• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexible lithium metal capacitors enabled by an in situ prepared gel polymer electrolyte

    2021-02-23 09:06:58QizhiZhongBoLiuBingjunYngYliLiJunshuiLiXinginYn
    Chinese Chemical Letters 2021年11期

    Qizhi Zhong,Bo Liu,Bingjun Yng,Yli Li,*,Junshui Li,*,Xingin Yn,*

    a Key Laboratoy of Special Function Materials & Structure Design of the Ministry of Education,and School of Materials & Energy,Lanzhou University,Lanzhou 730000,China

    b Laboratory of Clean Energy Chemistry and Materials,State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    ABSTRACT The rapid development of next-generation flexible electronics stimulates the growing demand for flexible and wearable power sources with high energy density.Li metal capacitor(LMC),combining with a Li metal anode and an activated carbon cathode,exhibits extremely high energy density and high power density due to the unique energy storage mechanism,thus showing great potential for powering wearable electronic devices.Herein,a flexible LMC based on an in situ prepared PETEA-based gel polymer electrolyte(GPE)was reported for the first time.Owing to the high ionic conductivity of PETEA-based GPE(5.75×10-3 S/cm at 20°C),the assembled flexible LMC delivers a high capacitance of 210 F/g at 0.1 A/g within the voltage range from 1.5 V to 4.3 V vs.Li/Li+,a high energy density of 474 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.More importantly,PETEA-based GPE endows the LMC with excellent flexibility and safety,which could work normally under abuse tests,such as bending,nail penetration and cutting.The in situ prepared PETEA-based GPE simplifies the fabrication process,avoids the risk of leakage and inhibits the growth of Li dendrite,making LMC a promising flexible energy storage device for the flexible electronic field.

    Keywords:Lithium metal capacitor In situ prepared gel polymer electrolyte Flexible Energy density Power density

    With the increasing demand for electric devices,developing a safe and flexible energy storage and conversion system with high energy density has become the focus of attention[1–4].In recent years,lithium-ion capacitors(LICs)have attracted great attention because they simultaneously inherit the advantage of Lithium-ion batteries(LIBs)with high energy density and the merit of supercapacitors with excellent power characteristic[5,6].Most of the current research focuses on neutralizing the positive and negative reaction kinetics and improving the energy density of the deviceviadeveloping dynamics-led battery-type anodes and highperformance capacitive cathodes[7–10].Even so,the energy density of LICs is much lower than that of LIBs.Very recently,a lithium metal capacitor(LMC)was reported to solve these problems by combining a lithium metal anode and a threedimensional scaffold activated carbon(3D-SAC)cathode with high surface area and wide pore size distribution in LiPF6/(EC/DEC)electrolyte.In this combination,Li metal anode exhibits extremely high theoretical specific capacitance(3860 mAh/g),low reduction potential(-3.040 Vvs.SHE)and improved reaction kinetics between the electrodes[11–13],therefore greatly broadening the voltage window and increasing the capacitance of LMC.Meanwhile,the use of Li metal anode induces the multiple EDLC mechanism of 3D-SAC,which remarkably increases the capacitance and energy density of LMC.Besides,the rapid plating/stripping of Li+occurring on the surface of the lithium metal anode eliminates the kinetic difference between the anode and cathode of LMC.The appearance of LMC further improves the energy density of LICs,showing great potential in powering electronic devices.

    Although LMC exhibits excellent electrochemical performance,the use of liquid electrolytes causes potential safety hazards,hindering the practical application of LMC in electronic devices[14–18].In LMCs and LIBs,volatile and flammable organic carbonate electrolytes are usually combined with porous polyolefin separators.There is a risk of leakage in abusive environments since the separators cannot fix electrolyte molecules in the matrix[19].Gel polymer electrolytes(GPEs),owing to their high ionic conductivity and good security,have proven to be the best choice for flexible LIBs,such as a 3D cross-linked network GPE throughinsitupolymerization MMA and ETPTA monomers on PAN nanofibers[20]and an efficient GPE composed of PVDF-HFP,LiFSI:Pyr13FSI and a Li-MMT clay[21].The polymer matrix in GPEs immobilizes electrolyte molecules,reducing their reactivity with Li metal and electrolyte consumption[22].The flexibility of the GPEs exhibits good contact with the electrode and provides energy storage devices with great flexibility and adjustable shapes[23–25].More importantly,the elasticity of GPE can withstand the volume change of Li anode and inhibit the growth of lithium dendrites[11].Among numerous GPEs,in situprepared GPEs have attracted more and more attention due to their high ionic conductivity and simple preparation process[26–30].Luet al.crafted a high-performance flexible polymer Li-S batteryviaanin situprepared PETEA-based GPE[31].The Li-S battery exhibited a low electrode/GPE resistance,high rate capacity and improved capacity retention,which are ascribed to the extremely high ionic conductivity,the immobilization of soluble polysulfides and the construction of a robust integrated GPE/electrode interface.The results show that PETEAbased GPE is a promising electrolyte to develop flexible LMC.

