• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高比探測(cè)率和高速石墨烯/n-GaAs復(fù)合結(jié)構(gòu)的光電探測(cè)器

    2021-02-05 07:15:30田慧軍劉巧莉胡安琪
    中國(guó)光學(xué) 2021年1期
    關(guān)鍵詞:北京郵電大學(xué)北京工業(yè)大學(xué)學(xué)部

    田慧軍,劉巧莉,岳 恒,胡安琪 ,郭 霞

    (1. 北京工業(yè)大學(xué) 材料與制造學(xué)部,北京 100124;2. 北京郵電大學(xué) 電子工程學(xué)院,北京 100876)

    1 Introduction

    Graphene with atomic layer thickness has attracted worldwide attention because of its unique electronic, optoelectronic, mechanical properties[1,2].Recently, hybrid graphene/semiconductor phototransistors have been increasingly investigated for optoelectronic applications because of their ultrahigh responsivity[3-5]. In such structures, photogenerated carriers separate at the interface of the graphene/semiconductor junction. Because of the photogating effect, the responsivity obtained via such photoconductivity-based devices, whose photocurrent was measured from source-drain electrodes, can be as high as 1010A/W at 0.19V[6]. The corresponding specific detectivity (D*), which characterizes the sensitivity of a photodetector, has been reported to be as high as 1.4×1012Jones[6]. However,based on a detailed comparison of the magnitude of three types of noise[6,7], it can be found that the D*of such phototransistors is mainly limited by 1/f noise[6], not the thermal noise or the shot noise,which play dominant roles in conventional photovoltaic-type semiconductor photodiodes[7-8]. The 1/f noise in this system mainly originates from the carrier trapping and detrapping processes at the graphene/semiconductor interface[9]. In other words,the D*of photoconductivity-based devices ranges from ~108Jones to ~1014Jones, which brings great enhancement in responsivity[3-6]. A high density of trapping centers at the interface also results in severe persistent photoconduction, and a relatively long transient response time. Generally, the reported transient response time of such hybrid phototransistors is in the order of seconds or even milliseconds[5,6]. These photodetectors need to work under external bias voltage, whose applications are usually limited because of the large 1/f noise. To overcome these limitations, new types of photodetectors are required[10].

    For the direction perpendicular to the graphene/semiconductor junction, whose photocurrent is measured by source-gate electrodes, interface traps play only a small role in the entire current transport loop. The source of 1/f noise is lessened and the persistent photoconductive effect can be relieved,which induces a high D*and high response speed[11].These photodetectors with low power consumption,low cost and high sensitivity can satisfy practical applications’ requirements such as in visible light imaging and large-scale integrated circuitry[12,13]. For photovoltaic-type devices, the D*ranges from ~1010Jones to ~1013Jones, which originates from there being lower noise under zero voltage[10]. Moreover,the reported transient response time of photovoltaictype devices is in the order of microseconds[11]. In this paper, the photocurrent measured from the source-gate electrodes of a hybrid graphene/n-GaAs photodiode demonstrated improved D*and response speed. This work is promising for developing low power consumption visible-light photodetectors with high sensitivity that are ideal in applications like imaging.

    2 Materials and methods

    Si doped with a GaAs substrate with an electron concentration of ~1×1018cm?3was selected for this study. Au/Ge/Ni/Au (10/10/5/100nm) electrodes were deposited on the back of the n-GaAs substrate and then treated via rapid thermal annealing at 430°C for 35 s in an N2environment to form ohmic contact[14]. The graphene was synthesized via chemical vapor deposition on Cu foil and then transferred to the front of the GaAs substrate using polymethylmethacrylate (PMMA) as the supporting film. Thus, a hybrid graphene/n-GaAs photodiode was obtained after metal deposition. The Raman spectrum was tested using a Renishaw Invia Raman microscope with a 514-nm laser source. Electrical measurements were carried out using a Keithley 4 200. Illumination was provided by a laser at 650nm with a series of neutral density filters under ambient conditions. A Si photodiode (Hamamatsu S2387)was used to calibrate the power.

