• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New insight into the effect of interface supercapacitance on the performance of titanium dioxide/carbon nanowire array for photoelectrochemical water oxidation

    2021-02-23 09:05:42ZhuofengHuWeiqingGuo
    Chinese Chemical Letters 2021年11期

    Zhuofeng Hu,Weiqing Guo

    a School of Environmental Science and Engineering,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,Sun Yat-sen University,Guangzhou 510006,China

    b School of Environmental and Chemical Engineering,Foshan University,Foshan 528000,China

    ABSTRACT The electrode/electrlyte interface is of great signifance to photoelectrochemical(PEC)water oxidation as the reaction mainly occur here.Herein,we focus on the effect of supercapactance of the electrode/electrlyte interface on the performance of PEC.It is discovered that the supercapacitor on the interface is crucial because it links the charge transport and solution ion adsorption on its two sides.In this study,we demonstrate an approach to promote the performance of TiO2 nanowire array(TiO2 NWs)photoanode in photoelectrochemical cells(PECs)by increasing its supercapacitance.A 2-5 nm carbon layer was coated and the interface supercapacitance increases by about 150 times.This enhances the separation rate of electron-hole pairs by collecting more holes.Meanwhile,it also promotes the water oxidation rate by adsorbing more OH-on its surface.As a result,the photocurrent density of C-TiO2 NWs was about 8 times higher than that of its carbon-free counterpart.This approach of increasing the supercapacitance of photoanodes would be attractive for enhancement of the efficiency of PECs and this work demonstrate the importance of supercapacitance of the interface for PECs.

    Keywords:TiO2 Carbon Supercapacitor Photoelectrochemical Water oxidation

    Photoelectrochemical(PEC)water splitting at the interface between semiconductor and electrolyte interfaces has been considered as a promising strategy for providing electrical energy or clean fuels[1–4].A Photoelectrochemical cell(PECs)is always composed of a semiconductor photoanode and a platinum cathode.Under illumination,photogenerated electrons transfer to the cathode for hydrogen evolution or CO2reduction,while photogenerated holes migrate to the interface of the photoanode[5].Currently,TiO2has been widely studied as a photocatalyst due to its low cost,environmental-friendliness,corrosion resistance in electrolyte[6–8].

    The challenges to increase the performance of the PECs mainly depends on the separation efficiency of photogenerated electron/hole pairs and their transport to the interface[9–11].Generally,the charge transfer at the interface between the electrode and the electrode is a crucial step.In this regard,the interface between electrode and electrlyte should play a vital role on the PEC reactions.From our viewpoint,for the PEC water oxidation,the photoexcited carriers(mainly holes for photoanode)need to transport to the interface and the solution ions(like water or OH-)have to be adsorbed on the interface[12].The efficiency of this two processes determines the efficiency of PECs.

    Supercapacitor has attracted great attention due to its storage of energy by accumulating charge at the interface between electrode and electrolyte[13].It is constructed by two layers of opposite charge at the interface.Specifically,in PECs,with an anodic bias applied on the photoanode,a supercapacitor is formed by the positive charges and a layer of adsorbed anions.Under illumination,the supercapacitor could be charged when some holes are accumulated on the surface of the photoanode.From this viewpoint,the supercapacitor serves as an accepting unit of holes in the PECs.Thereby,the supercapacitor is a very important factor to be considered,especially about the interaction between charge carrier(electron/hole)and the adsorbed ions.The relationship between the supercapacitance and the photoelectrochemical performance has not been fully studied,and there are very few studies about this investigation.

    Herein,we systematically study the relationship between the supercapacitance and the performance of a photoanode.We report on a new strategy for the enhanced transport of photogenerated carrier and enhanced adsorbed solution ions by increasing the suparcapacance of TiO2photoanodes.A porous carbon layer with high supercapacitance is coated on the TiO2NWs.Mechanism for the transportation of hole and electron is also investigated.The TiO2NWs with enhanced supercapacitance increase the transport of photoexcited holes and the adsorption of ions to the interface,thereby promoting the PEC reactions.By adjusting the thinkness of the carbon layer,the supercapacitance can be controlled.The relationship between supercapacitance of the photoanode and the photocurrent density follows an exponent relationship.In the beginning,the photocurrent density only slightly increases when the supercapacitance rises.Then,the increase becomes faster and faster and following an exponent increase.The relationship can be simulated as(Eq.1):

    whereJpis the photocurrent density andCis the supercapacitance.

