字幕| 成年女人在线观看亚洲视频 | 超碰av人人做人人爽久久| 国产成人a∨麻豆精品| 韩国高清视频一区二区三区| 久久久精品免费免费高清| 在线a可以看的网站| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 免费观看性生交大片5| 少妇 在线观看| 免费黄网站久久成人精品| 国产精品麻豆人妻色哟哟久久| 国产欧美亚洲国产| 日本与韩国留学比较| 亚洲国产欧美在线一区| av国产久精品久网站免费入址| 欧美3d第一页| 成人午夜精彩视频在线观看| 亚洲电影在线观看av| 日本色播在线视频| 99九九线精品视频在线观看视频| 色婷婷久久久亚洲欧美| 国产色爽女视频免费观看| 久久久久久久久久成人| 日产精品乱码卡一卡2卡三| 国产成人精品婷婷| 99久久精品国产国产毛片| 亚洲久久久久久中文字幕| 熟女av电影| 日韩欧美 国产精品| 99久久精品热视频| 性插视频无遮挡在线免费观看| 久久精品国产亚洲网站| 精品一区二区三卡| .国产精品久久| 少妇人妻一区二区三区视频| 国产精品女同一区二区软件| 韩国av在线不卡| 青春草视频在线免费观看| 亚洲经典国产精华液单| 精品人妻视频免费看| 精品久久国产蜜桃| 熟女人妻精品中文字幕| 80岁老熟妇乱子伦牲交| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 日韩免费高清中文字幕av| 亚洲人成网站在线播| 人人妻人人爽人人添夜夜欢视频 | 国产成人免费观看mmmm| 午夜福利视频精品| 亚洲国产精品国产精品| 久久久精品免费免费高清| 亚洲电影在线观看av| 一区二区av电影网| 日韩成人av中文字幕在线观看| 日韩一区二区三区影片| 国产探花极品一区二区| 只有这里有精品99| 综合色丁香网| 少妇人妻久久综合中文| videossex国产| 亚洲高清免费不卡视频| 免费观看的影片在线观看| 国产一级毛片在线| 国产伦理片在线播放av一区| 男女啪啪激烈高潮av片| 色吧在线观看| 午夜福利视频1000在线观看| av在线app专区| 欧美老熟妇乱子伦牲交| 大话2 男鬼变身卡| 久久久精品94久久精品| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 高清午夜精品一区二区三区| 99久久精品热视频| 2021少妇久久久久久久久久久| 丝瓜视频免费看黄片| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 嫩草影院精品99| 国产 精品1| 久久久久久久亚洲中文字幕| 欧美三级亚洲精品| 亚洲av免费在线观看| 久久国内精品自在自线图片| 欧美潮喷喷水| freevideosex欧美| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 欧美激情在线99| 香蕉精品网在线| 国产探花极品一区二区| 亚洲伊人久久精品综合| 禁无遮挡网站| 国产欧美亚洲国产| 亚洲国产av新网站| 精品久久久精品久久久| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看| 少妇人妻 视频| 国产片特级美女逼逼视频| 高清视频免费观看一区二区| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 亚洲国产精品999| 久久99精品国语久久久| 亚洲av电影在线观看一区二区三区 | av在线天堂中文字幕| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 国产亚洲5aaaaa淫片| 久久国产乱子免费精品| 国产免费一区二区三区四区乱码| 国产久久久一区二区三区| h日本视频在线播放| 精品久久久久久久久亚洲| 超碰av人人做人人爽久久| 99热6这里只有精品| 免费人成在线观看视频色| 国产av码专区亚洲av| 国产一区亚洲一区在线观看| 99久国产av精品国产电影| 国产大屁股一区二区在线视频| 久久久久久久久久人人人人人人| 亚洲国产av新网站| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 边亲边吃奶的免费视频| 午夜亚洲福利在线播放| 在线亚洲精品国产二区图片欧美 | av在线亚洲专区| 日韩av在线免费看完整版不卡| 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 国产毛片a区久久久久| 男女下面进入的视频免费午夜| 在线观看免费高清a一片| 熟妇人妻不卡中文字幕| 国产高清不卡午夜福利| 亚洲av免费在线观看| 男插女下体视频免费在线播放| 国产大屁股一区二区在线视频| 日韩电影二区| 久久99蜜桃精品久久| 国内精品宾馆在线| 国产精品国产av在线观看| 亚洲真实伦在线观看| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 三级国产精品欧美在线观看| 亚洲精品国产成人久久av| 欧美3d第一页| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 国产精品99久久99久久久不卡 | 国产欧美日韩一区二区三区在线 | 