• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A general strategy via photoelectrocatalytic oxygen reduction for generating singlet oxygen with carbon bridged carbon-nitride electrode

    2021-02-23 09:06:02QianqianYangZhiyuanFengMingyueLiuJinxingZhangHongyingZhaoGuohuaZhao
    Chinese Chemical Letters 2021年11期

    Qianqian Yang,Zhiyuan Feng,Mingyue Liu,Jinxing Zhang,Hongying Zhao,Guohua Zhao

    School of Chemical Science and Engineering,and Shanghai Key Lab of Chemical Assessment and Sustainability,Tongji University,Shanghai 200092,China

    ABSTRACT With the ever-growing demand of clean water for the healthy world,water purification has become an urgent global issue.Singlet oxygen(1O2)as unique non-radical derivative of oxygen,possessing unoccupied π* orbital and exhibiting high selectivity towards electron-rich organic pollutants.Nevertheless,most of the approaches suffer from low-efficiency or biotoxicity,which severely restrict their potential applications.Therefore,in this work,we propose a general strategy via photoelectrocatalytic for selectively reducing oxygen to 1O2 with designed carbon bridged carbon nitride(CBCN).This work highlights the important role of synergistic photo-electro-catalytic effect for selectively generating the 1O2 via oxygen reduction pathway,which can be a promising way especially for degrading electron-rich pollutants.

    Keywords:Oxygen reduction reaction Singlet oxygen Photoelectrocatalytic process Carbon-nitride Wastewater treatment

    In recent decades,the overload discharge of refractory organics leads to water pollution,which would be threatened the sustainable development of society[1–3].Meanwhile,the ever-growing demand on clean water has given rise to tremendous effort for developing environmentally friendly and efficient technologies for wastewater treatment.Singlet oxygen(1O2)is unique non-radical derivative of oxygen[4],possessing unoccupiedπ*orbital and exhibiting high selectivity towards to electron-rich organic pollutants such as medicine[5,6]and pathogenic microorganism[7].

    Greater recognition of the vital significance of1O2has motivated research for more effective1O2production[4].In general,1O2is producedviathe energy transfer from a series of photosensitizers including organic dyes,fullerene derivates,porphyrins,and semiconductor quantum dots to the triplet ground state of O2[8].Instead of the energy transfer,1O2can be generatedviathe oxidation of O2·-through removing the electrons in the antibondingπ*orbitals of O2·-in electrocatalytic and/or photocatalytic process[4,9].Nevertheless,most of the approaches suffer from such drawbacks as low quantum yield,poor selectivity,non-recyclability and biotoxicity,which severely restrict their potential applications.

    Photoelectrocatalytic(PE)activation of O2has emerged as a promising and green alternative way to efficiently produce reactive oxygen species(ROS),because it can overcome the energy barrier with a high solar energy conversion efficiency[10].In this process,O2is firstly reduced to O2·-through 1-electron reduction pathway,and then the generated O2·-would be simultaneously oxidized to1O2by photoinduced hole(hvb+)[4,9,11].The production efficiency of1O2in PE system is mainly determined by the selectivity of oxygen reduction and the oxidation ability of hvb+.Graphitic carbon nitride(g-C3N4,denoted as CN)has attracted attention due to their special optical features and environmental friendliness[12–15].It is a promising metal-free photocatalyst that can be widely used in environmental fields[16,17].Nonetheless,the photocatalytic efficiency of pure CN was relatively low.Although transition metal doped CN with variable chemical states and unoccupied orbitals appear to be more efficient to improve photocatalytic performance[18,19],the problem of metallic ion leaching remains a significant concern for practical applications[1].In contrast,doping non-metal elements,especially for self-doping of C atom,can not only expand the visible light absorption of CN,but also facilitate the charge transfer by forming delocalizedπbonds[13,20,21].However,most of the researches so far mainly focused on the direct oxidation of CN[21,22],few examples have paid attention to non-radical1O2generated from CN.Besides,the photoelectrocatalytic mechanism on how to selectively generate1O2by designing CN-derived electrodes remain elusive.

    Fig.1.Characterizations of catalysts.(a)Scheme illustration of CBCN.(b)XRD patterns of CBCN and CN.(c)XPS high-resolution C 1s spectra and(d)N 1s spectra.(e)Carbon K edge and(f)Nitrogen K edge XANES spectra of CBCN and CN.

