• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A resilient control framework of droop-controlled microgrids for fault-tolerant operation

    2021-02-16 07:15:06WANGYanboRUANWenbinCHENZhe
    關(guān)鍵詞:磁芯結(jié)構(gòu)圖故障率

    WANG Yanbo, RUAN Wenbin, CHEN Zhe

    Department of Energy Technology, Aalborg University, 9220, Aalborg, Denmark

    [Abstract]This paper presents a resilient control framework to implement power control in a cost-effective way.Sensorless control strategy is developed to perform desirable power control in microgrids considering nonlinear filter inductors.A virtual flux (VF) model is first established to estimate output voltage signal so that practical voltage sensors can be removed.Then, the effect of nonlinear filter inductor on voltage estimation accuracy is analyzed, and a robust observer-based VF method is developed to mitigate this effect.Furthermore, a robust observer-based voltage sensorless droop control method is developed by adopting voltage estimation in power control and voltage control loops.Simulation results show that the proposed control strategy is able to perform desirable power control performance without using voltage sensors.And the proposed controller has a sound capability to mitigate the effect of nonlinear inductor, which thus improves system reliability and reduces design cost of microgrid.

    [Key words]voltage sensorless droop control;VF-based voltage reconstruction;fault-tolerant capability;AC microgrid

    1 Introduction

    The increasing exploitation of renewable energy sources is promoting development of distributed power generation systems like microgrid, where three-phase voltage source converters (VSC) with LC filter have been frequently adopted as important interfaces[1,2].

    The typical architecture of AC microgrid is shown in Fig.1, where control tasks are usually performed in a hierarchical manner.Local controllers are used to perform power control and voltage/current control according to the reference values from energy management system (EMS).And EMS is responsible for the reliable, secure and economical operation of microgrids.In fact, a microgrid tends to be used to supply reliable electricity for critical loads, such as UPS application, ship microgrid and aircraft power system[3,4].Therefore, long-term reliability is becoming essential concern in power conversion systems and one of indispensable constraint of EMS.However, there exist many potential failures in real power system caused by hardware or controllers, which can result in critical system breakdown, maintain cost and energy loss.Fig.2(a) shows the downtime of PV system during 5 years.It can be seen that the majority of system breakdown events are caused by inverter failure, which is mostly associated with the damage of hardware such as sensors, power devices and PCB boards[5].Fig.2(b) shows the distribution ratio of subsystems failure in wind turbines[6].It can also be seen that the failure rate of control system of wind turbines is high, where the downtime caused by sensor failure takes up about 27%.Furthermore, sensor-based control strategies can be disabled once the failure of sensors happens.Therefore, fault-tolerant operation of power converter is essential to mitigate the effect of sensor faults on system reliability[3].

    Fig. 1 The architecture of AC microgrid圖1 交流微電網(wǎng)結(jié)構(gòu)圖

    Fig.2 The contribution of subsystems to overall failure rate圖2 各子系統(tǒng)對總故障率的點(diǎn)比圖

    With the characteristics of enhancing system fault-tolerant capability, sensorless control methods have been paid increasing attentions in recent work[7-21].The application of sensorless control strategies is attractive and promising because of the following advantages[7,8].

    1.1 Cost reduction

    The sensors cost takes up a significant part in total cost in mid/low power converter[7,8].Sensorless operation can reduce effectively the hardware cost of power converter.In addition, the downtime cost and maintenance cost related with sensor failure can be reduced.

    1.2 Power density improvement

    Without using sensors, the sampling circuits and signal conditioning circuits can be removed, so that the power density of power converter can be improved.

    1.3 Reliability enhancement

    Sensorless control methods can perform power control without using sensors, which means sensorless controller can be enabled with sensor failures, preforming improved system reliability.

    Due to the aforementioned merits, sensorless control strategies have been intensively proposed to reduce the number of the voltage or current sensors in power converters.As an invited paper, this paper first reviews sensorless control strategies in power converters, and displays contributions of our previous work[22].

    2 Problem formulation and motivation

    2.1 Review of droop control strategy

    Fig.3 shows the circuit configuration of an islanded microgrid with multiple paralleled inverters, where droop control strategy is widely applied because of high reliability and flexibility, which can be given as[23]:

    (1)

    Fig.3 The circuit configuration of the islanded AC microgrid with the multiple paralleled inverters圖3 多逆變器并列運(yùn)行的交流微電網(wǎng)離網(wǎng)控制電路圖

    (2)

    (3)

    (4)

    Where:voi_αandvoi_βare inverter output voltage inαβframe;iLi_αandiLi_βare inverter output current inαβframe.