    In this study,the supercapacitance is controlled by coating a carby layer on TiO2.Carbon coated titanium dioxide(C-TiO2)has been used in the field of Li-ion battery[14,15].water splitting[16].In our study,a very thin carbon layer is coated on the TiO2NWs to enhance its supercaitance.Carbonaceous materials can be formedviathe cross-linking and intermolecular dehydration of glucose molecules under hydrothermal condition[17–21].In the presence of metals or metal oxides,the carbonaceous material tends to cover on their surfaces[18,19].In our experiments,a carbonaceous polymer layer was coated on TiO2nanowire array in glucose solution,and it was converted into pure carbon layerviacalcination.The process is shown in Scheme 1.

    Scheme 1.Schematic diagram for the preparation of C-TiO2.

    As shown in Fig.1a,the TiO2NWs has a clean surface.After the hydrothermal reaction,a layer of carbonaceous polymer material covers uniformly on the surface of TiO2NWs(Fig.1b).The carbonaceous polymer layer is amorphous with a thickness of about 3-5 nm.After calcination,the thickness does not change apparently(Fig.1c).

    There is no apparent pore structure in the carbonaceous layer before calcination(Fig.1d).After calcinations,those peaks disappear in the FTIR spectra,and the layer becomes much rougher(Figs.1e and f).The pores should be formed during the following calcination step.As shown in Fig.S1(Supporting information),some carbon,oxygen and hydrogen will be released from the carbonaceous polymer layer in the form of H2O,CO and CO2.This will cause the formation of pores.Then plenty of micropores are formed resulting from the removal of H and O[22].This process is schematically shown in Fig.S1.Scanning electron microscopic(SEM)images(Fig.S2 in Supporting information)show that the nanowire structure remains after the heated treatment.X-Ray diffraction(XRD)(Fig.S3 in Supporting information)pattern shows that the TiO2is a mixture of anatase(PDF card No.21-1272)and rutile(PDF card No.65-0190).The picture of TiO2,C-TiO2before and after heated are shown in Fig.1g,e,and f,respectively.

    Fig.1.Schematic diagram showing the synthesis of C-TiO2 NWs.Transmission electron microscopic(TEM)images of(a)TiO2 NWs,C-TiO2 NWs(b)beforeand(c)after heated.High resolution transmission electron microscopic(HRTEM)of C-TiO2 NWs(d)before and(e,f)after heated.Picture of(g)TiO2 NWs,C-TiO2 NWs(h)beforeand(i)after heated support on a Ti substrate.

    Energy dispersive spectrometer(EDS)also exhibits the element of C,O and Ti(Fig.2a).Besides,the peaks of carbonyl group(1680 cm-1)and hydroxyl group(3430 cm-1)are found in the FTIR spectra(Fig.2b)[19].This suggests that the layer contains C,H and O elements.

    All the PEC measurements were conducted in a three-electrode electrochemical cell in 0.1 mol/L NaOH electrolyte.The linear sweeps voltammograms(LSV)were collected in a potential range of 0.2–1.4 Vvs.RHE,as shown in Fig.2c.

    At a small bias,the photocurrent density of TiO2NWs and C-TiO2NWs increases slowly due to limited separation of the photogenerated electron-hole pairs in weak electric field.When the bias reaches 0.6 Vvs.RHE,the photocurrent density increases much faster,suggesting higher separation efficiency of the photogenerated electron/hole pairs.In such a potential region(0.4-0.9 Vvs.RHE),the raise of photocurrent density of C-TiO2NWs is much more apparent than that of TiO2NWs.Since charge transport in the photoanode is considered as the rate-limiting step,this suggests that the carbon layer promotes the charge transport in the photoanode.This C-TiO2NWs also compares favorably with the state-of-the-art TiO2based photoanode(Table S1 in Supporting information).

    At higher bias,their photocurrent density saturates due to insufficient supply of photogenerated carriers[23].Under such circumstance,the photocurrent density of C-TiO2NWs is about 8 times higher than that of bare TiO2NWs.This can also be seen in the transient photocurrent densities measurements in Fig.2d.

    Usually,an external bias is needed to activate and promote a PEC because PEC is driven by both external bias and light.It is very necessary to evaluate the contribution of solar energy without considering that of the external bias.The applied bias photon-tocurrent efficiency(ABPE)can be used to calculated on the base of the equation bellows(Eq.2):

    Fig.2.(a)EDS of C-TiO2 NWs and(b)FTIR spectra of C-TiO2 NWs before and after calcination.(c)Linear sweeps voltammogram collected from TiO2 NWs in the dark(black),under illumination(blue),and C-TiO2 NWs in the dark(green)and under illumination(orange).(d)Transient photocurrent density measurements and(e)applied bias photon-to-current efficiency(APEC)of TiO2 NWs(blue)and C-TiO2 NWs(orange)at 0.1 V vs. Ag/AgCl in 0.1 mol/L NaOH solution.(f)Mott-Schottky plots of TiO2 NWs and C-TiO2 NWs at a frequency of 1000 Hz in 0.1 mol/L NaOH solution.

    where η is the efficiency of PEC water splitting,jpis the photocurrent density at the measured potential,I0is the power density of incident light(100 mW/cm2),andERHEis the bias potentialvs.RHE.