    Herein,we turn our research interest to the rational design of CN-derived electrodes(CBCN),integrated with photocatalytic and electrocatalytic process,for selectively activating oxygen to1O2.The CBCN was modified by introducing delocalizedπbonds and cyano group simultaneously into CN framework through thermal polymerization method.As expected,the CBCN/PE system exhibits 100% removal efficiency for electron-rich pollutants such as bisphenol A(BPA)and acetaminophen(ACT).Moreover,CBCN/PE system with reliability and wide pH range toward the degradation process exhibits great practical application prospects in wastewater treatment field.

    As we known,creating large delocalizedπbonds in the framework of CN and introducing cyano group could improve the photocatalytic ability of pure CN[13,23,24].An environmental begin and facile strategy of adjusting polymerization of CN precursors was proposed to fabricate carbon bridged carbon nitride(CBCN)containingπbonds and cyano functional group.As expected,the delocalizedπbonds in CBCN was formed by substituting bridge N atom with C atom,and the cyano groups originated from the incomplete condensation of dicyandiamide(Fig.1a).The crystalline structure of CN and CBCN were probed by X-ray diffraction(XRD).Both CN and CBCN have two peaks at 27.5° and 13.0°(Fig.1b),corresponding to the interlayer stacking(002)and in-plane ordering of heptazine units(100)[25,26].The layer stacking peak of CBCN was positively shifted 0.3° due to the increased stacking density of conjugated layers[13].Besides,CBCN exhibited typical layered structure of g-C3N4with more pores on its surface,possibly due to formation of NH3and CO2during the incomplete thermal decomposition of ammonium citrate(Fig.S1 in Supporting information)[21].The specific surface area of CBCN was 15 m2/g,larger than that of CN(8 m2/g).Adsorption isotherms(Fig.S2 in Supporting information)and pore size distribution(Fig.S3 in Supporting information)indicated that CN and CBCN mainly contained mesopores.The pore volume of CBCN(0.090 cm3/g)compared to CN(0.047 cm3/g)also demonstrated the enhanced porosity of CBCN.Typical Fourier transform infrared(FTIR)bands of cyano groups(-C≡N)centered at 2177 cm-1was only obtained for CBCN(Fig.S4 in Supporting information)[24].Further information about the structure of the catalysts was explored by X-ray photoelectron spectroscopy(XPS)and X-ray absorption near edge structure(XANES)measurements.As exhibited in Fig.1c,the C 1s spectrum can be deconvolved into three peaks with binding energies of 288.1 eV,286.4 eV and 284.9 eV ascribed to C1(N=C-N2in the framework of CN),C2(C-NHxon the edges of heptazine units)and C3(C-C/C=C)[27,28].The peak area ratio for C3 and C1 was calculated to be 0.19 and 0.35 for CN and CBCN,respectively.Moreover,XPS N 1s spectrum of CBCN was separated into four peaks with binding energies of 398.6 eV,399.6 eV,401.1 eV and 404.6 eV ascribed to N1 in the heptazine units(sp2structure of C-N=C),N2(sp3bridging N of N-C3),N3(–NHx)and N4(π-π*excitations)(Fig.1d)[24].The peak area ratios of N2 and N1 was 0.54 and 0.42 respectively for CN and CBCN.These conclusions confirmed the replacement of bridging N with C after carbon doped[13,20].In addition,comparing to CN,N1,N2 peaks of CBCN shift to lower binding energy,which due to the existence cyano groups whose N 1s binding energy are intermediate between those of N1 and N2[21,23,24].These observations were further verified by the normalized N 1s and C 1s K edge XANES spectra.As revealed in Fig.1e,a decrease of N=C-N2as well as an increase of C-C/C=C and C-NHxfrom CN to CBCN was observed,which was consistent with the C 1s XPS results.Besides,as shown in Fig.1f,the C-N=C and N-C3 peaks of CBCN slightly shift to lower a binding energy and N-C3 showed weaker peak than CN.