    Droop control strategies are able to perform desirable power sharing without using critical communication facilities.However, output voltage measuring is necessary in both power control loop and voltage control loop, leading to a high dependence on voltage sensors.A fair comparison in terms of comprehensive performance indexes is shown in Fig.4 for system under droop control strategy and voltage sensorless control strategy.Fig.4(a) shows performance of droop-controlled system, which tends to have characteristics of high cost, low power density and low reliability.Fig.4(b) shows system performance under voltage sensorless control strategy.It can be seen that lower cost, higher power density and higher reliability are achieved.However, power control performance can be effected by the voltage estimation accuracy.Therefore, the vision of this work is to develop a robust observer-based voltage sensorless droop control strategy to perform power control without using voltage sensors, so that the ideal system performance can be achieved in a cost-effective way as shown in Fig.4.

    Fig.4 The operation performance of system under different control strategies圖4 不同控制策略下的運(yùn)行特性

    2.2 Review of sensorless control methods

    Various sensorless control techniques have bene frequently developed in inverter-fed generator and power system, such as doubly-fed induction generator (DFIG)-based wind turbine[9-11], grid-connected photovoltaic (PV) inverters[12-14], grid-connected converters[8,15-17]and individual voltage source inverter (VSI).Sensorless control methods are initially applied in doubly-fed induction machine to perform decoupled power control without rotor position sensors[9-11].Then, various sensorless maximum power point tracking (MPPT) techniques are proposed for grid-connected PV inverters, including indirect current sensorless MPPT control strategies[12], converter topology-based current sensorless MPPT techniques[13]and irradiance/temperature sensorless estimation technique[14].For gird-connected converters, a direct-power-control-based sensorless control strategy is initially proposed in ref.[15], then other strategies are developed by virtual flux (VF) concept[16], Kalman filters[17]and observer-based methods[8]for a lower noise sensitivity.Furthermore, these sensorless control strategies have been paid many attentions in individual inverter[18-20].A voltage RMS controller is developed for single-phase standalone inverter in ref.[18], where VF method is adopted to perform stable closed-loop control without output voltage sensor.A current sensorless finite-set model predictive control (MPC) strategy is developed in ref.[19], where only capacitor voltage sensor is required to achieve favorable voltage quality inLC-filtered voltage source inverter.An observer-based capacitor current sensorless control strategy for a single-phase inverter is presented in ref.[20], where a multi-loop control system is utilized to perform smooth transfer between grid-connected and standalone modes.

    However, the aforementioned studies mainly focus on the control of an individual inverter.Sensorless control techniques are slightly applied in droop-conrolled microgrid with multiple inverters, where sensorless control method is attractive for cost saving and reliability improvement.A sensorless power control strategy is presented in our previous work[21], where output current and voltage sensors are replaced by signal estimation technique.However, the effect of nonlinear factors of system like soft-saturation characteristics of filter inductors[24]has not been addressed in previous work[7-21], which could cause a model-mismatch issue, deteriorate signal-estimation accuracy and mitigate system stability.Moreover, in the practical operation of microgrids, filter current sensors are indispensable for overcurrent protection[18].While output voltage sensors can be replaced by voltage sensorless control method for cost saving and reliability enhancement in mid/low power systems.Note that the advantage of voltage sensorless control method is more evident with the increase of inverter number, while for a microgrid withninverters, the cost of sensors with number of 3×ncan be reduced as shown in Fig.3.In high-power systems, although output voltage sensors can not be eliminated because they are also used for many other functions apart from power and voltage control, such as condition monitoring, harmonic monitoring, reliability evaluation, etc.[25], sensorless-operation capability is also critical for high-reliable operation in case of unexpected sensor faults.Therefore, the vision of this work is to propose a resilient control framework by voltage sensorless technique and deal with the effect of nonlinear characteristics on controllers, so that desirable control performance and fault-tolerant capability can be achieved in a cost-effective way.The main contributions of our work[22]can be explained as follows:(1) VF model is established to reconstruct output voltage;(2) The effect of nonlinear inductor on voltage estimation accuracy is analyzed and mitigated;(3) Robust observer-based voltage sensorless droop control strategy is proposed to perform power control without using voltage sensors, obtain a sound capability to reject the effect of nonlinear inductor.

