• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries

    2021-02-23 09:07:44LiyingShenYongLiSwagataRoyXiupingYinWenboLiuShanshanShiXuanWangXueminYinJiujunZhangYufengZhao
    Chinese Chemical Letters 2021年11期

    Liying Shen,Yong Li,Swagata Roy,Xiuping Yin,Wenbo Liu,Shanshan Shi,Xuan Wang,Xuemin Yin,Jiujun Zhang,Yufeng Zhao

    College of Sciences & Institute for Sustainable Energy,Shanghai University,Shanghai 200444,China

    ABSTRACT Na3V2(PO4)3 is a very prospective sodium-ion batteries(SIBs)electrode material owing to its NASICON structure and high reversible capacity.Conversely,on account of its intrinsic poor electronic conductivity,Na3V2(PO4)3 electrode materials confront with some significant limitations like poor cycle and rate performance which inhibit their practical applications in the energy fields.Herein,a simple two-step method has been implemented for the successful preparation of carbon-coated Na3V2(PO4)3 materials.As synthesized sample shows a remarkable electrochemical performance of 124.1mAh/g at 0.1 C(1 C=117.6 mA/g),retaining 78.5mAh/g under a high rate of 200 C and a long cycle-performance(retaining 80.7mAh/g even after 10000 cycles at 20 C),outperforming the most advanced cathode materials as reported in literatures.

    Keywords:Sodium-ion batteries NASICON Na3V2(PO4)3 Cathode Carbon-coated

    Nowadays,extremely large effort has been concentrated on various types of batteries to store energy[1–4].Sodium-ion batteries(SIBs)have attracted enormous interest of researchers in the field of energy storage systems for the rich abundant element storage in the earth shell,the similar physical and chemical properties to lithium and its low cost[5–11].Layered oxides and polyanionic compounds have been investigated as SIBs cathode materials for several years[12–17].Guoet al.[18]first designed a new hybrid Li/Na ion battery composed of high-energy and lithium-free Na3V2(PO4)2O2F(NVPOF)cathode and commercial graphite anode mesophase carbon microbeads,which shows a high specific capacity of 112.7mAh/g.Hence,Zhaoet al.[19]has reported the temperature adaptability of NVPOF as SIBs cathode material,which demonstrates an excellent electrochemical performance with a wide temperature range from -25°C to 55°C.Wanget al.[20]prepared Na3+xV2(PO4)3-x(SiO4)xmaterials by substituting PO43-with isostructural SiO44-that greatly stabilizes the Na3+xV2(PO4)3-x(SiO4)xlattice structure and effectively improves the Na+intercalation/extraction performance.In these cathode materials,Na3V2(PO4)3(NVP)with a sodium-ion superior structure has been used sodium-ion cathode materials because of its high voltage platform(~3.4 Vvs.Na/Na+),good thermal stability and appropriate theoretical energy density[12,21].Although NVP exhibits a high ionic conductivity,the electronic conductivity is poor because the orbital energy gap between O 2p and V 3d is too large for electron transitions[22].These drawbacks result in a low power density,low energy density,poor cyclic and rate performance of the SIBs.

    During those years,numerous researches have been carried out for the promotion of the electronic conductivity of NVP electrode material,and carbon coating has been ascertained as an effective method for the improvement of the conductivity of NVP[23–25].Jianet al.[26]first reported the carbon-coated NVP as SIBs electrode material with solid-state reaction method where carboncoated NVP displayed a significant improvement in the Na storage performance.Pure NVP electrode was also explored in a full symmetric battery by Plashnitsaet al.[27],but it was not very remarkable in the electrochemical performance.Sadanet al.[28]improved the electrochemical performance of NVP electrode materials by matching appropriate electrolytes.In ether electrolyte,NVP electrode material shows an outstanding electrochemical performance and proves that DME electrolyte can effectively modifies the interface,which can realize the rapid kinetics of NVP half-cell and full-cell.Xionget al.[29]through a facile polymer stabilized droplet template strategy to synthesize porous single crystal structured NVP.The porous single crystal structure shortens the ion diffusion distance and provides a larger electrodeelectrolyte contact area,which greatly promotes rapid ion transmission.Duanet al.[30]synthesized NVP/C nanocomposites which showed an excellent electrochemical performance compared with bare NVP sample and another NVP/C samples.The initial capacity of NVP/C nanocomposites is 94.9mAh/g almost no capacity decay after 700 cycles at a current density of 5 C.The layered porous NVP/C microspheres assembled from interconnected nanosheets prepared by Caoet al.[31]are used in sodiumion half-cell.The NVP/C microspheres show an exceptional rate capability(99.3mAh/g at 100 C)and outstanding cycle stability(79.1%capacity after 10,000that 20 C).Those examples confirmed that the suitable electrolyte and carbon layer are important approaches to enhance SIBs storage performance of NVP electrode materials.The various studies have reported that carbon-coated NVP electrode materials can successfully enhance electrochemical performance of SIBs.However,the impact of different carbon content on the electrochemical performance has been accurately explored in the only few articles.