    The valence band maximum(VBM)and conduction band minimum(CBM)of CN and CBCN could be calculated from bandgap energies and Mott–Schottky curves(Fig.S5 in Supporting information).As shown in Fig.2a,the conduction band potential of CBCN(-0.3 Vvs.SHE)suggested the photogenerated electron(ecb-)could reduce O2to produce O2·-(-0.16 Vvs.SHE)[29].Moreover,CBCN exhibited 0.45 V positive valence band potential than CN,indicating the stronger oxidation ability of photogenerated hole(hvb+)that can oxidize O2·-to produce1O2.In order to verify the catalytic mechanism for selectively generating1O2through photoelectrochemical reduction of O2,electron paramagnetic resonance(EPR)measurement was carried out for investigating the formation of active oxygen species(ROS)such as·OH,O2·-and1O2.Obviously,as shown in Fig.2b,the main ROS with CBCN in photoelectrocatalytic(PE)process was1O2.The EPR intensity of DMPO-·OH was relatively weak compared to TEMP-1O2.Almost no O2·-species were detected in PE process both for CBCN and CN,possibly due to that O2·-was simultaneously transferred to1O2[30].Besides,the EPR intensity of TEMP-1O2with CBCN was much stronger than CN,indicating the enhanced oxidation ability of hvb+by the substitution of N atoms with bridged C atoms and cyano group.The synergistic effect of photocatalytic- and electrocatalyticreduction of oxygen was summarized in Figs.2c and d.Interesting,the EPR intensity of TEMP-1O2in PE was almost 6–9 times higher than in sole electrocatalytic(E)and photocatalytic process(P)with CBCN.In PE system,O2was firstly reduced to O2·-by electrons(e-)from external circuit in E system and/or ecb-in P system through single electron pathway,and then hvb+oxidized O2·-to form1O2(Eq.1)[4,9].That is why the formation of1O2is more efficient in PE system.To further confirm the generation pathway of1O2in PE process,the ethylenediaminetetraacetic acid disodium salt(EDTA-2Na)and potassium dichromate(K2Cr2O7)were respectively used as scavengers of hvb+and ecb-(Fig.2c).The intensity of TEMP-1O2with CBCN almost remained the same after the addition of K2Cr2O7,indicating that ecb-had little effect in the formation of1O2.That is to say,the formation of O2·-in PE process was mainly contributed by e-from external circuit in E system.However,the1O2was obviously inhibited once using EDTA-2Na to capture hvb+.Note that,comparing to CBCN,hvb+had a less impact on the generation of1O2for CN(Fig.S7 in Supporting information).This observation indicated that the delocalizedπbonds and cyano groups in CBCN greatly favor the formation of1O2.In the sole E process,the generation of1O2was originated from the oxidation of O2·-with surface·OH(·OHsur),which acted as surface trapped holes(Eq.2)[9].The low generation efficiency of·OH in E system resulted in the weak intensity of TEMP-1O2.

    Fig.2.(a)Band structure alignments for CBCN and CN.(b)EPR spectra of 1O2,·OH and O2·- in PE process.(c)CBCN EPR spectra of 1O2 in different processes(PE,P,and E represent photoelectrocatalytic,photocatalytic and electrocatalytic process).The EDTA-2Na and K2Cr2O7 were quenching agent for hvb+ and ecb-,respectively.(d)CBCN EPR spectra of ·OH under different reaction conditions.

    The intensity of generated·OH in PE process was relatively stronger than in sole E and P systems for CBCN.The intensity of DMPO-·OH was almost vanished in the presence of K2Cr2O7in PE system,while remained the same with the addition of EDTA-2Na as the scavenger of hvb+.This phenomenon indicated that ecb-was active sites for reducing electrochemical generated H2O2to generate·OH radicals in PE process.In fact,H2O2was formedvia2-electron reduction pathway of oxygen reduction reaction(ORR).In P system,the adsorbed O2on the surface of the catalyst was reduced by ecb-to generate O2·-,then,O2·-react with H+and ecbto generate·OH(Eq.3)[9].Different with PE and P systems,in E process,almost no·OH was obtained,confirming that there are no active sites in CBCN for decomposing H2O2.

    The delocalizedπbonds and cyano group can change the electronic structure and modify the band gap of CN,thus increasing the light absorption ability and charge separation efficiency.As shown in Fig.3a,CBCN would adsorb more visible light than CN to generate more photogenerated electron-hole pairs.In addition,70 nm redshift in the adsorption edge was obtained for CBCN.According to the Tauc plots,as shown in Fig.3b,the band gaps of CBCN and CN can be obtained by the linear extrapolation of a straight line with the baseline[23].The band gaps of CBCN and CN were determined to be 2.30 and 2.65 eV,respectively.The charge separation efficiency was further clarified by photoluminescence(PL)spectra measurements.As shown in Fig.3c,the PL intensity of CBCN was much lower than CN,indicating the improved separation of photoexcited charge carriers[31].The observation indicated that cyano groups can introduce intraband states into the band gap of CN and carbon species in bridged carbon can act as electron sink,inhibiting the recombination of photogenerated electron-hole pairs[21].