    3 Proposed voltage sensorless droop control strategy

    3.1 VF-based voltage recontruction method

    In this work, VF method is employed to reconstruct output voltage by using DC-link voltage, output current and PWM signals.The definition of VF is originally introduced in ref.[26] as:

    (5)

    where :ψi_αandψi_βare VF inαβframe;ωfis cut-off frequency of first-order filter;Lfiis the inductance of filter inductor;vi_αandvi_βare PWM converter voltageviinαβframe.Voltageviis given as:

    (6)

    Where:vdciis DC link voltage of thei-th inverter;Sai,SbiandSciare states of switches of thei-th inverter.

    The relationship of amplitude and angle betweenψiandvoiis given as:

    (7)

    Where:θψiandθvoiare instantaneous phase angles of VF and output voltage.

    (8)

    3.2 Robust observer-based VF method

    The accuracy of voltage reconstruction is critical for system power control performance, which is shown in Fig.4(b).However, it can be seen from and that the voltage estimation is related with the filter inductance, which means that the accuracy of voltage estimation can be deteriorated due to inductance perturbation.The inductance perturbation of filter inductor has been elaborated in our previous work[22]and will be reviewed in this section.

    In practical applications, permeability of powder core can be slowly decreased with the increase of inductor current, which can lead to nonlinear characteristics of filter inductors[22].The average nonlinear inductor model is established in[22]as:

    (9)

    Where:Imis amplitude of output currentiL;aavg, cavgand eavgare parameters of filter inductor which are associated with inductor core material and are given in ref.[22].

    Fig.5 shows the practical soft-saturation characteristics of inductors with different powder magnetic cores[27,28]as variation of load powers.It can be seen that the actual inductances of filter inductors (takingLf1andLf2in Table 1 as an example) can be changed with the increase of load current, in which the current-dependent inductance characteristics of two inductors are different due to difference of magnetic materials.

    Fig.5 The practical soft-saturation characteristics of inductors with different powder magnetic cores as variation of load powers圖5 不同負(fù)載功率下不同磁芯電感實(shí)際軟飽和特性圖

    In order to mitigate the effect of inductor nonlinearity on voltage estimation accuracy, a robust observer-based voltage estimation method is developed by configuring the average nonlinear inductor model into the VF method as:

    (10)

    Where:

    The process of robust observer-based voltage estimation method is shown in Fig.6(a).It can be seen that a robust observer is employed to predict filter inductance, the voltage estimation process has a sound capability to mitigate the effect of nonlinear inductor.

    3.3 Voltage sensorless droop control strategy

    Once output voltage is reconstructed, voltage sensorless droop control strategy can be given as:

    (11)

    (12)

    (13)

    Fig.6 shows the control diagram of the proposed voltage sensorless droop control strategy.It can be seen that the voltage estimation is adopted in both power control loop and voltage control loop so that voltage sensors can be removed.

    Fig.6 The control diagram of proposed controller圖6 控制器控制框圖

    4 Simulation verification

    To validate effectiveness of the proposed voltage sensorless droop control strategy, the simulation verification is implemented in a scale-down AC microgrid with two inverters in MATLAB/SIMULINK.Circuit configuration of the exemplified microgrid is shown in Fig.3.The circuit and control parameters applied in the simulation verification are given in Table 1.

    Case1: The performance of proposed voltage sensorless droop control strategy

    In this case, operation performance of paralleled-inverters under proposed voltage sensorless droop control strategy are tested.Load step is exerted at 2s to validate dynamic performance of the proposed droop controller.Fig.7 and Fig.8 show the results about active and reactive power sharing performance under a conventional droop control strategy and the proposed droop control strategy.It can be seen that the proposed voltage sensorless droop control strategy can implement desirable power sharing performance as compared with the conventional droop control strategy.

    Fig.7 The simulation results under the conventional droop control strategy圖7 傳統(tǒng)下垂控制策略仿真結(jié)果

    Fig.8 The simulation results under the proposed control strategy圖8 控制策略的仿真結(jié)果

    Case2: The immunity to nonlinearity of filter inductor

    In this case, the effect of nonlinear filter inductor on power sharing characteristic is shown, and capability of the proposed controller to mitigate this effect is tested.The VF voltage estimation method without robust observer is enabled during 2~4s and the robust observer-based voltage estimation method is activated during 0~2s and 4~6s.Fig.9 shows the result about power sharing performance.It can be seen that the accuracy of reactive power sharing is deteriorated due to the effect of nonlinear filter inductors.However, once the proposed droop control strategy is activated, the reactive power sharing error can be eliminated and equal reactive power sharing can be implemented.