    Herein,we have reported a facile two-step synthesis strategy for the preparation of carbon-coated NVP.In addition,the influence of varied proportions of carbon-coating on NVP and their impact on its electrochemical performance has been elaborately discussed.The NVP/C-10% nanocomposite behaves an outstanding rate property,ultralong lifespan,outperforming the pure NVP,NVP/C-5%,NVP/C-7.5%,NVP/C-12.5% and NVP/C-15% samples.Specifically,a superior discharge specific capacity is 80.7mAh/g after 10000 cycles at 20 C.Its reversible discharge capacity still remains 78.5mAh/g at 200 C.NVP/C-10%exhibits attractive longtime capacity retention of 83.9% at 20 C after 10000 cycles.This facile two-step synthesis method is expected to promote the application of NVP/C composites in large-scale production.

    All chemical reagents are of analytical grade without further purification including Na2CO3(99.8%),NH4VO3(≥99.0%),glycolic acid(≥99.0%),NH4H2PO4(≥99.0%)and glucose.Briefly,NVP were preparedviasimple sol-gel approach.7.5 mmol Na2CO3and 10.0 mmol NH4VO3were dissolved in 30mL deionized water and then continuously stirred at 80°C for 30 min.Subsequently,add 10 mmol glycolic acid to the previous solution and continuously stirred about 10 min.Then,15 mmol NH4H2PO4was mixed with the solution and kept under stirring at 80°C.A gel was form at 80°C after the complete evaporation of the deionized water.Finally,the synthesized precursor was dried overnight in drying oven at 80°C.The NVP materials were procured by annealing the NVP precursor at 800°C for 10 h inargon/hydrogen(Ar/H2=95/5,v/v)atmosphere at the rate of 2°C/min in tube furnace.

    Na3V2(PO4)3,coated with different amounts of carbon(NVP/C),were synthesized using a facile approach from the following mass ratios of pure NVP and glucose(95:5,92.5:7.5,90:10,87.5:12.5 and 85:15,w/w).Dissolve the mixture in distilled water and stir continuously for 2 h.The solvent was evaporated by placing the mixture at 80°C in a dust-free oven.Dried materials were crushed into powder.Finally,the samples of NVP/C-5%(95:5,w/w),NVP/C-7.5%(92.5:7.5,w/w),NVP/C-10%(90:10,w/w),NVP/C-12.5%(87.5:12.5,w/w)and NVP/C-15%(85:15,w/w)were obtainedviaannealing at 650°C for 4 h with Ar/H2(95%:5%)atmosphere at a ramping rate of 5°C/min.

    The X-ray diffraction(XRD,Germany D8 Advance)ranged from 10°to 80°with Cu-Kα radiation(k=1.54056 ?)is identified to all NVP samples and Raman spectroscopy were performed with Lab Ram HRUV Raman spectrometer having a 532 nm laser source.Scanning electron microscopy(SEM,SU8010)was inspected the morphology and microstructure of all NVP electrode materials.Transmission electron microscopy(TEM)was applied to examine carbon coating thicknessviaa JEM-2100 F operating at 200 kV.The composition of NVP/C-10%powder was determined by EDX(JEOL,JEM-2100 F)measurements.Thermo-gravimetric analyzer(TGA,NETZSCH STA 409 PC)was used to obtain the weight fractions of carbon coating layer by heating NVP and NVP/C powders in air with a range of 50~600°C and the ramping rate was 3°C/min.And X-ray photoelectron spectroscopy(XPS)system(PHI-QUANTERA-IISXM)was used for determine the valence state of NVP electrode materials surface.

    The NVP samples were testedviaassembling a standard CR2032 cells in glove box with the Ar-filled and investigated on LAND CT2001A.The as-obtained pure NVP,NVP/C-5%,NVP/C-7.5%,NVP/C-10%,NVP/C-12.5%and NVP/C-15% cathodes consist of 75 wt%of NVP material,15 wt% of super P and 10 wt% of polyvinylidene fluoride(PVDF).The mass loading of NVP samples were 1~2 mg/cm2.1 mol/L NaClO4in EC/PC(EC/PC=1:1,w/w)with 5% addition of FEC was used as electrolyte.The constant current charge/discharge measurements of all samples were investigated at 2.3–3.9 V for cathode at different current densities.

    Cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS)measurements(100 kHz to 10 mHz)of CR2032 coin-type cells were tested on CHI 660E electrochemical workstation with the potential range of 2.3–3.9 V.The CR2032 coin-type cells were charged for 30 min in the same voltage window at 0.15 C and then relaxed for 2 h for the galvanostatic intermittent titration technique(GITT)measurement.