    The internal electron transport capability was characterized by electrochemical impedance spectroscopy.Fig.3d presented that the Nyquist plots diameter of CBCN was much smaller than that of CN,indicating that the conductivity and internal electron transmission capacity were enhanced due to the formation of delocalized bigπbonds[13].Fig.3e demonstrated that the photocurrent response of CBCN was 3 times higher than CN under the same conditions,suggesting the fabricated CBCN with delocalizedπbonds and cyano group exhibited excellent photocatalysis performance and can be a promising electrophotocatalyst for wastewater treatment.The selectivity and activity of oxygen reduction reaction were investigated by rotating ring-disk electrode(RRDE)measurement.The linear sweep voltammetry(LSV)results suggested that the improved ORR activity was obtained for CBCN with 300 mV positive shift of the onset potential,but decreased the 2e-ORR selectivity with a declined ring current(Fig.3f).The H2O2selectivity(%H2O2)for CBCN and CN at -0.21 V(vs.SHE)were respectively 55% and 66%.The slight decrease in %H2O2via2e-ORR with CBCN was possibly due to the decreased concentration of pyrrolic-N during the substation of C atom for bridge N in CN[32].

    As investigated above,the selective formation of1O2viaphotoelectrocatalytic oxygen reduction can be successfully achieved with CBCN in this work.Moreover,1O2is a more selective oxidant(1.1 Vvs.SHE)than·OH,which can preferentially oxidize electron-rich organic pollutants[33].Therefore,we further evaluated the role of1O2by estimating the degradation efficiency of BPA,ACT and 3-chlorophenol(3-CP)with different charge density.According to Fig.4a,the apparent rate constants(kobs)of removing BPA,ACT and 3-CP could be fitted with pseudo-first-order kinetic model.And the value ofkobsfor BPA was 0.140 min-1,which is 7.8 and 2.2 times higher than 3-CP(0.018 min-1)and ACT(0.063 min-1),respectively.Compared to the organics with electron-donating groups such as BPA,ACT and 3-CP,the degradation rate of nitrobenzene(NB)without electron-donating was obviously lower(0.0057 min-1)(Fig.S9 in Supporting information).The generated1O2in CBCN/PE system has strong electrophilic ability,so BPA with highest charge density exhibited significant degradation,moderate and lowest degradation was respectively obtained for ACT and 3-CP.To identify the role of different active spices(1O2,·OH,hvb+)on the removal of BPA,ACT and 3-CP,quenching experiments were designed.L-histidine and isopropanol(IPA)were used as scavengers to capture1O2and·OH respectively.As exhibited in Fig.4b,the degradation efficiency of BPA was decreased from 100% to 90.5% and 9.4% after the addition of IPA and L-histidine,respectively.The addition of IPA and L-histidine resulted the ACT removal efficiency decreased to 68.1% and 29.7%.Note that,the degradation efficiency of 3-CP was greatly decreased to 15.5% in the presence of IPA.Besides,the degradation of effi-ciency of BPA,ACT and 3-CP was respectively decreased to 17.2%,38.5% and 70.8% after the addition of EDTA-2Na as hvb+scavenger.This phenomenon reveals that1O2and hvb+played significant role for BPA and ACT removal,while·OH was relatively responsible for 3-CP removal.In addition,the PE degradation process under N2atmosphere was carried out to exclude the oxidation contribution of ROS.As shown in Fig.4b,the degradation efficiency of BPA,3-CP,ACT was only 12.6%,11.3% and 8.4%.In order to further clarify the contribution of hvb+,the electrosorption of BPA(7.1%),ACT(6.7%)and 3-CP(5.6%)with electrode was investigated.All the observation revealed that the contribution of hvb+on the degradation of organic pollutants can be ignored.The role of hvb+was acted for the generation of1O2.

    Fig.3.(a)UV–vis DRS and(b)band gap energy and(c)the steady-state photoluminescence spectra(PL)of CN and CBCN.(d)Electrochemical impedance spectroscopy.(e)Transient photocurrent responses of photo catalysts in 0.05 mol/L Na2SO4 aqueous solution under visible light irradiation.(f)LSV curves of CBCN and CN recorded at 1600 rpm and at a rate of 10.0 mV/s,demonstrating the ORR current density on the disk(ID)and the detected H2O2 currents on the ring electrode(IR).

    Fig.4.(a)Kinetic curves in the degradation process of BPA,ACT and 3-CP by CBCN/PE at pH 3.The initial concentration of all pollutants was 10 ppm.(b)The quenching experiment of BPA,ACT and 3-CP on PE degradation under different conditions([BPA]0 =[ACT]0 =[3-CP]0 = 10 mg/L,[IPA]=[EDTA-2Na]=[L-histidine]= 2 mmol/L).(c)The effect of pH value on BPA degradation efficiency in PE process.(d)The stability of CBCN/PE in the BPA degradation process.