    Fig.9 The simulation result of case 2圖9 例2的仿真結(jié)果

    5 Conclusion

    This paper reviews work on sensorless control strategies in power converters and displays our previous work on this topic.A robust observer-based voltage sensorless droop control strategy is presented to implement proportional power sharing with low cost and high reliability.VF model is first established to reconstruct output voltage.Then, a robust observer-based VF method is developed to mitigate the voltage estimation error caused by nonlinear filter inductor.Furthermore, a robust observer-based voltage sensorless droop control method is developed by adopting voltage estimation in power control and voltage control loops.Simulation results show that the proposed robust observer-based voltage sensorless droop control strategy is able to implement desirable power sharing with immunity to the nonlinear perturbation of filter inductor.

    猜你喜歡
    磁芯結(jié)構(gòu)圖故障率
    中國共產(chǎn)黨第二十屆中央組織結(jié)構(gòu)圖
    磁通門磁探頭參數(shù)仿真優(yōu)化*
    概率知識(shí)結(jié)構(gòu)圖
    第十九屆中共中央組織結(jié)構(gòu)圖
    探索零故障率的LED智能顯示終端
    基于故障率研究的數(shù)字保護(hù)最優(yōu)檢修周期
    開口磁芯的高頻電流傳感器幅頻特性研究
    河南科技(2015年11期)2015-03-11 16:25:02
    降低空氣開關(guān)跳閘故障率的措施研究
    降低集控中心計(jì)算機(jī)故障率措施
    河南科技(2014年22期)2014-02-27 14:18:03
    勘誤(2013年第6期)
    無損檢測(2013年8期)2013-08-15 00:49:49
    亚洲av片天天在线观看| 日韩欧美国产一区二区入口| 捣出白浆h1v1| 91国产中文字幕| 成人三级做爰电影| 亚洲专区字幕在线| 午夜两性在线视频| 亚洲欧美日韩另类电影网站| 99久久综合免费| 国产片内射在线| 午夜成年电影在线免费观看| 国产成人免费观看mmmm| 亚洲天堂av无毛| 欧美日韩一级在线毛片| 国产一区二区在线观看av| 老司机午夜福利在线观看视频 | 啦啦啦中文免费视频观看日本| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 久久九九热精品免费| 国产精品 欧美亚洲| 在线 av 中文字幕| 两个人免费观看高清视频| 成在线人永久免费视频| 亚洲av电影在线进入| 亚洲男人天堂网一区| 他把我摸到了高潮在线观看 | 日韩人妻精品一区2区三区| 老司机福利观看| 亚洲精品国产av成人精品| 乱人伦中国视频| 黄色视频不卡| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频| 国产精品久久久av美女十八| 一级片免费观看大全| 亚洲综合色网址| 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 亚洲av日韩在线播放| 老司机午夜福利在线观看视频 | 99热全是精品| 精品人妻熟女毛片av久久网站| 超色免费av| 国产精品一区二区在线不卡| 国产精品一二三区在线看| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 少妇猛男粗大的猛烈进出视频| 老熟妇仑乱视频hdxx| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇内射三级| 波多野结衣av一区二区av| 亚洲九九香蕉| 在线av久久热| 久久综合国产亚洲精品| a级片在线免费高清观看视频| h视频一区二区三区| 国产一卡二卡三卡精品| 黄色视频不卡| 国产一区二区三区在线臀色熟女 | 精品人妻一区二区三区麻豆| 黄色视频,在线免费观看| 三级毛片av免费| 国产免费视频播放在线视频| 国产精品影院久久| 精品国产一区二区三区久久久樱花| 热99re8久久精品国产| 久久青草综合色| 激情视频va一区二区三区| 久久中文看片网| 最新的欧美精品一区二区| 如日韩欧美国产精品一区二区三区| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| 人妻一区二区av| 大香蕉久久成人网| 国产成人免费无遮挡视频| 老司机靠b影院| 99精品欧美一区二区三区四区| 嫁个100分男人电影在线观看| av天堂久久9| 一边摸一边做爽爽视频免费| 