    The step-by-step schematic of material synthesis has been shown in Fig.1.For study the structural evolution of NVP,the XRD diffraction patterns of all NVP materials are displayed in Fig.2.It is obvious that all diffraction peaks of these powder samples can be matched well with the NASICON structured NVP(JCPDS No.053-0018)and an R-3c space group(rhombohedral structure).Intensities of the diffraction peaks are strong and sharp,indicating that the synthesized materials possess high degree of crystallinity.Without diffraction peaks of carbon were found in those samples.

    The SEM images reveal the pure NVP structure in Fig.3a with several agglomerations in comparison to the NVP/C-10%sample in Fig.3b.The morphology and microstructure of NVP/C-5%,NVP/C-7.5%,NVP/C-12.5% and NVP/C-15% samples are depicted by the SEM images in Fig.S1(Supporting information).Accordingly,the morphology of NVP/C-10% materials is irregular and the particle size is approximately 617 nm(by surveying 30 NVP nanoparticles using Nano-Measure software,inset Fig.3b).This method has also been reported[32,33].However,the NVP nanoparticles provide a larger specific surface area and contribute to a rapid transfer of sodium ions and electrons in the charge/discharge process.As revealed from the SEM images,only NVP-10%sample comprises of nanoparticles that are uniformly dispersed with no agglomeration of large particles.However,pure NVP and other NVP samples with different carbon content can be observed with some degree of particle agglomeration,which were caused by the inhomogeneous distribution of carbon on the NVP material surface.TEM was further exploited to discuss the morphology of NVP/C-10%sample(c.f.Fig.3c).Figs.3d and e present high-resolution TEM(HRTEM)images demonstrate that NVP/C-10% electrode material is well covered by the uniform amorphous carbon layer,which can also be clearly observed on the surface of NVP/C-10% material.And the thickness of the carbon layer is about 13.3 nm(using Nano-Measure software measure).It is noteworthy that carbon-coated layer provides a rapid transmission of electrons and ions throughout the NVP electrode material due to their higher electrical conductivity.The D-spacing of NVP/C-10% materials are about 0.43 nm and 0.37 nm,corresponding to(110)and(113)lattice planes of the NVP(Fig.3e).EDX mappings demonstrate that all the elements(Na,V,P,O,C)are uniformly scattered in NVP/C-10% materials,which are shown in Fig.3f.

    Fig.1.The synthesis process of NVP electrode materials with different carbon content.

    Fig.2.(a)XRD patterns of all NVP samples.

    Fig.3.Morphological characterizations of NVP and NVP/C-10%.(a,b)SEM images of pure NVP sample and NVP/C-10%sample.(c–e)TEM and HRTEM images of NVP/C-10%.(f)EDX mapping patterns of NVP/C-10%.

    Raman scattering spectra confirm the presence of carbon in NVP and NVP/C-10%electrode materials(Fig.4a).The spectrum is divided into three characteristic bands to emphasize the main spectral characteristics.The vibration mode of PO43-ion corresponds to the area of 1000~1100 cm-1[34,35].Two characteristic bands located around at 1350 cm-1and 1600 cm-1can be attributed to D-band(disordered carbon)and G-band(graphitic carbon)of carbon.The ratioID/IGis indicative of the degree of carbonization[36,37].Besides,the peak intensity ratio of D-band and G-band(ID/IG)values of NVP and NVP/C-10% are 0.998 and 0.96,respectively.It indicates that carbon coating layer on NVP/C-10% have high degree of graphitization and a better conductivity[38].For accurately proving the purity of the coated carbon layer,XPS measurements was performed to reveal the valence states of elements in NVP/C-10%materials(Figs.4b–f).The survey scan XPS spectrum shows that there are Na 1s,P 2s,P 2p,V 2s,V 2p,O 1s,C 1s and without binding energy peak of other elements(Fig.4b).The P 2p peak is shown in Fig.4c with a binding energy of 133.2 eV.The fitted C1s spectrum(c.f.Fig.4d)shows four types of carbon located at 284.6,285.7,286.6 and 287.8 eV.The peak belongs to the C--C bond used to correct the peaks,and the binding energy is 284.6 eV.The other peaks at higher energies of 285.7,286.6 and 287.8 eV can be ascribed to the groups of C--O,C=O and O--C=O,respectively[39].And the V 2p spectra for NVP/C-10% sample appears two peaks located at 516.9 eV and 524.2 eV ascribed to V3+in NVP[40,41]along with the Na 1s peak are displayed in Fig.4f with a binding energy of 1071.2 eV.

    Fig.4.(a)Raman spectroscopies of NVP/C-10%.(b)Survey XPS results of NVP/C-10%sample,(c)P 2p,(d)C 1s,(e)V 2p,(f)Na 1s.

    TGA analyses was carried out to investigate the weight fractions of carbon coating layer for pure NVP and NVP/C-10% materials.Fig.5a displays the TGA results,indicating that the weight fractions of pure NVP and NVP/C-10% materials are 0.9553 wt% and 2.098 wt%,respectively.Na+diffusion coefficients of NVP/C-10%sample is evaluated at different scanning rates.Fig.5b displays CV curves of NVP/C-10%sample within 2.3–3.9 V and the redox peaks in curves are related to the redox couple of V3+/V4+.In all those curves,it can be clearly observed that all anodic peaks gradually move to a higher potential with the increases of scan rate,whereas all cathodic peaks move to a lower potential.This phenomenon occurs due to high polarization at high scan rates[42].