    As shown in Fig.2e,it is clear that the applied bias photon-tocurrent efficiency(ABPE)of C-TiO2is much higher than that of TiO2in almost all the potential window.

    Mott-Schottky plots of TiO2NWs and C-TiO2NWs are compared in Fig.2f.The zoom-in view of the frame in Fig.2f showing the detail of C-TiO2NWs is shown in Fig.S4(Supporting information).Flatband potentials and carrier density of TiO2NWs and C-TiO2NWs are calculated from their Mott-Schottyk plots by the following equation(Eq.3)[24–26]:

    whereCis the space charge capacitance,ε and ε0are the permittivity of the electrode and free space.e0the elementary charge,Eis the applied potential,EFBis the flatband potential,kis the Boltzmann’s constant,andTis the temperature.Then,EFBcan be determined from the extrapolation of X intercept in the plot.According to Fig.2f,EFBvalues of TiO2NWs and C-TiO2NWs are calculated to be about -0.90 V and -0.87 V,respectively.It suggests that flatband potential of the photoanode would not be greatly influenced by the carbon layer.

    In addition,according to Eq.3,slope of the Mott-Schottky plot is expressed as 1/(εε0e0ND).Therefore,the carrier density(ND)can be estimated by the slope according to the following equation(Eq.4):

    Fig.3.CV curves of(a)C-TiO2 NWs and(b)TiO2 NWs at a scan rate of 20 mV/s.Galvanostatic charge/discharge curves of(c)C-TiO2 NWs and(d)TiO2 NWs at a current density of 0.0125 mA/cm2.(e)Transient photocurrent densities measurements of TiO2 NWs(blue),C(0.1)-TiO2 NWs,C(0.5)-TiO2 NWs,C(1.0)-TiO2 NWs and C(2.0)-TiO2 NWs(magenta)at 1.0 V vs. RHE in 0.1 mol/L NaOH solution.(f)Relationship between the current density and initial added glucose.

    Since 1/(εε0e0)can be considered as a constant,NDis found to be inversely related to the slope of the Mott-Schottky plots.Fig.2f shows that the slope of C-TiO2NWs is much smaller than that of TiO2NWs,indicating that the carrier density of C-TiO2NWs is much higher than that of bare TiO2NWs.Meanwhile,by using the value of ε=30 F/m,ε0=8.85×1018F/m,e0=1.6×1018C,NDof TiO2NWs and C-TiO2NWs can be calculated to be 1.6×1018cm-3and 3.3×1024cm-3.The carrier density increases greatly after the coating of carbon layer.

    Cyclic voltammetry(CV)curves of C-TiO2NWs and TiO2NWs at a scan rate of 20 mV/s are shown in Figs.3a and b.Theirquasirectangular shape is characteristic of ideal double layer capacitance mechanism for storage of energy[27,28].

    Furthermore,a galvanostatic charge/discharge measurement is conducted to study the supercapacitance[29].This is carried out by applying a constant current density of 0.0125 and -0.0125 mA/cm2intermittently at the photoanodes in the potential windows of -0.2~0.2 V.As shown in Figs.3c and d,the curve is linear and symmetrical during both the charging and discharging processes.This suggests that the electrode has an ideal characteristic of capacitor and excellent electrochemical reversibility.

    The specific capacitance C can be estimated from the charge/discharge curves according to the following equation(Eq.5)[30,31],whereIis the current density during charge/discharge processes,tis the charge/discharge duration in each segment,ΔVis the potential difference.

    In our experiments,sinceI,and ΔVare constants,the specific capacitance is proportional to Δt.Apparently,Δtof C-TiO2NWs is much larger than that of TiO2NWs,suggesting that the capacitance of C-TiO2NWs is much higher than that of TiO2NWs.According to Eq.4,theCof TiO2NWs and C-TiO2NWs is calculated to be 3.75 ×10-5F and 5.75 ×10-3F,respectively.

    Obviously,the capacitance of C-TiO2NWs is larger.Possibly,the majority of the capacitance lies in the carbon layer.For ideal supercapacitor,its surepcapacitance can also be expressed as equation below(Eq.6)[32]:

    where ε and ε0are the permittivity of the semiconductor electrode and free space,Ais the specific surface area of the electrode accessible to the electrolyte ions,anddis the eff;ective thickness.Since εε0/d is a constant,the larger capacitance of C-TiO2NWs is mainly due to larger specific surface area of the carbon layer.As is discussed before,plenty of micropores in the carbon layer are formed.Those pores structure greatly increase the specific surface area and capacitance of the photoanode.