    Herein,we reported a flexible LMC based on anin situprepared PETEA-based GPE for the first time.The GPE is composed of pentaerythritol tetraacrylate(PETEA),azodiisobutryronitrile(AIBN)and liquid electrolyte(1 mol/L lithium hexafluorophosphate(LiPF6)salt in a non-aqueous mixture of ethylene carbonate(EC)/diethyl carbonate(DEC)(1:1,v/v)).PETEA-based GPE is formed by the free radical polymerization of PETEA induced by AIBN in the presence of liquid electrolytes.PETEA-based GPE had an extremely high ionic conductivity of 5.75×10-3S/cm at room temperature and good contact with electrodes,which endowed the flexible LMC with a high capacitance of 210 F/g at 0.1 A/g within the voltage range from 1.5 V to 4.3 Vvs.Li/Li+,a high energy density of 474.4 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.The elasticity of GPE is beneficial to tolerate the volume change of Li metal anode and suppress the lithium dendrite growth,thus improving the cycling stability of the LMC.Our results show that the PETEA-based GPE enabled LMC to work normally under abuse tests,such as bending,nail penetration and cutting.The LMC with PETEA-based GPE is expected to be a promising flexible energy storage device for practical application.

    Aquasi-solid LMC composed of a Li metal anode and a threedimensional scaffold activated carbon(3D-SAC)cathode was assembled to verify the feasibility of PETEA-based GPE in LMC.Here,the 3D-SAC was chosen due to its large specific surface and wide pore size distribution,which is considered as an excellent capacitive cathode in metal ions capacitor[32].The as-prepared 3D-SAC showed a typical amorphous characteristic,which could be proved from the XRD pattern(Fig.S1 in Supporting information).The scanning electron microscope(SEM)and transmission electron microscope(TEM)images reflect the three-dimensional porous framework structure of 3D-SAC with a large number of mesopores(Fig.S2 in Supporting information).The nitrogen adsorption/desorption isotherm of 3D-SAC shows its porous structure dominated by micropores(Fig.S3a in Supporting information).The pore size distribution curve shows that the pore size of 3D-SAC is mainly distributed in 1-6 nm(Fig.S3b in Supporting information).A large number of micropores endow 3D-SAC with a high surface area of 2584 m3/g.The high specific surface area and micropore-dominated pore size distribution of 3D-SAC endow the LMC with excellent electrochemical performance.

    Thein situformation of PETEA-based GPE and the assembly of the quasi-solid LMC are schematically illustrated in Fig.1a.The fine mixture of azodiisobutyronitrile(AIBN),pentaerythritol tetraacrylate(PETEA)and LiPF6/(EC/DEC)as a precursor solution was heated at 60°C.As shown in Fig.1b,AIBN in the solution decomposed and opened the C=C bonds of PETEA,leading to the continuous growth of polymer chains and the formation of GPE[33].We chose 3 wt% as the concentration of PETEA because the GPE with 3 wt% PETEA showed both high ionic conductivity and good gelling ability,as shown in Fig.S4(Supporting information).A coin cell composed of Li metal anode,3D-SAC cathode and separator injected with the precursor solution was heated to obtain the quasi solid LMC for evaluating the performance of LMC.The optical images of the obtained PETEA-based GPE are shown in Fig.1c.Compared with the transparent and flowable precursor solution,the GPE became a white solid after heating,indicating the polymerization of PETEA monomers.

    Fig.1.(a)Schematic illustration of the in situ formation of PETEA-based GPE and assembly of the quasi-solid LMC.(b)The formation mechanism of PETEA-based GPE.(c)Optical images of the precursor solution and GPE.

    We further evaluated the ionic conductivity of PETEA-based GPEviathe EIS impedance in a stainless symmetrical coin cell,as shown in Fig.2a.The ionic conductivity was calculated according to the equation[34]:

    and the results are shown in Fig.S5(Supporting information).The temperature-dependent ionic conductivity curve of PETEA-based GPE is shown in Fig.2b.The results indicated that with the increase of temperature,the internal impedance of PETEA-based GPE decreased,along with the improvement of its ionic conductivity.The PETEA-based GPE exhibited a high ionic conductivity of 3.11 mS/cm at 0°C and 13.46 mS/cm at 80°C.It is worth noting that even at 80°C,thein situprepared GPE remained solid without melting,indicating its good thermal stability.To investigate the electrochemical stability of the PETEA-based GPE,we tested the linear sweep voltammograms(LSV)of liquid electrolyte(LiPF6in EC/DEC)and PETEA-based GPE as shown in Fig.2c.It shows that the PETEA-based GPE could remain stable even at 4.4 V compared with the 4.25 V decomposition voltage of the liquid electrolyte,indicating that the GPE network inhibit the decomposition of liquid electrolyte.A Li-Li symmetrical cell was assembled to verify the stability of PETEA-based GPE with Li metal anode.It can be seen in Fig.2d that the Li-Li symmetrical cell with PETEA-based GPE showed a more stable polarization voltage curve compared with liquid electrolyte,indicating its good stability with Li metal anode.With high ionic conductivity,great electrochemical and excellent stability with Li metal anode,the PETEA-based GPE proves to be a promising electrolyte candidate for LMC.