精品人妻熟女毛片av久久网站| 男人操女人黄网站| 亚洲国产欧美网| 男女午夜视频在线观看| 人成视频在线观看免费观看| 欧美大码av| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 美女视频免费永久观看网站| 老汉色av国产亚洲站长工具| 精品一区二区三区四区五区乱码| 国产精品熟女久久久久浪| 国产在线观看jvid| 男女边摸边吃奶| 91大片在线观看| 国产无遮挡羞羞视频在线观看| 欧美黄色片欧美黄色片| 国产麻豆69| av电影中文网址| 欧美97在线视频| 一级片免费观看大全| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 国产三级黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 欧美 日韩 精品 国产| videosex国产| 亚洲欧洲日产国产| 老熟妇仑乱视频hdxx| 老司机影院毛片| 老司机午夜福利在线观看视频 | 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 各种免费的搞黄视频| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看 | 欧美黄色片欧美黄色片| 国产区一区二久久| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 亚洲综合色网址| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 亚洲国产av新网站| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 最近最新中文字幕大全免费视频| 黑人猛操日本美女一级片| 性色av一级| av有码第一页| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 日本a在线网址| 高清在线国产一区| 久久精品国产a三级三级三级| 51午夜福利影视在线观看| 夫妻午夜视频| 亚洲专区中文字幕在线| 美女大奶头黄色视频| 欧美久久黑人一区二区| 亚洲成人免费av在线播放| 精品福利永久在线观看| 一区二区三区四区激情视频| 欧美97在线视频| 欧美精品一区二区免费开放| 在线观看舔阴道视频| 精品视频人人做人人爽| 国产成人av教育| 岛国在线观看网站| 国产亚洲精品久久久久5区| 最新在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 精品一区在线观看国产| 久久久久久免费高清国产稀缺| av欧美777| 大香蕉久久成人网| 天堂8中文在线网| 国产精品久久久久久精品古装| 99精国产麻豆久久婷婷| 午夜成年电影在线免费观看| 极品少妇高潮喷水抽搐| 香蕉国产在线看| 91九色精品人成在线观看| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 亚洲欧美日韩另类电影网站| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 国产在视频线精品| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 岛国毛片在线播放| 久久久精品94久久精品| 狠狠精品人妻久久久久久综合| 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 大型av网站在线播放| 亚洲欧美日韩高清在线视频 | 成年美女黄网站色视频大全免费| 中文字幕av电影在线播放| 日韩电影二区| 久9热在线精品视频| 在线观看舔阴道视频| 国产不卡av网站在线观看| 一区二区av电影网| 亚洲三区欧美一区| 精品福利永久在线观看| 精品久久久精品久久久| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 最黄视频免费看| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 成人三级做爰电影| 新久久久久国产一级毛片| 亚洲精品久久久久久婷婷小说| netflix在线观看网站| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 欧美日韩亚洲高清精品| 最近最新免费中文字幕在线| 日韩免费高清中文字幕av| 精品乱码久久久久久99久播| www.精华液| av线在线观看网站| 麻豆国产av国片精品| 女性被躁到高潮视频| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 一区二区日韩欧美中文字幕| 成人国产av品久久久| 在线观看人妻少妇| 一区二区三区精品91| 国产成+人综合+亚洲专区| 人妻一区二区av| 91麻豆av在线| 女人高潮潮喷娇喘18禁视频| 操出白浆在线播放| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| 亚洲色图综合在线观看| 亚洲国产精品999| 久久久久国产一级毛片高清牌| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 亚洲成人手机| 十八禁网站网址无遮挡| 欧美大码av| 香蕉国产在线看| 久久精品国产综合久久久| 国产又色又爽无遮挡免| 国产精品免费大片| 在线观看一区二区三区激情| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区 | 久久人人97超碰香蕉20202| 久久久久国内视频| 超碰成人久久| 黄色视频不卡| 精品国产乱子伦一区二区三区 | 亚洲色图综合在线观看| 