    Furthermore,the capacitance can be controlled by the thickness of the carbon layer.Thicker carbon layer can be formed with higher glucose concentration.As shown in Fig.S5(Supporting information),the capacitance of C-TiO2NWs exhibits a linear dependence(R2=0.977)on the glucose concentration.As the amount of glucose increase from 0.1 g to 1.0 g,the capacitance of C-TiO2NWs raise from 3.25×10-3F to 5.75×10-3F,and the photocurrent density increases from 0.17 mA/cm2to 0.90 mA/cm2at the same time(Fig.3e and Fig.S6 in Supporting information).This suggests that larger capacitance is more beneficial to the photoactivity of C-TiO2NWs.However,due to light-blocking effect caused by excess carbon,the photocurrent diminishes rapidly despite larger capacitance(Fig.3f).

    To study the relationship between the supercapacitance and the photoelectrochemical activity,we have controlled the supercapacitance of the photoanode by adjusting the thickness of the carbon layer and measure their photocurrent.Then,we can obtain the relationship between the supercapacitance and the photocurrent.The result is shown in Fig.4a.It is clear that the relationship between supercapacitance of the photoanode and the photocurrent density follows an exponential relationship.In the beginning,the photocurrent density only slightly increases when the supercapacitance rises.Then,the increase becomes faster and faster and following an exponential increase.The relationship can be simulated by Eq.1.

    Supercapacitor is often considered as an energy storage unit.Specfically for a photoanode,a supercapacitor is form bewteen the photoexcited hole arriving at the electrode/electrolyte interface and the adsorbed solution ions(mainly OH-in alkaline solution).With regrading to the side of supercapacitor on the side of electrode,it is the photoexcited holes that charge the supercapacitor.With higher supercapacitance,more holes can be storaged at the supercapacitor.This will be greatly beneficial to the separation of electron and hole insider the electrode,enabling more holes to the surface for water oxidation and more electrons to the external circuit for photocurrent generation(Fig.S7 in Supporting information).

    Fig.4.(a)Relationship between supercapacitance of the photoanode and the photocurrent density.(b)Fluorescence spectra of the electrolyte containing 0.1 mol/L NaOH and 4×10-3 mol/L terephthalic acid where the TiO2 NWs and C-TiO2 NWs are illuminated for 60 min at 1.03 V vs. RHE.The insert is the fluorescence intensity of the emission peak at 420 nm as a function of experimental time.Schematic diagram comparing the photoelectrochemical water splitting on the photoanode of(c)TiO2 NWs and(d)C-TiO2 NWs.

    With regarding to the side of supercapacitor on the side of electrolyte,the photoelectrochemical mechanism is investigated by applying a bias on the illuminated photoanodes in a mixture electrolyte of 0.1 mol/L NaOH and 4×10-3mol/L terephthalic acid.The OH-anions is oxidated to OH radical by the photogenerated holes[33],and in the presence of terephthalic acid,the OH radicals will convert the non-fluorescent terephthalic acid into highly fluorescent 2-hydroxyterephthalic acid(Fig.S8 in Supporting information)[33,34].Consequently,the amount of formed OH radicals and photogenerated holes is evaluated by terephthalic acid as a fluorescent probe(Eqs.7 and 8).

    For TiO2NWs,a clear fluorescent peak of 2-hydroxyterephthalic acid at 420 nm can be seen,and it increases with illumination time(Fig.4b).This confirms the formation of OH radical(·OH)on the illuminated TiO2NWs.

    The fluorescent peak can also be observed in case of C-TiO2NWs,suggesting·OH are formed despite a layer of carbon.Since the carbon layer cannot produce any photogenerated holes,the holes migrate from the TiO2NWs to the electrolyte through the carbon layer.Moreover,as exhibited in Fig.4b,the intensity of the peak is much higher than that of TiO2NWs,suggesting more·OH is formed.

    Likely,the carbon layer with large specific surface area adsorbs more OH–on its surface.Hence,higher density of OH–may result in faster water oxidation rate,and more·OH.

    Based on the results above,a tentative mechanism for the photoelectrochemical water splitting on the C-TiO2NWs is proposed:As mentioned above,at the interface between photoanode and electrode,a supercapacitor forms with holes and OH–anions on each side.Under illumination,some holes are accumulated by the supercapacitor.Then,the potential increases and the adsorbed OH–will be oxidized to·OH and further to oxygen(depending of the potential)[35].However,not all the holes can reach the interface because of the recombination of electron/hole pairs.The ratio of holes arriving at the interface to those recombined with photoenerated electrons determines the photoelectrochemical activity.