    Fig.2.(a)Impedance plots of a stainless steel symmetrical cell with PETEA-based GPE at the temperature range from 0 °C to 80 °C.(b)The temperature-dependent ionic conductivity curve of PETEA-based GPE.(c)Linear sweep voltammograms of PETEA-based GPE and liquid electrolyte at the scan rate of 1 mV/s.(d)Polarization voltage curves of Li-Li symmetrical cells with liquid electrolyte and PETEA-based GPE at the current density of 1 mA/cm2 with the capacity of 1mAh/cm2.

    A coin cell was assembled to verify the feasibility of PETEAbased GPE in LMC.As shown in Figs.3a and b,the assembled LMC exhibited nearly rectangular cyclic voltammetry(CV)curves at different scan rates from 5 mV/s to 100 mV/s and triangular galvanostatic charge-discharge(GCD)curves at different current densities from 1 A/g to 10 A/g,indicating its approximately capacitive energy storage mechanism.The specific capacitances at different current densities were calculated according to the GCD curves,and the results are shown in Fig.3c.The assembled LMC exhibited a high capacitance of 230 F/g at 0.1 A/g and a capacitance of 72.5 F/g even at 10 A/g,showing its great rate performance.As shown in Fig.S6d(Supporting information),the LMC with GPE showed capacitance comparable with liquid electrolyte at low current densities.However,the capacitance difference of LMCs with two different electrolytes increased with the increase of current densities due to the limited ion transfer in the gel polymer network.The Ragone plots in Fig.3d show that the assembled LMC exhibited a high energy density of 513 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.More importantly,the LMC delivered a high energy density of 265 Wh/kg and a high power density at 14.5 kW/kg at 5 A/g,indicating a great combination of high energy density and high power density.

    We verified whether the charge storage mechanism of LMC in PETEA-based GPE was the same as that in liquid electrolyte according to the ideal electrical double layer model proposed by Kimet al.[35].In liquid electrolyte and PETEA-based GPE,there are two charge carriers involving solvated Li+cation clusters and PF6-anions which may move in the solvents.But different from liquid electrolytes,the solvents in PETEA-based GPE are fixed by the polymer network,which will limit the ions transportation in GPE.As shown in Figs.3e and f,the assembled LMC exhibited rectangular CV curves in different voltage ranges from 1.5 V to 4.3 V and from 4.3 V to 1.5 V.The specific capacitances calculated from the CV curves are shown in Fig.3g.The capacitance in the higher voltage area is larger than that in the lower voltage area.As the voltage range increases,the capacitance gap between the opposite charging directions decreases and finally reaches the same value.The voltage dependence of specific capacitance reveals the complex charge storage mechanism of 3D-SAC.The size of Li+[EC]m[DEC]ncation clusters is much larger than PF6-,so it has a lower charge density than PF6-on per unit area,leading to the obvious capacitance hysteresis.This difference in size results in voltage-dependent charge storage behavior.As illustrated in Fig.3h,in the voltage range of 1.5-3 V,the charge is stored mainly through the adsorption/desorption of Li+[EC]m[DEC]n; in the voltage range of 3–4.3 V,the charge is stored mainly through the adsorption/desorption of PF6-.The results indicate that PF6-can move freely in the GPE,which is necessary for the GPE in LMC.

    To investigate the electrochemical stability of PETEA-based GPE in the long-term cycle,we tested the cycling performance of thequasi-solid LMC within the voltage range from 1.5 V to 4.3 V at different current densities.Fig.4a shows the cycling performance of LMC with GPE and liquid electrolyte at 1 A/g.The LMC with PETEA-based GPE delivered an initial capacitance of 160 mAh/g,close to the capacitance of that with liquid electrolyte.After 5000 cycles,the capacitance retention rate of LMC with PETEA-based GPE was 68%,which is far beyond that of liquid electrolyte(54%).The cycling performance of them at 2 A/g is shown in Fig.4b.LMC with GPE showed a capacity retention of 73% after 5000 cycles,while that of LMC with liquid electrolyte was only 68%.With nearly 100% coulomb efficiency and higher capacitance retention,thein situprepared PETEA-based GPE shows better cycling stability.

    Fig.3.(a)CV curves of LMC with PETEA-based GPE at the scan rate from 5 mV/s to 100 mV/s.(b)GCD curves of LMC with PETEA-based GPE at the current density from 1 A/g to 10 A/g.(c)Rate performance of LMC with PETEA-based GPE at various current densities.(d)Ragone plots of LMC with PETEA-based GPE at different current densities.(e)CV curves of LMC with PETEA-based GPE at the voltage range from 1.5 V to 4.3 V with an interval of 0.2 V at the scan rate of 10 mV/s.(f)CV curves of LMC with PETEA-based GPE at the voltage range from 4.3 V to 1.5 V with an interval of 0.1 V at the scan rate of 10 mV/s.(g)Specific capacitances of LMC with PETEA-based GPE in different voltage ranges.(h)The working mechanism of the LMC with PETEA-based GPE during charging.