    To further investigate the kinetics of those NVP samples,EIS was employed.Fig.5c shows the Nyquist plots of pure NVP and carbon-coated NVP samples,where each plot is composed of a depressed semicircle part and a straight-line part.And the arc represents charge transfer resistance(Rct).Among those NVP electrodes,the fittedRctvalues of NVP/C-10% are apparently smaller indicating greater electrical conductivity.The Na+diffusion coefficients of all NVP samples are measured by GITT,as displayed in Fig.S2(Supporting information).The formula for calculation of Na+diffusion coefficient(DG)is given by

    Fig.5.(a)Thermogravimetric curves of pure NVP electrode material and NVP/C-10%material.(b)CV curves under the working voltage of2.3–3.9 V at different scan rates.(c)Electrochemical impedance spectroscopies of all NVP samples and the inset image show the equivalent circuit.(d)Cycle performance of NVP-10%material at 0.1 C for 120 cycles.(e)Comparison of the different rate capabilities of all NVP samples.(f)Rate performances of NVP/C-10%materials:from 2 C to 200 C.(g)Cycling performance of all NVP samples at 20 C for 10000 cycles.

    WhereMBis molecular weight,VMis molar volume,andmBis the mass of NVP samples.τ andSare the time of applying a galvanostatic current and active surface area of the electrode,ΔEτ and ΔEsare the steady-state(equilibrium)potential and change of battery voltageEduring the current pulse,respectively.In all samples,the prepared electrode material of NVP/C-10% has the best Na-migration kinetics,in which theDGvalues are about of 10-12-10-11cm2/s.Notably,calculatedDGvalues of NVP/C-10%are higher than other NVP samples,which further confirm that the carbon-coated layer on NASICON-type NVP effectively facilitates Na+transport kinetics.

    The electrochemical behavior of all NVP samples as cathodes in the half-cell system was studied for SIBs under the working voltage of 2.3–3.9 V.It should be noted that the initial charge/discharge curves of the sample,i.e.,NVP/C-10%,was obtained at 0.1 C(Fig.5d).As observed,two discharge voltage plateaus are located at 3.3 V and 3.4 V respectively.The 3.3 V plateau may be related to the sodium metal surface,which has also been observed before[29,43].NVP/C-10% sample shows an eminent discharge capacity of 124.1mAh/g during the first cycle,which exceeds the theoretical capacity of NVP.After 120 cycles,the reversible capacity of NVP/C-10% is found to be 117.9mAh/g with the capacity retention rate about 95%,demonstrating that NVP/C-10%has a highly reversible insertion/extraction of Na+.It is worth mentioning that the coulombic efficiency(CE)of NVP/C-10%material in SIBs can almost reach99.6% during the whole cycling process.Such outstanding electrochemical performances of this composite cathode is because of the apt and uniform carbon layer on NVP surface which accelerates the electrochemical kinetics in SIBs.

    The rate performance of all NVP samples were compared in Fig.5e and Fig.S3(Supporting information).Among all the samples,NVP/C-10% exhibits excellent rate performance at charge-discharge rates of 0.5,1,2,5,10,20 and 50 C,respectively.The capacity retention of NVP/C-10% at different C-rates is higher than other NVP samples.To further investigate NVP/C-10%sample at a higher rate,the electrochemical performance of NVP/C-10% was tested from 2 C to 200 C as shown in Fig.5f.The reversible capacities obtained for NVP/C-10%were 111.2,107.8,103.7,97.2,95,93.3,91.3,85.8 and 78.5mAh/g at 2 C,5 C,10 C,20 C,30 C,40 C,50 C,100 C and 200 C,respectively.Noticeably,NVP/C-10% sample with the best rate performance was capable of delivering a promising reversible capacity of 78.5mAh/g even at 200 C.So as to prove the excellent cycle stability of NVP/C-10%,a long cycle measurement was carried out at 20 C(Fig.5g).Impressively,NVP/C-10% delivered an outstanding discharge capacity of 80.7mAh/g even after 10000 cycles at 20 C,corresponding to a capacity retention about83.9%with only 0.155%capacity loss per cycle.However,pure NVP,NVP/C-5%,NVP/C-7.5%,NVP/C-12.5% and NVP/C-15% samples deliver a lower discharge capacity of 68.3,41,56.3,71.4 and 67.6mAh/g after 10000 cycles,respectively.Moreover,the CE of the NVP/C-10%nearly reached100%,demonstrating high electrical conductivity and super-reversible insertion/extraction of sodium-ion during electrochemical reaction process.The excellent cycling performance of NVP-10% can also be attributed to the uniform and suitable coating of carbon on NVP electrode material surface,leading to high diffusion kinetics in NVP material with faster electronic and ionic transport.