    For bare TiO2NWs,only a small amount of holes are accepted by its supercapacitor and most of them recombine with photogenerated electrons.This is shown in Fig.4c Accordingly,a few electrons are extracted to the cathode,as represented by the small photocurrent density.On the country,the carbon layer with larger supercapacitance promotes the separation of electron/hole pairs more efficiently by collecting more holes.Therefore,the photocurrent density is higher.Meanwhile,the carbon layer with large specific surface area facilitates the rate of water oxidation by adsorbing more OH–,as can be confirmed by the higher intensity of fluorescent peaks in Fig.4b.Consequently,the C-TiO2NWs exhibits higher photoelectrochemical activity.The comparison between TiO2NWs and C-TiO2NWs is schematically shown in Fig.4d.

    In summary,the supercapacitance of TiO2NWs has been greatly increased by coated a porous carbon layer on its surface.The photocurrent density C-TiO2NWs is higher than that of TiO2NWs.A mechamism for the photoelectrochemical water splitting on C-TiO2NWs is proposed:On one hand,the carbon layer with high supercapacitance favors the separation rate of electron-hole pairs in theTiO2NWphotoanode.Meanwhile,itpromotesthewateroxidation rate byadsorbing more OH–on its surface.This study will broaden our understanding of the supercapacitor at the interface and demonstrate an effective method to enhance the performance of PECs,which should also applicable to other photoanodes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(No.51902357),the Natural Science Foundation of Guangdong Province,China(No.2019A1515012143),the Start-up Funds for High-Level Talents of Sun Yat-sen University(No.38000-18841209)and the Fundamental Research Funds for the Central Universities(No.19lgpy153).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2021.04.004.