    Fig.4.Cycling performance of LMC with liquid electrolyte and PETEA-based GPE electrolyte at(a)1 A/g and(b)2 A/g.(c)Surface SEM images and(d)cross-sectional SEM images of Li metal anode in liquid electrolyte after 3000 cycles at 1 A/g.(e)Surface SEM images and(f)cross-sectional SEM images of Li metal anode in PETEAbased GPE after 3000 cycles at 1 A/g.

    To explore the reason for the better cycling stability of PETEAbased GPE,we analyzed the morphology of Li metal anode after 3000 cycles at 1 A/g from the surface and cross-section SEM images in Figs.4c–f.During cycling,the uneven Li+deposition will induce the continuous growth of Li dendrite,which may puncture the SEI layer and the separator,leading to the short circuit of batteries[36].After 3000 cycles,the Li metal anode in liquid electrolyte exhibited large dendrites,which passivated Li metal anode and may cause safety hazards.By contrast,the surface of the Li metal anode in GPE was relatively flat and shows a complete structure.The results indicate that the PETEA-based GPE could inhibit the growth of Li dendrite and reduce the safety concerns.After 3000 cycles,the Li metal in liquid electrolyte showed a Li dendrite layer of more than 310 μm,while that of Li anode in PETEA-based GPE was 299 um.Since the Li dendrites near the substrate are easier to strip during cycling,part of the layer away from the substrate will lose its electrochemical activity and become“dead Li”,leading to the decay of capacitance.The Li metal in PETEA-based GPE showed a smaller increased thickness,which is responsible for its higher capacitance retention.Besides,the gel polymer network reduces the contact between Li metal and liquid electrolyte and inhibits the growth of Li dendrite,thus reducing the consumption of lithium metal and electrolytes due to SEI rupture/regeneration,which also contributes to the higher capacitance retention rate.The EIS impendence plots of LMC with PETEA-based GPE and liquid electrolyte were shown in Fig.S9(Supporting information).The contact resistance of LMC with GPE after 1000,2000,3000,4000 cycles were 6.9,8,10.2,12.3 Ω respectively,while that of LMC with liquid electrolyte after 1000,2000,3000,4000 cycles were 7,12,18.7,23.8 Ω respectively.The results show that compared with LMC with liquid electrolyte,the LMC with PETEA-based GPE exlibited a smaller contact resistence after the same number of cycles.It indicates that PETEA-based GPE has an effective inhibition on the “dead Li”,which is consistent with the SEM results above.

    To verify the application of the PETEA-based GPE in flexible devices,a flexible pouch LMC was assembled as shown in Fig.5a.As shown in Figs.5b–d,the flexible LMC showed rectangular CV curves at the scan rates from 5 mV/s to 100 mV/s and approximately triangular GCD curves at the current densities from 0.1 A/g to 10 A/g.It is shown in Fig.5e that the pouch LMC exhibited a good rate performance with a high specific capacitance of 210 F/g at 0.1 A/g and 85.4 F/g at 10 A/g.As shown in Fig.5f,the pouch LMC with PETEA-based GPE exhibited a high energy density of 474.4 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g calculated based on the mass of cathode active materials.After that,the flexibility of the pouch LMC with PETEA-based GPE was verified.As shown in Fig.5g,under different bending angles of 0°,45°,90°,135°and 180°,the LMC based on PETEA-based GPE showed nearly coincident CV curves,indicating that the LMC could normally work without being affected by shape changes.The safety of the pouch LMC was checked by nail penetration and cutting tests as shown in Fig.5h.The device could light a LED bulb after nail penetration and cutting in half,indicating its great safety.Also,the pouch LMC could power a small fan after bending,nail penetration and cutting(Video S1 in Supporting information),proving its great safety in practical application.

    In summary,a flexible and safe LMC was reported for the first time.Thein situprepared PETEA-based GPE exhibited a high ionic conductivity of 5.75×10-3S/cm at 20°C and good contact with electrodes,endowing the LMC with a high specific capacitance 210 F/g at 0.1 A/g within the voltage range from 1.5 V to 4.3 Vvs.Li/Li+,a high energy density of 474 Wh/kg at 0.1 A/g and a high power density of 29 kW/kg at 10 A/g.The elasticity of GPE helped tolerate the volume change of Li metal anode and suppress the lithium dendrite growth,thus improving the cycling stability of LMCs.The PETEA-based GPE enabled the LMC to work normally under abuse tests,such as bending,nail penetration and cutting.Besides,thein situformation of GPE simplifies the preparation process and facilitates large-scale preparation.The LMC with PETEA-based GPE is expected to be a promising flexible energy storage device for practical application.