久热这里只有精品99| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 看黄色毛片网站| 久久99精品国语久久久| 色播亚洲综合网| 极品少妇高潮喷水抽搐| 三级国产精品欧美在线观看| 亚洲av一区综合| 午夜精品国产一区二区电影 | 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 成人午夜精彩视频在线观看| 国产一区亚洲一区在线观看| av在线老鸭窝| 精品一区二区免费观看| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 最新中文字幕久久久久| 亚洲欧洲国产日韩| 嘟嘟电影网在线观看| 午夜日本视频在线| 国产 精品1| 免费大片黄手机在线观看| 插逼视频在线观看| 久久久久久国产a免费观看| 久久精品国产亚洲网站| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91 | 乱码一卡2卡4卡精品| 国产成人精品久久久久久| a级毛片免费高清观看在线播放| 麻豆精品久久久久久蜜桃| 少妇人妻精品综合一区二区| 97在线人人人人妻| 久久精品人妻少妇| 91久久精品国产一区二区成人| 亚洲图色成人| 日韩av不卡免费在线播放| 综合色丁香网| 欧美97在线视频| 久久99精品国语久久久| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 亚洲精品视频女| 一二三四中文在线观看免费高清| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 日韩欧美 国产精品| 深爱激情五月婷婷| 国产精品久久久久久久久免| 日本熟妇午夜| 国产精品一及| 久久人人爽人人片av| 国产黄片美女视频| 97在线视频观看| 欧美 日韩 精品 国产| 白带黄色成豆腐渣| 欧美精品国产亚洲| 99热这里只有是精品在线观看| 欧美最新免费一区二区三区| 国产精品三级大全| 最近2019中文字幕mv第一页| 看免费成人av毛片| 麻豆国产97在线/欧美| 国产精品伦人一区二区| 高清午夜精品一区二区三区| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 国产高潮美女av| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 婷婷色av中文字幕| 欧美人与善性xxx| 综合色av麻豆| 久久久久网色| kizo精华| 亚洲av福利一区| 亚洲精品456在线播放app| 九九在线视频观看精品| 亚洲av一区综合| 久久久久久久亚洲中文字幕| 日本午夜av视频| 一区二区三区乱码不卡18| 免费看不卡的av| 日韩中字成人| 亚洲精品国产av成人精品| 国产在线男女| 亚洲伊人久久精品综合| 99热这里只有是精品在线观看| 人体艺术视频欧美日本| 搡老乐熟女国产| 国产 一区 欧美 日韩| 免费高清在线观看视频在线观看| 久久午夜福利片| 日韩在线高清观看一区二区三区| 国产成人免费观看mmmm| 久久久久性生活片| 熟女电影av网| 色视频在线一区二区三区| 午夜精品一区二区三区免费看| av免费观看日本| 简卡轻食公司| 欧美最新免费一区二区三区| 18禁在线播放成人免费| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站 | 国产成人91sexporn| 51国产日韩欧美| 久久久久久久久久成人| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 熟女电影av网| 国产免费视频播放在线视频| 亚洲无线观看免费| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影小说 | 岛国毛片在线播放| 夫妻午夜视频| 亚洲精品国产色婷婷电影| 亚洲久久久久久中文字幕| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 久久久久久久久大av| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 人人妻人人看人人澡| 欧美一区二区亚洲| 看十八女毛片水多多多| 男插女下体视频免费在线播放| 亚洲av日韩在线播放| 亚洲成人久久爱视频| 日产精品乱码卡一卡2卡三| 啦啦啦啦在线视频资源| 视频区图区小说| 久久精品国产a三级三级三级| 精品一区二区免费观看| 精品一区二区三卡| 听说在线观看完整版免费高清| 99re6热这里在线精品视频| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 久久韩国三级中文字幕| 九九在线视频观看精品| 乱系列少妇在线播放| 免费高清在线观看视频在线观看| 欧美极品一区二区三区四区| 国产成人91sexporn| 亚洲av成人精品一区久久| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 最近中文字幕高清免费大全6| 一个人看的www免费观看视频| 亚洲国产最新在线播放| 在线看a的网站| 久久久久国产精品人妻一区二区| 日韩,欧美,国产一区二区三区| 69人妻影院| 波野结衣二区三区在线| 