另类亚洲欧美激情| 少妇的丰满在线观看| 中文字幕制服av| 午夜福利在线观看吧| 国产在视频线精品| 久久国产精品大桥未久av| 50天的宝宝边吃奶边哭怎么回事| kizo精华| 久久久精品94久久精品| 午夜福利乱码中文字幕| 老司机福利观看| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 性色av乱码一区二区三区2| 免费一级毛片在线播放高清视频 | 国产一区二区三区av在线| 下体分泌物呈黄色| 在线看a的网站| 99久久99久久久精品蜜桃| 99精品欧美一区二区三区四区| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 好男人电影高清在线观看| 一区二区三区精品91| 下体分泌物呈黄色| 99国产精品一区二区蜜桃av | 亚洲精品久久午夜乱码| 亚洲av美国av| 欧美大码av| 精品视频人人做人人爽| 一级片'在线观看视频| 99国产极品粉嫩在线观看| 国产一区二区三区av在线| 久久国产精品影院| a级毛片在线看网站| 不卡av一区二区三区| 91成年电影在线观看| 我的亚洲天堂| 男女床上黄色一级片免费看| 国产精品一区二区免费欧美 | 丁香六月欧美| 日韩,欧美,国产一区二区三区| 国产片内射在线| 亚洲国产看品久久| 十分钟在线观看高清视频www| 狠狠精品人妻久久久久久综合| 国产色视频综合| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 亚洲欧美一区二区三区久久| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 免费高清在线观看日韩| 王馨瑶露胸无遮挡在线观看| 成在线人永久免费视频| 欧美乱码精品一区二区三区| 成在线人永久免费视频| 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 久久人人爽av亚洲精品天堂| 在线精品无人区一区二区三| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区| 美女主播在线视频| 黑人猛操日本美女一级片| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看 | 国产av国产精品国产| 飞空精品影院首页| 黄色视频,在线免费观看| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 久热这里只有精品99| 欧美成狂野欧美在线观看| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 在线av久久热| 超碰97精品在线观看| 99国产综合亚洲精品| 91大片在线观看| 久久久国产欧美日韩av| 亚洲人成电影观看| 搡老熟女国产l中国老女人| 久久av网站| 日韩中文字幕视频在线看片| 丝袜在线中文字幕| 免费观看人在逋| 国产人伦9x9x在线观看| 国产又爽黄色视频| 三级毛片av免费| 欧美日韩精品网址| 久久毛片免费看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| 国产精品一二三区在线看| 天天操日日干夜夜撸| 日日爽夜夜爽网站| 精品亚洲成国产av| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| av天堂在线播放| 久久久久久久久久久久大奶| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品中文字幕一二三四区 | 欧美日韩亚洲国产一区二区在线观看 | 捣出白浆h1v1| av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲 | 亚洲国产看品久久| 欧美在线一区亚洲| 色视频在线一区二区三区| 丁香六月天网| 久久精品亚洲av国产电影网| 一区二区三区乱码不卡18| 久久天堂一区二区三区四区| 日本wwww免费看| 一级a爱视频在线免费观看| 久久女婷五月综合色啪小说| 精品一区在线观看国产| 亚洲伊人色综图| 伊人亚洲综合成人网| 国产av国产精品国产| 国产一区有黄有色的免费视频| 久久久久国内视频| 久久青草综合色| 精品国产一区二区三区四区第35| 桃花免费在线播放| 悠悠久久av| 99国产精品一区二区蜜桃av | 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 超碰成人久久| 最近最新免费中文字幕在线| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 王馨瑶露胸无遮挡在线观看| 亚洲成人国产一区在线观看| 91麻豆av在线| 丝瓜视频免费看黄片| 国产色视频综合| av免费在线观看网站| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 亚洲av美国av| 夜夜夜夜夜久久久久| 侵犯人妻中文字幕一二三四区| 视频区欧美日本亚洲| 伦理电影免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 亚洲精品一卡2卡三卡4卡5卡 | av片东京热男人的天堂| 国产一级毛片在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 男女床上黄色一级片免费看| 国产男女内射视频| 99久久99久久久精品蜜桃| 精品视频人人做人人爽| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 老熟妇乱子伦视频在线观看 | 亚洲精品国产av成人精品| 大型av网站在线播放| 精品少妇一区二区三区视频日本电影| 免费观看a级毛片全部| 亚洲全国av大片| 久久久久久亚洲精品国产蜜桃av| 一区福利在线观看| www.