    Fig.5.(a)Schematic illustration of the soft pouch LMC composing of Li metal anode,gel polymer electrolyte and 3D-SAC cathode.(b)CV curves of the device at different scan rates from 5 mV/s to 100 mV/s.(c,d)GCD curves of the device at the current densities from 0.1 A/g to 10 A/g.(e)Rate performance of the device at different current densities.(f)Ragone plots of the device at different current densities.(g)CV curves of the device at different bending angles of 0°,45°,90°,145°and 180°at 10 mV/s.(h)The device lighting up an LED bulb in abuse tests of nail penetration and cutting in half.

    Declaration of competing interest

    The authors declared that they have no conflicts of interest to this work.Authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

    Acknowledgments

    The authors greatly appreciate the financial support from the Natural Science Foundation of Gansu(No.20JR10RA611)and the Fundamental Research Funds for the Central Universities(Nos.Lzujbky-2017-178 and lzujbky-2017-181).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2021.03.069.

    亚洲va日本ⅴa欧美va伊人久久| 免费在线观看成人毛片| 老司机在亚洲福利影院| 亚洲av电影不卡..在线观看| 天天躁日日操中文字幕| 亚洲精品亚洲一区二区| 亚洲av二区三区四区| 搡老熟女国产l中国老女人| 国产激情欧美一区二区| 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 999久久久精品免费观看国产| 首页视频小说图片口味搜索| 在线观看免费午夜福利视频| 禁无遮挡网站| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区三区四区免费观看 | 日本与韩国留学比较| 淫妇啪啪啪对白视频| 国产成人影院久久av| 少妇的逼好多水| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 国产精品永久免费网站| a在线观看视频网站| 岛国视频午夜一区免费看| 12—13女人毛片做爰片一| 午夜精品一区二区三区免费看| 久99久视频精品免费| 国产一区二区亚洲精品在线观看| 精品国产超薄肉色丝袜足j| 成年免费大片在线观看| 欧美日韩乱码在线| 岛国在线观看网站| 高清毛片免费观看视频网站| 亚洲美女黄片视频| 熟女电影av网| 精品日产1卡2卡| 国产亚洲精品久久久com| 欧美乱妇无乱码| 午夜精品在线福利| 国产精华一区二区三区| 久久久久久久久久黄片| 91九色精品人成在线观看| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 中文字幕人妻丝袜一区二区| 亚洲男人的天堂狠狠| 亚洲人成伊人成综合网2020| e午夜精品久久久久久久| 免费看日本二区| 久久草成人影院| 亚洲一区高清亚洲精品| 51午夜福利影视在线观看| 亚洲av电影在线进入| 噜噜噜噜噜久久久久久91| 亚洲精品亚洲一区二区| av天堂中文字幕网| 久久国产精品影院| 在线a可以看的网站| 变态另类成人亚洲欧美熟女| 色老头精品视频在线观看| e午夜精品久久久久久久| 亚洲欧美日韩卡通动漫| 久久久成人免费电影| 日本黄色视频三级网站网址| 99热精品在线国产| 国产日本99.免费观看| 欧美激情在线99| 天堂动漫精品| 精品人妻1区二区| 岛国在线观看网站| 淫妇啪啪啪对白视频| 亚洲欧美激情综合另类| 91久久精品国产一区二区成人 | 亚洲国产精品999在线| 神马国产精品三级电影在线观看| 国产精品影院久久| 男女那种视频在线观看| av视频在线观看入口| 亚洲国产欧洲综合997久久,| 久久久久久久久大av| 99精品欧美一区二区三区四区| 国产免费av片在线观看野外av| 村上凉子中文字幕在线| 亚洲人成网站在线播放欧美日韩| 亚洲 欧美 日韩 在线 免费| 麻豆成人av在线观看| 国产成人a区在线观看| 观看免费一级毛片| 国产综合懂色| 成人午夜高清在线视频| 男女视频在线观看网站免费| 欧美xxxx黑人xx丫x性爽| 亚洲av第一区精品v没综合| 国产精品一区二区三区四区久久| 熟女电影av网| 内射极品少妇av片p| 搡老妇女老女人老熟妇| 在线观看美女被高潮喷水网站 | 精品国内亚洲2022精品成人| 中文字幕精品亚洲无线码一区| 操出白浆在线播放| 一区二区三区免费毛片| 久久久久九九精品影院| 女生性感内裤真人,穿戴方法视频| 国产日本99.