精品一区二区三区视频在线| 国产黄频视频在线观看| 晚上一个人看的免费电影| 久久99热这里只有精品18| 国产成人精品一,二区| 精品久久久久久久久av| 中文资源天堂在线| 综合色av麻豆| 女人久久www免费人成看片| 欧美成人一区二区免费高清观看| 身体一侧抽搐| 韩国av在线不卡| 五月伊人婷婷丁香| 男女那种视频在线观看| 噜噜噜噜噜久久久久久91| 欧美人与善性xxx| 欧美成人a在线观看| 日本黄大片高清| 最近2019中文字幕mv第一页| 欧美日韩精品成人综合77777| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 国产欧美亚洲国产| 2021少妇久久久久久久久久久| 亚洲精品自拍成人| 国产91av在线免费观看| xxx大片免费视频| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 欧美三级亚洲精品| 99热这里只有是精品在线观看| 男女下面进入的视频免费午夜| 男女那种视频在线观看| 中国国产av一级| 亚洲色图av天堂| 在现免费观看毛片| 街头女战士在线观看网站| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 亚洲无线观看免费| 能在线免费看毛片的网站| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 免费av毛片视频| 99久久精品一区二区三区| 久久久久久久精品精品| 亚洲国产高清在线一区二区三| 少妇人妻精品综合一区二区| 日韩不卡一区二区三区视频在线| 欧美一级a爱片免费观看看| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 亚洲一区二区三区欧美精品 | 亚洲欧美成人综合另类久久久| av在线老鸭窝| 欧美一区二区亚洲| 搞女人的毛片| 国内精品宾馆在线| 精品人妻视频免费看| 久久精品国产亚洲av天美| 自拍欧美九色日韩亚洲蝌蚪91 | 国产伦精品一区二区三区四那| 亚洲精品久久午夜乱码| 永久网站在线| 免费看日本二区| 爱豆传媒免费全集在线观看| 日韩在线高清观看一区二区三区| 大片免费播放器 马上看| 国产免费一级a男人的天堂| 国产精品一二三区在线看| 亚洲伊人久久精品综合| 国产精品人妻久久久久久| 性插视频无遮挡在线免费观看| 成人毛片a级毛片在线播放| 免费看av在线观看网站| 亚洲av免费在线观看| av在线亚洲专区| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕| 伊人久久国产一区二区| 欧美另类一区| 夫妻性生交免费视频一级片| 国产美女午夜福利| 亚洲欧美成人综合另类久久久| 国产欧美日韩精品一区二区| 国产成人免费无遮挡视频| 中文天堂在线官网| 免费黄网站久久成人精品| 麻豆国产97在线/欧美| 少妇高潮的动态图| 国产美女午夜福利| 精品久久久久久电影网| 亚洲精华国产精华液的使用体验| 能在线免费看毛片的网站| 2022亚洲国产成人精品| 老师上课跳d突然被开到最大视频| 我要看日韩黄色一级片| 国产熟女欧美一区二区| 国产乱来视频区| 国产精品一及| 高清视频免费观看一区二区| 久久久久九九精品影院| 日产精品乱码卡一卡2卡三| 中文字幕人妻熟人妻熟丝袜美| 久久影院123| 成人亚洲欧美一区二区av| 日韩一区二区三区影片| 丰满人妻一区二区三区视频av| 97超碰精品成人国产| 欧美xxxx黑人xx丫x性爽| 日韩av在线免费看完整版不卡| 内地一区二区视频在线| 夫妻午夜视频| 成人亚洲欧美一区二区av| 99热6这里只有精品| 国内揄拍国产精品人妻在线| 成人欧美大片| 国产成人免费无遮挡视频| 男女边摸边吃奶| 丝瓜视频免费看黄片| 亚洲最大成人av| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 一级毛片 在线播放| 日韩成人伦理影院| 亚洲综合精品二区| 男女边摸边吃奶| 狠狠精品人妻久久久久久综合| 亚洲一级一片aⅴ在线观看| 亚洲在久久综合| 久久久色成人| eeuss影院久久| 小蜜桃在线观看免费完整版高清| 日韩欧美精品免费久久| 国产精品无大码| 在线观看一区二区三区激情| 欧美zozozo另类| 久久热精品热| 国产在线一区二区三区精| 美女xxoo啪啪120秒动态图| 国产成人精品久久久久久| 欧美极品一区二区三区四区| 亚洲精品国产色婷婷电影| 夜夜看夜夜爽夜夜摸| 国产精品蜜桃在线观看| 国产黄a三级三级三级人| 成年版毛片免费区| a级毛色黄片| 欧美精品国产亚洲| 人人妻人人澡人人爽人人夜夜| 韩国高清视频一区二区三区| 啦啦啦在线观看免费高清www| h日本视频在线播放| 人妻系列 视频| 国产亚洲91精品色在线| 国产毛片a区久久久久| 亚洲精品成人av观看孕妇| 爱豆传媒免费全集在线观看| 大香蕉久久网| 国产精品国产三级国产专区5o| 五月玫瑰六月丁香| h日本视频在线播放| 久久精品久久久久久久性| 亚洲av福利一区| 免费av不卡在线播放| 超碰97精品在线观看| 大片电影免费在线观看免费| 夫妻性生交免费视频一级片| 婷婷色av中文字幕| 国产一区二区亚洲精品在线观看| 在线天堂最新版资源| 成人亚洲精品av一区二区| 青春草亚洲视频在线观看|