    According to above results,the prepared NVP/C-10% sample showed considerably excellent sodium storage performance.Compared to the previously reported NVP/C composite materials,especially NVP/C composite materials using conventional sources,the NVP/C-10%in this paper has a competitive advantage in mass production(Table S1 in Supporting information).Thus,the facile synthesis strategy of NVP/C proved to be a feasible method for practical applications.

    In conclusion,we have testified that sodium storage performance of NVP electrodes can be improved through apposite surface engineering(coated with the suitable carbon layer on NVP electrode material surface).Carbon layers of different thickness have different electrochemical effects on NVP electrode materials.The obtained NVP/C-10% showed a brilliant rate capability(78.5mAh/g at a rate of 200 C as SIB electrode material)and long cycling life(80.7mAh/g at 20 C after 10000 cycles).The remarkable cycle performance and rate performance of NVP/C-10%materials can be attributed to the appropriate carbon layer on NVP material surface,improved electronic conductivity and alleviated volume changes.Therefore,a carbon layer with a uniform and suitable thickness on NVP electrode materials makes it a potential candidate with an outstanding cycle lifespan and excellent rate performance.

    Declaration ofcompeting interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank the financial supports from the National Natural Science Foundation of China(No.51774251),Shanghai Science and Technology Commission’s “2020 Science and Technology Innovation Action Plan”(No.20511104003),Hebei Natural Science Foundation for Distinguished Young Scholars(No.B2017203313),Hundred Excellent Innovative Talents Support Program in Hebei Province(No.SLRC2017057),Talent Engineering Training Funds of Hebei Province(No.A201802001),and the Opening Project of the State Key Laboratory of Advanced Chemical Power Sources(No.SKL-ACPS-C-11).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in theonlineversion,atdoi:https://doi.org/10.1016/j.cclet.2021.03.005.