免费观看| 国产综合精华液| 乱人视频在线观看| 国产精品久久视频播放| 午夜福利视频1000在线观看| 久久久久网色| 亚洲成人久久爱视频| 精品一区在线观看国产| 日韩制服骚丝袜av| av播播在线观看一区| 日韩伦理黄色片| 久久99热这里只有精品18| 麻豆久久精品国产亚洲av| 国产91av在线免费观看| 少妇熟女欧美另类| 亚洲四区av| av卡一久久| 青青草视频在线视频观看| 男女边吃奶边做爰视频| 国内揄拍国产精品人妻在线| 汤姆久久久久久久影院中文字幕 | 成人国产麻豆网| 午夜激情久久久久久久| 我要看日韩黄色一级片| 一本一本综合久久| 亚洲天堂国产精品一区在线| 久久精品熟女亚洲av麻豆精品 | 一个人看视频在线观看www免费| 国产欧美日韩精品一区二区| av黄色大香蕉| 日韩一区二区视频免费看| 国产精品久久久久久精品电影小说 | 欧美最新免费一区二区三区| 天天一区二区日本电影三级| 狠狠精品人妻久久久久久综合| 蜜桃亚洲精品一区二区三区| 亚洲天堂国产精品一区在线| 久久亚洲国产成人精品v| 日韩视频在线欧美| 日韩av不卡免费在线播放| 两个人的视频大全免费| 纵有疾风起免费观看全集完整版 | 国产午夜精品久久久久久一区二区三区| 国产亚洲5aaaaa淫片| 只有这里有精品99| 男女边摸边吃奶| 成人毛片60女人毛片免费| 岛国毛片在线播放| 亚洲国产日韩欧美精品在线观看| 伦理电影大哥的女人| 91久久精品国产一区二区三区| 99久久九九国产精品国产免费| 日日摸夜夜添夜夜添av毛片| 亚洲性久久影院| 国产人妻一区二区三区在| 亚洲内射少妇av| 日本色播在线视频| 久久国产乱子免费精品| 国产永久视频网站| 亚洲精品,欧美精品| 国内揄拍国产精品人妻在线| 又粗又硬又长又爽又黄的视频| 国产精品福利在线免费观看| 大香蕉久久网| 人妻一区二区av| 男女那种视频在线观看| 成人亚洲精品av一区二区| 熟女人妻精品中文字幕| av国产久精品久网站免费入址| 九九久久精品国产亚洲av麻豆| ponron亚洲| 午夜福利在线观看免费完整高清在| 亚洲国产高清在线一区二区三| 成年女人在线观看亚洲视频 | 免费观看a级毛片全部| 日韩人妻高清精品专区| 免费av毛片视频| 亚洲最大成人av| 亚洲熟妇中文字幕五十中出| 日本午夜av视频| 欧美三级亚洲精品| 蜜臀久久99精品久久宅男| 最新中文字幕久久久久| 男人舔女人下体高潮全视频| 午夜福利在线在线| 日本一本二区三区精品| 国产v大片淫在线免费观看| 熟妇人妻不卡中文字幕| 亚洲精品国产av蜜桃| 中文字幕免费在线视频6| 精品国内亚洲2022精品成人| 国产欧美日韩精品一区二区| 天堂影院成人在线观看| 国产淫语在线视频| 在线播放无遮挡| 国产又色又爽无遮挡免| 亚洲人成网站在线观看播放| 网址你懂的国产日韩在线| 亚洲激情五月婷婷啪啪| 亚洲伊人久久精品综合| 99久久中文字幕三级久久日本| 国产永久视频网站| 色5月婷婷丁香| 不卡视频在线观看欧美| 免费观看av网站的网址| 亚洲国产高清在线一区二区三| 99久久九九国产精品国产免费| 伊人久久国产一区二区| 中文字幕亚洲精品专区| 韩国高清视频一区二区三区| 99热全是精品| 三级毛片av免费| 韩国av在线不卡| 亚洲成人一二三区av| 一级爰片在线观看| 真实男女啪啪啪动态图| 丝瓜视频免费看黄片| 熟妇人妻不卡中文字幕| 成人漫画全彩无遮挡| 久久99精品国语久久久| 色5月婷婷丁香| 国产又色又爽无遮挡免| 18+在线观看网站| 免费av观看视频| 成人欧美大片| 精品一区二区三卡| 久久精品熟女亚洲av麻豆精品 | 成人一区二区视频在线观看| 日韩电影二区| 免费看不卡的av| 欧美激情国产日韩精品一区| 搞女人的毛片| 免费大片黄手机在线观看| 全区人妻精品视频| 国内少妇人妻偷人精品xxx网站| 亚洲av二区三区四区| 亚洲欧美一区二区三区黑人 | 六月丁香七月| 日本三级黄在线观看| 久久久久国产网址| 国产成人免费观看mmmm| 亚洲国产精品成人久久小说| 国产欧美日韩精品一区二区| 日韩人妻高清精品专区| 嫩草影院精品99| a级毛色黄片| 亚洲欧美日韩东京热| 日本色播在线视频| 日本免费a在线| 中文乱码字字幕精品一区二区三区 | 日日摸夜夜添夜夜爱| 少妇熟女欧美另类| 久久这里有精品视频免费| 国产一级毛片七仙女欲春2| 亚洲av成人精品一二三区| 久久久国产一区二区| 五月天丁香电影| 国产成人a区在线观看| av福利片在线观看| 亚洲精品色激情综合| 美女cb高潮喷水在线观看| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线 | 插阴视频在线观看视频| 久久久久性生活片| 国产探花在线观看一区二区| 91狼人影院| 肉色欧美久久久久久久蜜桃 | 精品人妻偷拍中文字幕| 亚洲精品成人久久久久久| 丰满人妻一区二区三区视频av| 69av精品久久久久久| 