    黄色配什么色好看| 岛国毛片在线播放| 成年女人在线观看亚洲视频| 国产黄色视频一区二区在线观看| 丰满迷人的少妇在线观看| 在线观看免费日韩欧美大片 | 男女啪啪激烈高潮av片| 日韩熟女老妇一区二区性免费视频| 成人午夜精彩视频在线观看| 成年av动漫网址| 99热这里只有是精品在线观看| 国产精品熟女久久久久浪| 精品少妇内射三级| 黑人欧美特级aaaaaa片| 十分钟在线观看高清视频www| 亚洲精品日韩av片在线观看| 久久精品人人爽人人爽视色| 91精品三级在线观看| 欧美一级a爱片免费观看看| 国产无遮挡羞羞视频在线观看| 成人无遮挡网站| 一本—道久久a久久精品蜜桃钙片| 日韩精品有码人妻一区| 免费播放大片免费观看视频在线观看| 美女国产视频在线观看| 欧美另类一区| 91久久精品国产一区二区三区| 亚洲av日韩在线播放| 亚洲欧美色中文字幕在线| 99热6这里只有精品| 国产成人a∨麻豆精品| √禁漫天堂资源中文www| 久久97久久精品| 老司机影院成人| 搡老乐熟女国产| 中文字幕最新亚洲高清| xxxhd国产人妻xxx| 在线观看国产h片| 国产精品久久久久久av不卡| 亚洲四区av| 热re99久久精品国产66热6| 国产精品久久久久久精品古装| videos熟女内射| 人妻 亚洲 视频| 日韩,欧美,国产一区二区三区| 精品少妇黑人巨大在线播放| 久久精品夜色国产| 日本91视频免费播放| 成人午夜精彩视频在线观看| 亚洲人成77777在线视频| 亚洲激情五月婷婷啪啪| xxx大片免费视频| 亚洲综合精品二区| 中文字幕亚洲精品专区| 尾随美女入室| 亚洲av国产av综合av卡| 最近最新中文字幕免费大全7| 黄片播放在线免费| 97精品久久久久久久久久精品| 久久精品国产亚洲网站| 午夜精品国产一区二区电影| 国产色婷婷99| 亚洲人成网站在线观看播放| 亚洲国产精品999| 久久婷婷青草| 国产淫语在线视频| 成人综合一区亚洲| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| videosex国产| 婷婷色麻豆天堂久久| 日本vs欧美在线观看视频| 在线观看三级黄色| 欧美精品国产亚洲| 亚洲欧洲日产国产| 免费av中文字幕在线| 18禁在线无遮挡免费观看视频| 热99国产精品久久久久久7| 97精品久久久久久久久久精品| 亚洲成人一二三区av| 高清在线视频一区二区三区| 国产午夜精品一二区理论片| 久久鲁丝午夜福利片| 免费观看在线日韩| 国产午夜精品久久久久久一区二区三区| 亚洲av男天堂| 中文字幕最新亚洲高清| 日本欧美国产在线视频| 晚上一个人看的免费电影| 久久久a久久爽久久v久久| 人人妻人人爽人人添夜夜欢视频| 哪个播放器可以免费观看大片| av在线播放精品| 亚洲不卡免费看| 最近中文字幕2019免费版| 亚洲综合色惰| 国产精品99久久99久久久不卡 | 亚洲国产av新网站| 曰老女人黄片| 国产又色又爽无遮挡免| 国产国语露脸激情在线看| 美女内射精品一级片tv| 精品一品国产午夜福利视频| 婷婷色综合大香蕉| 免费看不卡的av| 久久婷婷青草| 超色免费av| 国产日韩一区二区三区精品不卡 | 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美亚洲日本最大视频资源| 美女脱内裤让男人舔精品视频| 女人精品久久久久毛片| 少妇人妻精品综合一区二区| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| 美女内射精品一级片tv| 人妻 亚洲 视频| 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 久久久久久久国产电影| 男女免费视频国产| 亚洲内射少妇av| 99热6这里只有精品| 亚洲国产精品999| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 制服丝袜香蕉在线| 观看美女的网站| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 国产片特级美女逼逼视频| 国产又色又爽无遮挡免| www.色视频.com| 中文乱码字字幕精品一区二区三区| 少妇的逼水好多| 91aial.com中文字幕在线观看| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 满18在线观看网站| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 男女啪啪激烈高潮av片| 丝袜美足系列| 国产午夜精品一二区理论片| 久久久久久久久大av| av女优亚洲男人天堂| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 女性被躁到高潮视频| 国产不卡av网站在线观看| 婷婷色综合大香蕉| 国产 精品1| 91精品三级在线观看| 久久久久久久久大av| 丝袜脚勾引网站| 在线播放无遮挡| 久久精品久久久久久噜噜老黄| 99久久精品国产国产毛片| 免费看不卡的av| 国产极品粉嫩免费观看在线 | videosex国产| 日韩强制内射视频| av黄色大香蕉| 久久99精品国语久久久| 美女内射精品一级片tv| 91精品一卡2卡3卡4卡| 3wmmmm亚洲av在线观看| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 久久久久久久久大av| 亚洲人与动物交配视频| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 国产免费一级a男人的天堂| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 久久精品国产自在天天线| 久久国内精品自在自线图片| 十八禁网站网址无遮挡| 久久久国产一区二区| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 久久婷婷青草| 七月丁香在线播放| 91精品国产九色| 黄色配什么色好看| 精品午夜福利在线看| 超碰97精品在线观看| 全区人妻精品视频| 国产日韩一区二区三区精品不卡 | 五月伊人婷婷丁香| 九色亚洲精品在线播放| 在线天堂最新版资源| 久久影院123| 久久久久久久久久久丰满| 日韩一本色道免费dvd| 