    成年动漫av网址| 亚洲视频免费观看视频| 日韩伦理黄色片| 亚洲精品第二区| 大陆偷拍与自拍| 亚洲色图综合在线观看| 1024香蕉在线观看| 国产精品欧美亚洲77777| 99久久人妻综合| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| 国产免费现黄频在线看| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 午夜久久久在线观看| 日韩视频在线欧美| 成人国语在线视频| 国产在线一区二区三区精| 赤兔流量卡办理| 精品国产一区二区久久| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| 丝袜脚勾引网站| 男女免费视频国产| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 久久韩国三级中文字幕| www.av在线官网国产| 观看美女的网站| 国产成人一区二区在线| 久久热在线av| 国产精品国产av在线观看| 操美女的视频在线观看| 欧美成人精品欧美一级黄| 日韩av在线免费看完整版不卡| a 毛片基地| 精品福利永久在线观看| 国产 精品1| 日韩一本色道免费dvd| 亚洲色图综合在线观看| 国产又色又爽无遮挡免| 亚洲欧美色中文字幕在线| 80岁老熟妇乱子伦牲交| 韩国精品一区二区三区| www日本在线高清视频| 中国国产av一级| 别揉我奶头~嗯~啊~动态视频 | 少妇精品久久久久久久| www.精华液| 免费在线观看完整版高清| 亚洲精品av麻豆狂野| 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 1024视频免费在线观看| 婷婷色av中文字幕| 不卡av一区二区三区| 国产片特级美女逼逼视频| 人人澡人人妻人| 七月丁香在线播放| 最新的欧美精品一区二区| 成人亚洲精品一区在线观看| 国产毛片在线视频| 99久久99久久久精品蜜桃| 日韩人妻精品一区2区三区| 国产成人欧美| 成年女人毛片免费观看观看9 | 日日啪夜夜爽| 国产精品欧美亚洲77777| 黄色视频不卡| av不卡在线播放| 汤姆久久久久久久影院中文字幕| 婷婷色av中文字幕| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产av新网站| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 少妇被粗大的猛进出69影院| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 国产免费视频播放在线视频| 超碰97精品在线观看| 熟女av电影| 99国产综合亚洲精品| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 妹子高潮喷水视频| 性少妇av在线| 久热这里只有精品99| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 亚洲三区欧美一区| 色综合欧美亚洲国产小说| 色视频在线一区二区三区| 咕卡用的链子| 婷婷成人精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 大话2 男鬼变身卡| 晚上一个人看的免费电影| 大码成人一级视频| 欧美黑人欧美精品刺激| 一级毛片我不卡| 汤姆久久久久久久影院中文字幕| 亚洲av成人不卡在线观看播放网 | 久久精品国产综合久久久| 视频在线观看一区二区三区| av线在线观看网站| 欧美另类一区| 国产免费现黄频在线看| 在线免费观看不下载黄p国产| 99精品久久久久人妻精品| avwww免费| 美女福利国产在线| 一级,二级,三级黄色视频| 日韩制服丝袜自拍偷拍| 夫妻午夜视频| 90打野战视频偷拍视频| 亚洲欧美日韩另类电影网站| 亚洲国产av影院在线观看| 赤兔流量卡办理| 最近手机中文字幕大全| 两性夫妻黄色片| 一区福利在线观看| 毛片一级片免费看久久久久| 久久av网站| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 蜜桃在线观看..| 欧美日韩福利视频一区二区| 国产成人精品无人区| 精品人妻熟女毛片av久久网站| 午夜福利乱码中文字幕| 国产xxxxx性猛交| 人妻 亚洲 视频| 在线观看免费视频网站a站| 搡老岳熟女国产| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| 叶爱在线成人免费视频播放| 亚洲精品,欧美精品| 精品视频人人做人人爽| 一本大道久久a久久精品| 99热国产这里只有精品6| 91精品三级在线观看| 侵犯人妻中文字幕一二三四区| 一级毛片 在线播放| 日韩熟女老妇一区二区性免费视频| 亚洲成人一二三区av| 制服人妻中文乱码| 99九九在线精品视频| 国产精品99久久99久久久不卡 | 最黄视频免费看| 亚洲国产精品一区三区| 国产精品免费视频内射| 国产免费又黄又爽又色| 久久国产精品男人的天堂亚洲| 97在线人人人人妻| 80岁老熟妇乱子伦牲交| 狠狠婷婷综合久久久久久88av| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 又粗又硬又长又爽又黄的视频| 精品久久蜜臀av无| 欧美日韩视频高清一区二区三区二| 母亲3免费完整高清在线观看| avwww免费| 黄网站色视频无遮挡免费观看| 人人澡人人妻人| 99香蕉大伊视频| 亚洲av电影在线进入| 九九爱精品视频在线观看| 久久韩国三级中文字幕| 国产精品秋霞免费鲁丝片| 亚洲成人av在线免费| 日韩电影二区| 亚洲av日韩在线播放| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 一边摸一边做爽爽视频免费| 侵犯人妻中文字幕一二三四区| 99热全是精品| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 久久久久久人人人人人| 咕卡用的链子| 夫妻午夜视频| av免费观看日本| 欧美日韩综合久久久久久| 男女无遮挡免费网站观看| 麻豆乱淫一区二区| 国产av国产精品国产| 日本wwww免费看| 国产成人精品久久二区二区91 | 亚洲在久久综合| 日日啪夜夜爽| 一边摸一边抽搐一进一出视频| 国产片内射在线| 哪个播放器可以免费观看大片| 