国产单亲对白刺激| 国产精品99久久久久久久久| 国产又色又爽无遮挡免| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 亚洲国产欧美人成| 最近手机中文字幕大全| 麻豆乱淫一区二区| 亚洲av成人精品一区久久| 99热6这里只有精品| 国产亚洲5aaaaa淫片| 草草在线视频免费看| 精品久久久久久久久亚洲| 亚洲成人中文字幕在线播放| 少妇人妻一区二区三区视频| 亚洲熟女精品中文字幕| 国产一区亚洲一区在线观看| 男女下面进入的视频免费午夜| 精品久久久久久久久亚洲| 久久99热这里只有精品18| 欧美精品国产亚洲| 免费观看a级毛片全部| 久久久久精品久久久久真实原创| 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 精品一区在线观看国产| 国产在视频线精品| 成人二区视频| 久久精品国产鲁丝片午夜精品| 免费少妇av软件| 九九在线视频观看精品| 亚洲欧美日韩东京热| 国产中年淑女户外野战色| 国产精品一二三区在线看| 亚洲天堂国产精品一区在线| 美女被艹到高潮喷水动态| 小蜜桃在线观看免费完整版高清| 一个人看的www免费观看视频| av网站免费在线观看视频 | 伊人久久国产一区二区| 国产男女超爽视频在线观看| 一个人免费在线观看电影| 青春草亚洲视频在线观看| 欧美精品国产亚洲| 亚洲自拍偷在线| 男女那种视频在线观看| 我的女老师完整版在线观看| 精华霜和精华液先用哪个| a级毛片免费高清观看在线播放| 99热网站在线观看| 久久久久久久久久黄片| 男女国产视频网站| 99久国产av精品国产电影| 久久久久网色| 极品教师在线视频| 一级毛片aaaaaa免费看小| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 三级国产精品欧美在线观看| 亚洲成人av在线免费| 亚洲电影在线观看av| 亚洲真实伦在线观看| av国产免费在线观看| 乱人视频在线观看| 人妻少妇偷人精品九色| 久热久热在线精品观看| 色尼玛亚洲综合影院| 97超碰精品成人国产| 国产午夜福利久久久久久| 97人妻精品一区二区三区麻豆| 久久精品综合一区二区三区| 69人妻影院| 99热全是精品| 亚洲在久久综合| 久久精品人妻少妇| 婷婷色综合大香蕉| 777米奇影视久久| 99九九线精品视频在线观看视频| 中国国产av一级| 91在线精品国自产拍蜜月| 日韩精品有码人妻一区| 欧美日韩在线观看h| 国产乱人视频| 午夜日本视频在线| 国产 一区精品| 久久精品国产自在天天线| 国产精品三级大全| or卡值多少钱| 久久久久网色| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 寂寞人妻少妇视频99o| 亚洲av日韩在线播放| 日韩强制内射视频| 国产精品熟女久久久久浪| 欧美丝袜亚洲另类| 国产在线一区二区三区精| 欧美高清成人免费视频www| 夜夜爽夜夜爽视频| 中文字幕亚洲精品专区| 亚洲图色成人| 亚洲精品中文字幕在线视频 | 国产免费视频播放在线视频 | 18禁动态无遮挡网站| 国产麻豆成人av免费视频| 高清欧美精品videossex| 日日摸夜夜添夜夜爱| 日本猛色少妇xxxxx猛交久久| 身体一侧抽搐| 午夜视频国产福利| 国产日韩欧美在线精品| 亚洲天堂国产精品一区在线| 最近手机中文字幕大全| 亚洲国产精品成人久久小说| 建设人人有责人人尽责人人享有的 | 丝袜美腿在线中文| 精品一区在线观看国产| 免费大片18禁| 亚洲精品国产成人久久av| 两个人视频免费观看高清| 亚洲av.av天堂| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 非洲黑人性xxxx精品又粗又长| 听说在线观看完整版免费高清| 久久午夜福利片| 一级黄片播放器| 青春草视频在线免费观看| 国产伦精品一区二区三区四那| 亚洲av不卡在线观看| 成人欧美大片| 晚上一个人看的免费电影| 午夜福利成人在线免费观看| 日本一本二区三区精品| 国产高潮美女av| 国产精品1区2区在线观看.| 国产黄色免费在线视频| 哪个播放器可以免费观看大片| 国产一区亚洲一区在线观看| 色综合站精品国产| 综合色丁香网| 插阴视频在线观看视频| 国产精品一区www在线观看| 最后的刺客免费高清国语| 免费看av在线观看网站| 久久久久久久亚洲中文字幕| 精品久久久久久久久久久久久| 老师上课跳d突然被开到最大视频| 十八禁国产超污无遮挡网站| 狠狠精品人妻久久久久久综合| 色视频www国产| 少妇熟女欧美另类| av在线亚洲专区| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲av涩爱| 伊人久久精品亚洲午夜| 婷婷色综合大香蕉| 性插视频无遮挡在线免费观看| 成年av动漫网址| 午夜免费观看性视频| 91午夜精品亚洲一区二区三区| 一级毛片aaaaaa免费看小| 国产精品麻豆人妻色哟哟久久 | 成年女人在线观看亚洲视频 | 日韩一区二区三区影片| 国产免费又黄又爽又色| 国内精品美女久久久久久| 亚洲av免费在线观看| 99久久精品国产国产毛片| 真实男女啪啪啪动态图| 国产成人精品久久久久久| 777米奇影视久久| 一区二区三区乱码不卡18| 精品国内亚洲2022精品成人| 