    As we known,actual wastewater had variable pH values,and thus,it is necessary to determine the effect of pH values on the degradation efficiencies.As shown in Fig.4c,obviously,the BPA removal rate constant remained as high as 0.14–0.13 min-1in the wide pH range of 3–11.This phenomenon was attributed that hvb+was active sites for oxidizing electro/photochemical generated O2·-to produce1O2for BPA removal.The generation route of1O2was not restricted by pH value.As shown in Fig.4d,the degradation efficiency of BPA was nearly maintained at the level of fresh sample after five consecutive runs,indicating that this fabricated CBCN cathode exhibited good stability.Based on above results,the CBCN/PE system exhibited great practical application prospects in wastewater treatment field.

    In summary,we have constructed a metal free CBCN/PE system for selective generation of1O2viaoxygen reduction,and then applied for efficient degradation of electron-rich organic pollutants.The CBCN was modified by introducing delocalizedπbonds and cyano group simultaneously into CN framework through thermal polymerization method.The delocalizedπbonds and cyano group in CBCN change the electronic structure of CN for both enhancing the photocatalytic and electrocatalytic activity.In CBCN/PE system,O2was firstly reduced to O2·-via1-electron pathway,and then the produced O2·-would be simultaneously oxidized by hvb+.As expected,the CBCN/PE system exhibits 100% removal effi-ciency for electron-rich pollutants such as bisphenol A(BPA)and acetaminophen(ACT).This study supplies a general strategy for the spontaneous formation of abundant1O2viaPE oxygen activation.Hence,we expect this green,simple and economic strategy to prepare nonmetal CBCN/PE system with excellent capability could have broad application in water treatment filed.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge funding from the National Natural Science Foundation of China(Nos.22076142,21677106,22076140),National Key Basic Research Program of China(No.2017YFA0403402),National Natural Science Foundation of China(No.U1932119),the Science & Technology Commission of Shanghai Municipality(No.14DZ2261100),the Fundamental Research Funds for the Central Universities.

    Supplementary Materials

    Supplementary material associated with this article can be found,in the online version,at 10.1016/j.cclet.2021.05.066.