熟女人妻精品国产| 国产在线视频一区二区| av电影中文网址| 69av精品久久久久久 | 宅男免费午夜| 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 国产精品1区2区在线观看. | 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 亚洲精品国产区一区二| 操美女的视频在线观看| 一区福利在线观看| 人人妻人人添人人爽欧美一区卜| 成在线人永久免费视频| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 亚洲一区中文字幕在线| 欧美精品一区二区免费开放| 午夜免费成人在线视频| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 国产成人免费无遮挡视频| 久久人妻福利社区极品人妻图片| 一二三四在线观看免费中文在| 后天国语完整版免费观看| 亚洲全国av大片| 首页视频小说图片口味搜索| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 日韩有码中文字幕| 亚洲欧美色中文字幕在线| 伦理电影免费视频| 女性生殖器流出的白浆| 一边摸一边抽搐一进一出视频| 91国产中文字幕| 成人国产一区最新在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产一区二区 视频在线| 男女床上黄色一级片免费看| 国产成人av激情在线播放| 深夜精品福利| av电影中文网址| 国产成人精品久久二区二区91| 中文字幕精品免费在线观看视频| 性色av乱码一区二区三区2| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 精品国产一区二区三区四区第35| 我的亚洲天堂| 久久人妻熟女aⅴ| 国产精品国产三级国产专区5o| 亚洲欧美成人综合另类久久久| 国产日韩欧美在线精品| 天堂8中文在线网| 美女脱内裤让男人舔精品视频| 一级a爱视频在线免费观看| 精品熟女少妇八av免费久了| 啦啦啦免费观看视频1| 黄片播放在线免费| 亚洲九九香蕉| 亚洲三区欧美一区| 两人在一起打扑克的视频| 国产主播在线观看一区二区| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 黑人巨大精品欧美一区二区mp4| 99久久国产精品久久久| 午夜免费观看性视频| 窝窝影院91人妻| 亚洲av日韩在线播放| 999久久久精品免费观看国产| 99久久精品国产亚洲精品| 久久精品国产亚洲av香蕉五月 | 91老司机精品| 精品国产乱码久久久久久男人| 午夜两性在线视频| 亚洲av男天堂| 18禁国产床啪视频网站| xxxhd国产人妻xxx| av有码第一页| 一本久久精品| 美女大奶头黄色视频| 久久久精品区二区三区| 国产欧美日韩综合在线一区二区| 97在线人人人人妻| 老司机午夜福利在线观看视频 | 欧美+亚洲+日韩+国产| 老司机午夜十八禁免费视频| 国产xxxxx性猛交| 国产精品 欧美亚洲| 91麻豆精品激情在线观看国产 | www.自偷自拍.com| e午夜精品久久久久久久| 国产真人三级小视频在线观看| 正在播放国产对白刺激| 日韩,欧美,国产一区二区三区| 久久热在线av| 1024香蕉在线观看| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 热99国产精品久久久久久7| 久久精品成人免费网站| 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 国产日韩欧美在线精品| 成人影院久久| 国产在线视频一区二区| 丝袜美足系列| 日本a在线网址| 久久国产精品影院| 国产一区二区三区av在线| 三上悠亚av全集在线观看| 在线av久久热| 国产不卡av网站在线观看| 亚洲情色 制服丝袜| 一二三四社区在线视频社区8| 9191精品国产免费久久| 最近最新中文字幕大全免费视频| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 国产精品一二三区在线看| 国产欧美日韩一区二区精品| 天天躁夜夜躁狠狠躁躁| 国产97色在线日韩免费| 男人添女人高潮全过程视频| 一级毛片电影观看| 亚洲国产精品999| 啦啦啦在线免费观看视频4| 午夜福利免费观看在线| 亚洲欧美清纯卡通| 老鸭窝网址在线观看| 性色av一级| 午夜老司机福利片| tube8黄色片| svipshipincom国产片| 久久av网站| 99国产精品99久久久久| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 他把我摸到了高潮在线观看 | 日本欧美视频一区| 国产成人免费无遮挡视频| 国产黄色免费在线视频| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 交换朋友夫妻互换小说| 精品人妻1区二区| 我的亚洲天堂| av网站免费在线观看视频| 亚洲少妇的诱惑av| 精品少妇久久久久久888优播| 一级片免费观看大全| 精品亚洲成国产av| 一区二区三区四区激情视频| 午夜福利在线观看吧| av在线老鸭窝| 一级毛片精品| 免费高清在线观看视频在线观看| 啦啦啦免费观看视频1| 亚洲成人手机| 欧美成狂野欧美在线观看| 在线观看免费视频网站a站| 精品国产国语对白av| 国产一区二区三区av在线| 日韩欧美一区视频在线观看| 午夜福利影视在线免费观看| 欧美日韩福利视频一区二区| 国产91精品成人一区二区三区 |