国产午夜精品论理片| 99re6热这里在线精品视频| 久久久久久九九精品二区国产| 精品久久久久久电影网| 日韩av免费高清视频| 欧美性感艳星| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 白带黄色成豆腐渣| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| 色尼玛亚洲综合影院| 男女啪啪激烈高潮av片| 欧美日韩视频高清一区二区三区二| 美女高潮的动态| 国产av码专区亚洲av| 中文精品一卡2卡3卡4更新| 午夜福利视频1000在线观看| 欧美潮喷喷水| 纵有疾风起免费观看全集完整版 | 美女脱内裤让男人舔精品视频| 免费高清在线观看视频在线观看| 日本免费a在线| 干丝袜人妻中文字幕| 亚洲天堂国产精品一区在线| 男人狂女人下面高潮的视频| 亚洲欧美成人精品一区二区| 亚洲av日韩在线播放| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 久久久久久久国产电影| 白带黄色成豆腐渣| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 成人二区视频| 国产成人freesex在线| 91av网一区二区| 毛片一级片免费看久久久久| 午夜久久久久精精品| 两个人的视频大全免费| 精品久久国产蜜桃| 亚洲精品久久午夜乱码| 亚洲欧美日韩卡通动漫| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 国产综合懂色| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 成人二区视频| 永久免费av网站大全| 久久精品综合一区二区三区| 美女cb高潮喷水在线观看| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 国产成人福利小说| 99久国产av精品国产电影| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的 | av卡一久久| 免费在线观看成人毛片| 在线天堂最新版资源| 亚洲国产欧美在线一区| 能在线免费看毛片的网站| 亚洲人成网站高清观看| 午夜视频国产福利| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 91狼人影院| 免费播放大片免费观看视频在线观看| 日本免费a在线| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 国产av在哪里看| 欧美另类一区| 国产黄色视频一区二区在线观看| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 日韩一本色道免费dvd| 亚洲av免费在线观看| 校园人妻丝袜中文字幕| 久热久热在线精品观看| 女人久久www免费人成看片| 亚洲伊人久久精品综合| 国产黄色小视频在线观看| 中文字幕免费在线视频6| 日本熟妇午夜| 美女大奶头视频| 舔av片在线| 亚洲一区高清亚洲精品| 99久久九九国产精品国产免费| 日韩制服骚丝袜av| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 一夜夜www| 久久久久免费精品人妻一区二区| 日本午夜av视频| 久99久视频精品免费| 欧美三级亚洲精品| 综合色丁香网| 黄色欧美视频在线观看| 日韩欧美精品v在线| 国产成年人精品一区二区| 亚洲av免费高清在线观看| 免费看不卡的av| 99久久精品热视频| 亚洲精品影视一区二区三区av| 成人午夜精彩视频在线观看| 在线天堂最新版资源| 久久精品久久精品一区二区三区| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 国产高清国产精品国产三级 | 久久久久精品性色| 日本熟妇午夜| 国产黄色小视频在线观看| 一级毛片aaaaaa免费看小| 免费观看av网站的网址| 五月玫瑰六月丁香| 亚洲国产精品成人久久小说| 免费黄网站久久成人精品| 看非洲黑人一级黄片| 少妇的逼好多水| 美女内射精品一级片tv| 日韩亚洲欧美综合| 91狼人影院| 国产一区二区三区av在线| 日韩欧美三级三区| 插阴视频在线观看视频| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | 日本wwww免费看| 51国产日韩欧美| 欧美不卡视频在线免费观看| 91久久精品国产一区二区三区| 直男gayav资源| 自拍偷自拍亚洲精品老妇| 亚洲国产精品成人综合色| 日韩,欧美,国产一区二区三区| 97超视频在线观看视频| 特大巨黑吊av在线直播| 国产黄片美女视频| 毛片一级片免费看久久久久| 国产亚洲精品av在线| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 麻豆av噜噜一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产美女午夜福利| 国产精品麻豆人妻色哟哟久久 | 人体艺术视频欧美日本| 色哟哟·www| 嘟嘟电影网在线观看| 中文字幕av成人在线电影| 女人十人毛片免费观看3o分钟| 国产在线一区二区三区精|