    久久午夜亚洲精品久久| 久久精品91蜜桃| 巨乳人妻的诱惑在线观看| 久久久久久大精品| 国产欧美日韩综合在线一区二区| 窝窝影院91人妻| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| 91av网站免费观看| 国产精品秋霞免费鲁丝片| 午夜久久久久精精品| 色老头精品视频在线观看| 午夜福利高清视频| 90打野战视频偷拍视频| 国产麻豆69| 国产99久久九九免费精品| av免费在线观看网站| 亚洲国产精品sss在线观看| 精品久久久久久久毛片微露脸| 国产欧美日韩一区二区精品| 国产精品电影一区二区三区| 大型黄色视频在线免费观看| 久久香蕉国产精品| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 国产精品久久久久久亚洲av鲁大| 美女高潮到喷水免费观看| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 色婷婷久久久亚洲欧美| av在线播放免费不卡| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 搡老岳熟女国产| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 日本欧美视频一区| 亚洲av第一区精品v没综合| 欧美黄色淫秽网站| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 女人被狂操c到高潮| 精品久久久精品久久久| 日本欧美视频一区| 亚洲精品久久国产高清桃花| 九色国产91popny在线| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 国产精华一区二区三区| 脱女人内裤的视频| 午夜免费成人在线视频| 91av网站免费观看| 亚洲国产中文字幕在线视频| av免费在线观看网站| av视频免费观看在线观看| 在线免费观看的www视频| 男女下面插进去视频免费观看| 丝袜人妻中文字幕| 国产亚洲欧美精品永久| 女同久久另类99精品国产91| 亚洲精品美女久久av网站| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 9191精品国产免费久久| 婷婷精品国产亚洲av在线| 嫩草影院精品99| 很黄的视频免费| 91九色精品人成在线观看| 亚洲少妇的诱惑av| 色播亚洲综合网| 午夜久久久在线观看| 9热在线视频观看99| 久久亚洲精品不卡| 午夜福利在线观看吧| av天堂久久9| 在线观看www视频免费| 亚洲,欧美精品.| 亚洲人成电影观看| 国产精品电影一区二区三区| 波多野结衣av一区二区av| 亚洲精品中文字幕一二三四区| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 操出白浆在线播放| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 国产精品 国内视频| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 一二三四社区在线视频社区8| 久久久国产成人免费| 午夜a级毛片| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 久久久久久大精品| www.精华液| av免费在线观看网站| 国产精品免费一区二区三区在线| 久久久精品国产亚洲av高清涩受| 激情在线观看视频在线高清| 国产精品二区激情视频| 欧美色欧美亚洲另类二区 | 午夜免费观看网址| 精品熟女少妇八av免费久了| 亚洲国产欧美网| 亚洲美女黄片视频| 夜夜爽天天搞| 国产精品电影一区二区三区| 国产又爽黄色视频| 夜夜爽天天搞| 中文字幕av电影在线播放| av中文乱码字幕在线| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲电影在线观看av| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 亚洲av成人一区二区三| 日韩欧美一区二区三区在线观看| 99久久国产精品久久久| 美女国产高潮福利片在线看| 亚洲熟妇中文字幕五十中出| 女人被狂操c到高潮| 97人妻天天添夜夜摸| 精品少妇一区二区三区视频日本电影| 在线视频色国产色| 一本久久中文字幕| 欧美日本视频| 精品国产美女av久久久久小说| 久久九九热精品免费| 窝窝影院91人妻| 午夜影院日韩av| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 亚洲全国av大片| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 黄网站色视频无遮挡免费观看| 变态另类丝袜制服| 免费久久久久久久精品成人欧美视频| 不卡一级毛片| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 最好的美女福利视频网| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 久久中文看片网| 国产麻豆成人av免费视频| 欧美性长视频在线观看| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 成年版毛片免费区| 91精品三级在线观看| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 咕卡用的链子| 免费在线观看完整版高清| 国产成人av教育| 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| 性欧美人与动物交配| 黄色成人免费大全| 叶爱在线成人免费视频播放| 亚洲天堂国产精品一区在线| 亚洲全国av大片| 男女下面插进去视频免费观看| 91老司机精品| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 又黄又粗又硬又大视频| 亚洲av成人av| 国产激情久久老熟女| 99久久久亚洲精品蜜臀av| 丝袜美腿诱惑在线| 精品国内亚洲2022精品成人| 国产不卡一卡二| 欧美人与性动交α欧美精品济南到| 欧美日本视频| 国产欧美日韩精品亚洲av| 女人精品久久久久毛片| 老司机靠b影院| 欧美日韩乱码在线| 国产99久久九九免费精品| 国产在线观看jvid| 国产成人av教育| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 高清在线国产一区| 97人妻精品一区二区三区麻豆 | 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 最近最新中文字幕大全电影3 | 两个人免费观看高清视频| 一级作爱视频免费观看| 亚洲专区国产一区二区| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 久久影院123| 乱人伦中国视频| 又大又爽又粗| 美女国产高潮福利片在线看| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 国产亚洲精品第一综合不卡| 久久香蕉激情| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 天堂影院成人在线观看| 亚洲第一av免费看| 久久这里只有精品19| 国产精品免费视频内射| 黄频高清免费视频| 一级毛片高清免费大全| 亚洲,欧美精品.