看十八女毛片水多多多| 天天躁狠狠躁夜夜躁狠狠躁| 曰老女人黄片| 国产精品女同一区二区软件| 欧美日韩福利视频一区二区| 国产av精品麻豆| 一区二区日韩欧美中文字幕| 亚洲av综合色区一区| 中文字幕高清在线视频| 最近最新中文字幕免费大全7| 亚洲精品aⅴ在线观看| 人妻一区二区av| 亚洲av在线观看美女高潮| 国产精品熟女久久久久浪| 国产精品一区二区在线不卡| 精品国产一区二区三区久久久樱花| 中文字幕制服av| 2021少妇久久久久久久久久久| 亚洲av国产av综合av卡| 久久精品熟女亚洲av麻豆精品| 亚洲成人手机| 亚洲综合色网址| 欧美日韩成人在线一区二区| videosex国产| 青春草视频在线免费观看| 黄网站色视频无遮挡免费观看| 91精品伊人久久大香线蕉| 久久久久国产一级毛片高清牌| 亚洲精品日韩在线中文字幕| 老汉色av国产亚洲站长工具| 日本91视频免费播放| 一边摸一边做爽爽视频免费| 男男h啪啪无遮挡| 午夜久久久在线观看| 中文字幕人妻熟女乱码| 你懂的网址亚洲精品在线观看| 一区二区日韩欧美中文字幕| 狠狠精品人妻久久久久久综合| 国产精品久久久久成人av| 国产精品熟女久久久久浪| 欧美97在线视频| 男女边摸边吃奶| 久久久久人妻精品一区果冻| 精品久久久久久电影网| 日韩一本色道免费dvd| 国产在线视频一区二区| 新久久久久国产一级毛片| 日韩 亚洲 欧美在线| 一二三四中文在线观看免费高清| xxx大片免费视频| 中文欧美无线码| 香蕉丝袜av| 欧美黄色片欧美黄色片| 新久久久久国产一级毛片| 久久人人爽人人片av| 日韩免费高清中文字幕av| 亚洲情色 制服丝袜| 最近最新中文字幕免费大全7| 国产黄频视频在线观看| 精品国产露脸久久av麻豆| 亚洲,欧美,日韩| 久久狼人影院| 伊人久久国产一区二区| 国产日韩欧美视频二区| 欧美日韩国产mv在线观看视频| 丰满迷人的少妇在线观看| 一本色道久久久久久精品综合| 欧美精品一区二区免费开放| 男女之事视频高清在线观看 | 国产1区2区3区精品| 国产亚洲午夜精品一区二区久久| 免费在线观看黄色视频的| 亚洲一区二区三区欧美精品| 天天添夜夜摸| 国产在线视频一区二区| 80岁老熟妇乱子伦牲交| tube8黄色片| 亚洲精品国产av蜜桃| 一二三四在线观看免费中文在| 亚洲综合精品二区| 一区二区三区四区激情视频| 国产人伦9x9x在线观看| 亚洲国产欧美在线一区| 亚洲美女视频黄频| 美国免费a级毛片| 中文字幕亚洲精品专区| 亚洲第一av免费看| 看免费成人av毛片| 亚洲一码二码三码区别大吗| 看非洲黑人一级黄片| 伦理电影免费视频| 狂野欧美激情性xxxx| av片东京热男人的天堂| 精品国产乱码久久久久久小说| 久久精品亚洲av国产电影网| 亚洲一区二区三区欧美精品| 纵有疾风起免费观看全集完整版| 一级毛片黄色毛片免费观看视频| 黄色一级大片看看| 久久精品国产亚洲av涩爱| 欧美变态另类bdsm刘玥| 精品视频人人做人人爽| 国产精品久久久av美女十八| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 婷婷色综合www| 晚上一个人看的免费电影| 日韩一区二区视频免费看| 19禁男女啪啪无遮挡网站| 视频在线观看一区二区三区| 国产女主播在线喷水免费视频网站| 午夜福利一区二区在线看| 热99久久久久精品小说推荐| 久热这里只有精品99| 国产午夜精品一二区理论片| 久久毛片免费看一区二区三区| 午夜免费观看性视频| 人妻 亚洲 视频| 热99久久久久精品小说推荐| kizo精华| 久久av网站| 老汉色av国产亚洲站长工具| 欧美日本中文国产一区发布| 十八禁网站网址无遮挡| 国产一区二区三区综合在线观看| 啦啦啦 在线观看视频| 看免费成人av毛片| videosex国产| 欧美日韩亚洲综合一区二区三区_| 欧美激情高清一区二区三区 | 久久影院123| 亚洲精品久久午夜乱码| 久久 成人 亚洲| 久久精品国产综合久久久| 亚洲欧美一区二区三区久久| 99九九在线精品视频| 无限看片的www在线观看| 五月天丁香电影| 侵犯人妻中文字幕一二三四区| 黄网站色视频无遮挡免费观看| 超碰97精品在线观看| 国产精品蜜桃在线观看| 黄色一级大片看看| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久男人| 亚洲第一区二区三区不卡| 香蕉丝袜av| 在线看a的网站| 美女大奶头黄色视频| a级毛片在线看网站| 伊人亚洲综合成人网| 男女边摸边吃奶| 国产精品国产三级专区第一集| 超色免费av| 91aial.com中文字幕在线观看| 日本色播在线视频| 国产欧美日韩综合在线一区二区| 日韩不卡一区二区三区视频在线| 国产国语露脸激情在线看| 性少妇av在线| 最新在线观看一区二区三区 | 国产精品久久久久久久久免| 久久久久久人人人人人| 亚洲国产精品国产精品| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 亚洲欧美成人精品一区二区| 一本一本久久a久久精品综合妖精| 亚洲,欧美,日韩| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久男人| 国产成人精品久久久久久| 女性被躁到高潮视频| 国产一区亚洲一区在线观看| 成人三级做爰电影| 亚洲国产精品一区三区| av在线播放精品| 一区二区三区乱码不卡18| 中文乱码字字幕精品一区二区三区| 九色亚洲精品在线播放| 妹子高潮喷水视频| 999久久久国产精品视频| 国产精品麻豆人妻色哟哟久久| 日本欧美视频一区| 宅男免费午夜| 伦理电影大哥的女人| 99精国产麻豆久久婷婷| 日韩av不卡免费在线播放| 欧美人与性动交α欧美精品济南到| 十分钟在线观看高清视频www| 久久久久精品国产欧美久久久 | 99香蕉大伊视频| 亚洲综合色网址| 亚洲精品av麻豆狂野| 老司机在亚洲福利影院| 国产精品蜜桃在线观看| 美女中出高潮动态图| 日本黄色日本黄色录像| 欧美xxⅹ黑人| 69精品国产乱码久久久| av又黄又爽大尺度在线免费看| 天堂8中文在线网| 高清欧美精品videossex| 免费看av在线观看网站| 亚洲国产毛片av蜜桃av| 午夜福利,免费看| 天堂中文最新版在线下载| 久久性视频一级片| 中文精品一卡2卡3卡4更新| 最近中文字幕高清免费大全6| 五月天丁香电影| 熟妇人妻不卡中文字幕| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| 