在线观看免费高清a一片| 日韩电影二区| 亚洲伊人久久精品综合| 欧美3d第一页| 母亲3免费完整高清在线观看 | 亚洲国产av新网站| 亚洲av综合色区一区| 大陆偷拍与自拍| 青春草亚洲视频在线观看| 99久久人妻综合| 亚洲精品自拍成人| 五月天丁香电影| 免费看光身美女| 亚洲综合色网址| 国产欧美日韩一区二区三区在线 | 嘟嘟电影网在线观看| 寂寞人妻少妇视频99o| 黄色怎么调成土黄色| 免费少妇av软件| 国产黄频视频在线观看| 精品午夜福利在线看| 最近中文字幕高清免费大全6| 欧美亚洲日本最大视频资源| 亚洲成人av在线免费| 亚洲伊人久久精品综合| av在线播放精品| 五月玫瑰六月丁香| 久久精品国产自在天天线| 欧美性感艳星| 久久久精品区二区三区| 日韩精品免费视频一区二区三区 | 中文天堂在线官网| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看的影片在线观看| av线在线观看网站| 最近中文字幕2019免费版| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 嘟嘟电影网在线观看| 亚洲人成77777在线视频| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 午夜福利网站1000一区二区三区| 日韩免费高清中文字幕av| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 999精品在线视频| 欧美精品一区二区大全| 婷婷色综合www| 欧美+日韩+精品| 国产男人的电影天堂91| av黄色大香蕉| 又大又黄又爽视频免费| a级毛色黄片| 满18在线观看网站| 一区二区三区免费毛片| 黄色配什么色好看| 国产视频首页在线观看| 精品视频人人做人人爽| 97超视频在线观看视频| 九九爱精品视频在线观看| 只有这里有精品99| 亚洲国产精品成人久久小说| 免费观看av网站的网址| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 丰满乱子伦码专区| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 晚上一个人看的免费电影| 亚洲av中文av极速乱| 日韩精品有码人妻一区| 国产高清不卡午夜福利| 亚洲精品,欧美精品| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 老熟女久久久| 日韩av不卡免费在线播放| 午夜福利视频精品| 色5月婷婷丁香| 十分钟在线观看高清视频www| 人妻系列 视频| 日本免费在线观看一区| 日本av手机在线免费观看| 精品一区二区三卡| 精品久久蜜臀av无| 内地一区二区视频在线| 2022亚洲国产成人精品| 一本久久精品| 十八禁网站网址无遮挡| 国产精品免费大片| 精品人妻一区二区三区麻豆| 亚洲怡红院男人天堂| 久久精品国产亚洲网站| 欧美三级亚洲精品| 一区二区三区免费毛片| 不卡视频在线观看欧美| 国产综合精华液| 久久这里有精品视频免费| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 麻豆乱淫一区二区| 男女边摸边吃奶| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| av在线播放精品| 熟女av电影| 精品久久国产蜜桃| 亚洲精品久久成人aⅴ小说 | 日本爱情动作片www.在线观看| 成年女人在线观看亚洲视频| 亚洲精品色激情综合| 亚洲av在线观看美女高潮| 欧美日韩视频精品一区| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 亚洲国产色片| 日本免费在线观看一区| 亚洲av免费高清在线观看| 免费高清在线观看日韩| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 多毛熟女@视频| 免费少妇av软件| 少妇人妻久久综合中文| 国产深夜福利视频在线观看| 日韩不卡一区二区三区视频在线| 成年av动漫网址| av福利片在线| 如何舔出高潮| 最黄视频免费看| 性色av一级| 亚洲av中文av极速乱| 国产黄色视频一区二区在线观看| 国产精品 国内视频| 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | xxxhd国产人妻xxx| 伊人久久精品亚洲午夜| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放 | 久久久国产一区二区| 一个人免费看片子| 日韩三级伦理在线观看| 日韩视频在线欧美| 欧美国产精品一级二级三级| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频 | 国产极品粉嫩免费观看在线 | 亚洲av国产av综合av卡| 韩国av在线不卡| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看| freevideosex欧美| 97精品久久久久久久久久精品| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 久久免费观看电影| 秋霞在线观看毛片| 久久99蜜桃精品久久| 99热全是精品| 亚洲国产精品一区三区| 午夜影院在线不卡| 国产精品免费大片| 91精品一卡2卡3卡4卡| 一级a做视频免费观看| 国产淫语在线视频| 一级毛片电影观看| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 97超碰精品成人国产| 亚洲欧洲精品一区二区精品久久久 | 成人亚洲欧美一区二区av| 男男h啪啪无遮挡| 不卡视频在线观看欧美| 99久久综合免费| 人人妻人人澡人人爽人人夜夜| 少妇猛男粗大的猛烈进出视频| 岛国毛片在线播放| 性色avwww在线观看| 大香蕉久久网| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 成人无遮挡网站| 亚洲经典国产精华液单| 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 五月天丁香电影| 天天操日日干夜夜撸| 