| 少妇的丰满在线观看| 亚洲精品在线美女| 在线观看午夜福利视频| 美女国产高潮福利片在线看| 色综合站精品国产| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 久9热在线精品视频| 亚洲av五月六月丁香网| 丝袜美腿诱惑在线| 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 成人三级做爰电影| av天堂在线播放| 国产成人影院久久av| 日本三级黄在线观看| 欧美+亚洲+日韩+国产| 久久久久国内视频| 国产乱人伦免费视频| 国产精品爽爽va在线观看网站 | 成人精品一区二区免费| 长腿黑丝高跟| 亚洲情色 制服丝袜| 欧美在线黄色| 国产区一区二久久| 国产精品久久久久久亚洲av鲁大| 欧美日韩一级在线毛片| 亚洲一区二区三区色噜噜| 亚洲精品中文字幕一二三四区| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 热99re8久久精品国产| 久久国产精品影院| 男女下面插进去视频免费观看| 波多野结衣巨乳人妻| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 久久国产精品男人的天堂亚洲| 国产国语露脸激情在线看| 又紧又爽又黄一区二区| 国产精品 国内视频| 午夜福利影视在线免费观看| 亚洲av日韩精品久久久久久密| 最新美女视频免费是黄的| 美女午夜性视频免费| 人人妻人人澡人人看| 一边摸一边做爽爽视频免费| 久久精品91无色码中文字幕| 好看av亚洲va欧美ⅴa在| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 亚洲自拍偷在线| 69精品国产乱码久久久| 999精品在线视频| 老鸭窝网址在线观看| 久久精品国产综合久久久| 男女床上黄色一级片免费看| 精品第一国产精品| 久久精品国产清高在天天线| 日韩欧美在线二视频| 男女午夜视频在线观看| 亚洲人成电影免费在线| 欧美亚洲日本最大视频资源| 久久九九热精品免费| 国产精品98久久久久久宅男小说| av视频在线观看入口| 午夜日韩欧美国产| 久久久国产精品麻豆| 久久久久久久久免费视频了| 岛国视频午夜一区免费看| 日本三级黄在线观看| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| 热99re8久久精品国产| 国产成人欧美| 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 亚洲av片天天在线观看| 久久久久久大精品| 亚洲av成人一区二区三| 久久久精品欧美日韩精品| 日日夜夜操网爽| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 天堂动漫精品| 啦啦啦观看免费观看视频高清 | 黑人操中国人逼视频| 黄色视频不卡| 日日爽夜夜爽网站| 国产黄a三级三级三级人| 久久人妻av系列| av视频免费观看在线观看| 国产亚洲欧美精品永久| av在线播放免费不卡| 久久精品国产99精品国产亚洲性色 | 乱人伦中国视频| 欧美日韩福利视频一区二区| 精品电影一区二区在线| 国产极品粉嫩免费观看在线| 精品电影一区二区在线| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| av福利片在线| 久久人人97超碰香蕉20202| tocl精华| 午夜视频精品福利| 国产国语露脸激情在线看| 亚洲成人久久性| 制服诱惑二区| 久久婷婷成人综合色麻豆| 亚洲成av人片免费观看| 亚洲国产欧美日韩在线播放| 久9热在线精品视频| 妹子高潮喷水视频| 久久香蕉激情| 91字幕亚洲| 操出白浆在线播放| 国产精品影院久久| 在线av久久热| 国产av在哪里看| 国产成人av教育| 亚洲全国av大片| 可以在线观看的亚洲视频| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 亚洲五月色婷婷综合| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 一本大道久久a久久精品| 成在线人永久免费视频| 搞女人的毛片| 日日干狠狠操夜夜爽| 少妇熟女aⅴ在线视频| а√天堂www在线а√下载| 日韩国内少妇激情av| 91av网站免费观看| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| av超薄肉色丝袜交足视频| 国产乱人伦免费视频| 电影成人av| 黄色成人免费大全| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 国产精品美女特级片免费视频播放器 | 满18在线观看网站| 美女国产高潮福利片在线看| 麻豆av在线久日| 女同久久另类99精品国产91| tocl精华| 成人国产一区最新在线观看| 欧美黄色淫秽网站| 午夜a级毛片| 久久伊人香网站| 欧美午夜高清在线| 50天的宝宝边吃奶边哭怎么回事| 琪琪午夜伦伦电影理论片6080| 精品高清国产在线一区| 日韩欧美免费精品| 亚洲午夜精品一区,二区,三区| 夜夜爽天天搞| 久久精品91蜜桃| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 操出白浆在线播放| 亚洲美女黄片视频| 亚洲国产中文字幕在线视频| 欧美激情 高清一区二区三区| 国产成人av激情在线播放| 99国产精品免费福利视频| 国内精品久久久久精免费| 亚洲熟妇熟女久久| 咕卡用的链子| 色播亚洲综合网| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 