十分钟在线观看高清视频www| 久久久久久久久免费视频了| 又黄又粗又硬又大视频| 飞空精品影院首页| 久久久精品免费免费高清| 91国产中文字幕| 国产成人免费无遮挡视频| 免费黄频网站在线观看国产| 男女下面插进去视频免费观看| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美视频二区| 国产在线视频一区二区| 国产成人91sexporn| 免费黄色在线免费观看| 美女午夜性视频免费| 大陆偷拍与自拍| 99热国产这里只有精品6| 成人漫画全彩无遮挡| 下体分泌物呈黄色| av在线老鸭窝| videosex国产| 一区在线观看完整版| 欧美精品av麻豆av| 曰老女人黄片| 搡老岳熟女国产| 国产av码专区亚洲av| 国产国语露脸激情在线看| 精品少妇久久久久久888优播| 亚洲欧美日韩另类电影网站| 男人添女人高潮全过程视频| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 青春草视频在线免费观看| 亚洲av福利一区| 一级爰片在线观看| 男女午夜视频在线观看| 制服诱惑二区| 免费看av在线观看网站| 国产精品偷伦视频观看了| 两性夫妻黄色片| 亚洲天堂av无毛| 国产精品一二三区在线看| 亚洲精品aⅴ在线观看| 一本大道久久a久久精品| 黄色视频不卡| 精品第一国产精品| 青春草视频在线免费观看| 亚洲成国产人片在线观看| 丝袜在线中文字幕| 最新的欧美精品一区二区| 久热爱精品视频在线9| 国产精品 国内视频| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 亚洲av中文av极速乱| av女优亚洲男人天堂| 亚洲成人av在线免费| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 精品国产露脸久久av麻豆| av卡一久久| 午夜福利免费观看在线| 精品国产国语对白av| 夫妻性生交免费视频一级片| 国产成人a∨麻豆精品| 亚洲av日韩精品久久久久久密 | 欧美日韩亚洲综合一区二区三区_| 高清欧美精品videossex| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 老司机影院成人| 另类亚洲欧美激情| 亚洲国产av新网站| 伊人久久国产一区二区| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 日韩一卡2卡3卡4卡2021年| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆 | 极品人妻少妇av视频| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| svipshipincom国产片| 搡老岳熟女国产| 久久久久视频综合| 国产成人系列免费观看| 最近最新中文字幕免费大全7| 国产又爽黄色视频| 国产精品人妻久久久影院| 国产日韩欧美亚洲二区| 日韩中文字幕视频在线看片| 欧美在线黄色| 日韩av免费高清视频| 在线观看一区二区三区激情| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 亚洲成人免费av在线播放| 精品午夜福利在线看| 久久狼人影院| www.熟女人妻精品国产| 人妻一区二区av| 高清不卡的av网站| 亚洲精品美女久久久久99蜜臀 | 国产成人a∨麻豆精品| 99精国产麻豆久久婷婷| 高清欧美精品videossex| 欧美xxⅹ黑人| 国产精品熟女久久久久浪| a级毛片在线看网站| 韩国高清视频一区二区三区| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 午夜老司机福利片| 国产乱人偷精品视频| 少妇的丰满在线观看| 日韩精品免费视频一区二区三区| 欧美国产精品一级二级三级| 亚洲国产精品999| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 国产成人精品在线电影| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 亚洲五月色婷婷综合| 成人黄色视频免费在线看| 国产欧美日韩一区二区三区在线| 午夜老司机福利片| 亚洲成人免费av在线播放| 国产精品免费大片| 精品国产一区二区三区四区第35| bbb黄色大片| 久久精品久久久久久久性| 汤姆久久久久久久影院中文字幕| 亚洲av综合色区一区| 精品久久久久久电影网| 亚洲第一av免费看| 国产成人啪精品午夜网站| 亚洲精品一区蜜桃| 大香蕉久久成人网| av电影中文网址| 国产精品 国内视频| 国产精品熟女久久久久浪| 国产高清不卡午夜福利| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 亚洲精品日本国产第一区| 国产伦人伦偷精品视频| 天天躁日日躁夜夜躁夜夜| 制服丝袜香蕉在线| 一级a爱视频在线免费观看| 麻豆av在线久日| 少妇 在线观看| 两性夫妻黄色片| 老熟女久久久| 久久久久国产一级毛片高清牌| 一区福利在线观看| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 少妇猛男粗大的猛烈进出视频| 人体艺术视频欧美日本| 五月天丁香电影| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 99久久精品国产亚洲精品| tube8黄色片| 男女高潮啪啪啪动态图| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 男女免费视频国产| 国产日韩欧美视频二区| 日韩不卡一区二区三区视频在线| 久久久国产欧美日韩av| 多毛熟女@视频| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 成人毛片60女人毛片免费| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 波多野结衣av一区二区av| 免费av中文字幕在线| 人妻 亚洲 视频| 亚洲 欧美一区二区三区| 国产av码专区亚洲av| 97精品久久久久久久久久精品| 婷婷色综合大香蕉| tube8黄色片| 中国国产av一级| 波野结衣二区三区在线| 下体分泌物呈黄色| 欧美日韩视频精品一区|