丝袜脚勾引网站| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 国产一区二区三区av在线| 成人二区视频| 精品国产乱码久久久久久小说| 亚洲精品国产av蜜桃| 成人国产麻豆网| 99久久人妻综合| 日日撸夜夜添| 日韩视频在线欧美| 在线观看国产h片| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 天天操日日干夜夜撸| 在线免费观看不下载黄p国产| 2022亚洲国产成人精品| 纯流量卡能插随身wifi吗| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 美女国产视频在线观看| 日韩视频在线欧美| 一级二级三级毛片免费看| 91精品一卡2卡3卡4卡| 久久精品久久精品一区二区三区| 大香蕉久久网| 国产精品久久久久成人av| 伊人亚洲综合成人网| 麻豆乱淫一区二区| 日韩精品有码人妻一区| 国产成人精品一,二区| 啦啦啦在线观看免费高清www| 成年女人在线观看亚洲视频| 黄片播放在线免费| 久久精品人人爽人人爽视色| 国产精品久久久久成人av| 国产永久视频网站| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂| 夫妻性生交免费视频一级片| 五月天丁香电影| 最新的欧美精品一区二区| 另类精品久久| 日韩制服骚丝袜av| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 女性生殖器流出的白浆| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 久久精品夜色国产| 99热国产这里只有精品6| 丝袜喷水一区| 欧美另类一区| 欧美日本中文国产一区发布| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 最近的中文字幕免费完整| 亚洲精品,欧美精品| 嘟嘟电影网在线观看| 亚洲国产av影院在线观看| 国产成人精品一,二区| 久久久精品94久久精品| 国产在线视频一区二区| 亚洲四区av| 亚洲精品自拍成人| 国产一级毛片在线| 黄色毛片三级朝国网站| 国产午夜精品一二区理论片| 日韩成人av中文字幕在线观看| 日韩熟女老妇一区二区性免费视频| 插阴视频在线观看视频| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 国产一区二区在线观看日韩| 日本欧美视频一区| 国产国拍精品亚洲av在线观看| 91精品一卡2卡3卡4卡| av卡一久久| 91久久精品电影网| 国产一级毛片在线| 久久久久久久久大av| 精品一品国产午夜福利视频| 天美传媒精品一区二区| 免费av不卡在线播放| 在现免费观看毛片| 久久99蜜桃精品久久| 日日啪夜夜爽| 久久久国产一区二区| 人妻一区二区av| 亚洲成人手机| 人成视频在线观看免费观看| 亚洲精品中文字幕在线视频| 国产精品秋霞免费鲁丝片| 中文字幕久久专区| 亚洲精品久久午夜乱码| 看免费成人av毛片| av在线播放精品| 亚洲国产精品一区二区三区在线| 久久99热6这里只有精品| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 激情五月婷婷亚洲| 日韩熟女老妇一区二区性免费视频| 成年人午夜在线观看视频| 欧美精品人与动牲交sv欧美| 国产精品蜜桃在线观看| 高清av免费在线| 成年人免费黄色播放视频| 免费观看的影片在线观看| a级毛片在线看网站| 成年av动漫网址| 国产精品人妻久久久影院| 亚洲久久久国产精品| 午夜91福利影院| a级毛片在线看网站| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 精品少妇黑人巨大在线播放| 美女cb高潮喷水在线观看| 最新的欧美精品一区二区| 国产乱人偷精品视频| 九色成人免费人妻av| 国产在线视频一区二区| 亚洲国产精品成人久久小说| 婷婷色综合大香蕉| 成人综合一区亚洲| 久久青草综合色| 九九在线视频观看精品| 在线观看www视频免费| 桃花免费在线播放| 久久久久久久久久成人| 一区二区三区乱码不卡18| 在线观看免费日韩欧美大片 | 日本猛色少妇xxxxx猛交久久| 伦精品一区二区三区| 午夜福利影视在线免费观看| 只有这里有精品99| 亚洲av成人精品一区久久| 中国国产av一级| 中文字幕人妻丝袜制服| 美女视频免费永久观看网站| av又黄又爽大尺度在线免费看| 亚洲欧美成人精品一区二区| 99九九在线精品视频| 亚洲av国产av综合av卡| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧洲日产国产| 亚洲中文av在线| a 毛片基地| 日韩精品有码人妻一区| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 久久久久久久亚洲中文字幕| 欧美性感艳星| 久久人妻熟女aⅴ| 国产精品蜜桃在线观看| 黑人猛操日本美女一级片| 色网站视频免费| a级毛色黄片| 大码成人一级视频| 日本黄色日本黄色录像| av女优亚洲男人天堂| 日本午夜av视频| 精品视频人人做人人爽| 久久韩国三级中文字幕| 亚洲激情五月婷婷啪啪| 久久久a久久爽久久v久久| 制服人妻中文乱码| 日本黄大片高清| 久久久久久久大尺度免费视频| 2018国产大陆天天弄谢| 国产高清不卡午夜福利| 亚洲成人一二三区av| 亚洲精品色激情综合| h视频一区二区三区| 久久韩国三级中文字幕| av在线观看视频网站免费| 九九爱精品视频在线观看| 啦啦啦在线观看免费高清www| videosex国产| 国产日韩欧美视频二区| 99久久中文字幕三级久久日本| 国产成人freesex在线| 日韩亚洲欧美综合| 国产精品秋霞免费鲁丝片| 久久av网站| 欧美 亚洲 国产 日韩一| 免费观看a级毛片全部| 丁香六月天网| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 老女人水多毛片| xxxhd国产人妻xxx| 亚洲激情五月婷婷啪啪| 亚洲欧美色中文字幕在线| 国产成人a∨麻豆精品| 国产精品成人在线| av专区在线播放| 日韩欧美精品免费久久| 制服诱惑二区| 日韩电影二区| 精品卡一卡二卡四卡免费| 日产精品乱码卡一卡2卡三| 日韩电影二区| 亚洲综合精品二区|