男人舔女人的私密视频| 久久久国产成人精品二区| 国产xxxxx性猛交| 亚洲国产精品久久男人天堂| 男女床上黄色一级片免费看| 精品高清国产在线一区| 精品免费久久久久久久清纯| 少妇 在线观看| 高清毛片免费观看视频网站| 老司机靠b影院| 热99re8久久精品国产| 国产三级在线视频| 国产亚洲欧美精品永久| 在线免费观看的www视频| 国产99久久九九免费精品| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 久久久久九九精品影院| 亚洲专区中文字幕在线| 性欧美人与动物交配| 亚洲片人在线观看| 黄色a级毛片大全视频| 99在线人妻在线中文字幕| 麻豆一二三区av精品| 久久中文字幕一级| 黄色成人免费大全| 国产熟女午夜一区二区三区| 欧美日本亚洲视频在线播放| 日本免费a在线| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器 | 最近最新中文字幕大全免费视频| 亚洲精品国产色婷婷电影| 日本五十路高清| 日韩大码丰满熟妇| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 在线永久观看黄色视频| 99在线视频只有这里精品首页| 一级毛片精品| 岛国视频午夜一区免费看| 日本一区二区免费在线视频| 好看av亚洲va欧美ⅴa在| 久久久久久国产a免费观看| 在线天堂中文资源库| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 成人国语在线视频| 亚洲欧美日韩无卡精品| 天堂影院成人在线观看| 久久久久久久午夜电影| 色老头精品视频在线观看| 一区二区三区精品91| ponron亚洲| www国产在线视频色| 国产高清激情床上av| 黑人欧美特级aaaaaa片| 成在线人永久免费视频| 国产精品免费视频内射| 久99久视频精品免费| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 变态另类丝袜制服| 天天一区二区日本电影三级 | 日韩精品青青久久久久久| 国产成人欧美在线观看| 久久中文看片网| 男男h啪啪无遮挡| 搡老妇女老女人老熟妇| 成人特级黄色片久久久久久久| 三级毛片av免费| 午夜福利欧美成人| 黄色a级毛片大全视频| 大陆偷拍与自拍| 激情在线观看视频在线高清| 欧美人与性动交α欧美精品济南到| 国产野战对白在线观看| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦 在线观看视频| 久久精品亚洲精品国产色婷小说| 18禁裸乳无遮挡免费网站照片 | 精品国产一区二区三区四区第35| 精品久久久久久久久久免费视频| 免费看美女性在线毛片视频| 精品少妇一区二区三区视频日本电影| 美女 人体艺术 gogo| 美女午夜性视频免费| 国产成人av激情在线播放| 久久中文字幕人妻熟女| 亚洲人成网站在线播放欧美日韩| 很黄的视频免费| 精品人妻在线不人妻| 免费观看精品视频网站| 男女之事视频高清在线观看| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站| 丰满的人妻完整版| 久久国产亚洲av麻豆专区| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 最新在线观看一区二区三区| 免费av毛片视频| 色播在线永久视频| 在线观看午夜福利视频| 99国产极品粉嫩在线观看| 国内久久婷婷六月综合欲色啪| 美女高潮到喷水免费观看| 激情在线观看视频在线高清| 日韩有码中文字幕| 日韩精品免费视频一区二区三区| 国产99久久九九免费精品| 亚洲七黄色美女视频| 妹子高潮喷水视频| 中文字幕色久视频| 国产欧美日韩精品亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av嫩草精品影院| 国产av在哪里看| 欧美大码av| 99国产综合亚洲精品| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 欧美黑人欧美精品刺激| 亚洲va日本ⅴa欧美va伊人久久| 如日韩欧美国产精品一区二区三区| 欧美av亚洲av综合av国产av| 高潮久久久久久久久久久不卡| а√天堂www在线а√下载| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩精品亚洲av| 女性被躁到高潮视频| 欧美人与性动交α欧美精品济南到| 99re在线观看精品视频| 啦啦啦韩国在线观看视频| 欧美在线一区亚洲| 午夜精品国产一区二区电影| 亚洲国产中文字幕在线视频| 淫秽高清视频在线观看| 变态另类成人亚洲欧美熟女 | 少妇被粗大的猛进出69影院| 真人做人爱边吃奶动态| 18美女黄网站色大片免费观看| 午夜免费成人在线视频| xxx96com| 欧美成人性av电影在线观看| 日韩免费av在线播放| 色尼玛亚洲综合影院| 黑丝袜美女国产一区| 在线观看免费视频日本深夜| 成人国语在线视频| 天堂√8在线中文| 亚洲色图av天堂| 精品一区二区三区四区五区乱码| 久久中文看片网| 99国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产主播在线观看一区二区| 中文字幕高清在线视频| 高清毛片免费观看视频网站| 丁香欧美五月| 久久国产亚洲av麻豆专区| 免费看十八禁软件| 亚洲精品一区av在线观看| 制服人妻中文乱码| 免费观看人在逋| 女人被躁到高潮嗷嗷叫费观| 亚洲国产中文字幕在线视频| 嫩草影院精品99| 国产一级毛片七仙女欲春2 | 黄色成人免费大全| 国产亚洲欧美98| 长腿黑丝高跟| 亚洲专区国产一区二区| 在线av久久热| 亚洲精品粉嫩美女一区| 亚洲专区国产一区二区| 成人国语在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲五月色婷婷综合| 欧美中文日本在线观看视频| 亚洲成av片中文字幕在线观看| 亚洲av五月六月丁香网| 99久久精品国产亚洲精品| 99国产精品免费福利视频| 国语自产精品视频在线第100页| e午夜精品久久久久久久| 天堂√8在线中文| 一级黄色大片毛片| 可以免费在线观看a视频的电影网站| 美女高潮到喷水免费观看| 午夜两性在线视频| 成年女人毛片免费观看观看9| 亚洲午夜精品一区,二区,三区| 久久午夜亚洲精品久久| 国产高清激情床上av| 美国免费a级毛片| av福利片在线| 国产一卡二卡三卡精品| 久久久久国产精品人妻aⅴ院| 免费在线观看亚洲国产| 亚洲av成人av| 精品不卡国产一区二区三区|