    3 Results and discussion

    Figure 1(a) demonstrates the schematic diagram of the graphene/n-GaAs photodiode studied in this work. The optical and electrical performances were measured from source-gate electrodes at room temperature. Figure 1(b) illustrates the energy band diagram of the graphene/n-GaAs heterojunction, where a Schottky barrier forms at the interface. Because of the different work functions between graphene(~4.8 eV) and n-GaAs (~4.1 eV)[15-16], the energy band bends upward and a built-in electric field is formed at the interface between graphene and n-GaAs with a barrier height of ~0.7eV. The photoexcited electron-hole pairs separate under the function of the built-in field when light illuminates the sample. Due to the high surface state density of the GaAs material, the photoexcited holes fill up its surface states first because they accumulate near the interface, as illustrated in Figure 1(b). The Raman spectrum of the graphene is as shown in Figure 1(c).The G and 2D bands are located at 1 582.9 cm?1and 2683.8 cm?1, respectively. The absence of a D band indicates that there are few defects[17]. The intensity ratio of the 2D band to the G band is above 3, which causes monolayer characteristics of graphene[18].Figure 1(d) shows the spectral response of the device. Under a zero bias voltage, the spectral responsivity of the photodiode was shown for an incident light power of ~200nW over the range of 300~1 100nm. The responsivity exceeded 75 mA/W in the visible light region (380~760nm). The cutoff wavelength was around 870-nm which corresponded to the GaAs edge of the energy band.

    Fig. 1 (a) Schematic diagram of the graphene/n-GaAs photodetector. The optical and electrical performances were measured by source-gate electrodes. (b) Energy band diagram of the graphene/n-GaAs heterojunction with the Schottky barrier height ΦB of the graphene/GaAs junction of ~0.7eV. The interface states are depicted at the interface, illustrating that the carrier trapped photons at the graphene/GaAs interface during carrier transport through the junction. (c) Measurement result of the Raman spectrum of graphene on the GaAs substrate. (d) Spectral response of the photodiode under zero bias voltage.

    Figure 2(a) (Color online) shows the currentvoltage (I-V) measurement results of the photodiodes illuminated under a 650-nm laser with different light intensities. All the curves demonstrate good rectification behavior due to the heterojunction formed between graphene and n-GaAs[19]. According to thermionic emission theory, current-voltage curves are expressed as below:

    whereqis the charge,Vis the bias voltage,kis the Boltzmann constant,Tis the temperature,nis the ideality factor,I0is the reverse saturation current,Ais the photosensitive area of the photodiode,A* is the effective Richardson constant of n-GaAs(12.1 A·K?2cm?2)[18], andΦBis the barrier height of the Schottky junction[20-21]. According to the fitting results,ΦBandnwere respectively extracted to be 0.65 eV and 1.89 for the dark curve, which is almost consistent with the above theoretically determined value. The extracted data ofn, which is much larger than 1, indicates that the recombination process with the assistance of interfacial states dominates the carrier transport process at the graphene/GaAs interface.

    Fig. 2(a) Current versus voltage curves of the device under different light powers. (b) The relationship between photocurrent and photovoltage (Voc) with the incident light’s power in the self-driven mode. (c) Responsivity and D* versus illumination power under a zero bias voltage. (d) Illustration of the carrier trapping and detrapping processes at the interface of the graphene/GaAs interface, which is the main source of 1/f noise.

    The photocurrent (Iphoto) increases linearly from 49.7nA to 2.93μA as the illumination power increased from 492nW to 136μW at a zero bias voltage, as shown in Figure 2(b). The photovoltage(Voc) increased from 0.12to 0.275V when the power increased from 492nW to 136μW.Figure 2(c) shows the responsivity versus the power of the incident light of the device. The responsivity(R) of the photodiode is defined by the equation

    wherePinis the incident light power. Under a zero bias voltage, the highest responsivity was 95 mA/W.It can be seen that the responsivity of the photodi-ode slightly decreased with an increase in power.This can be attributed to a reduction in the built-in field when there is an increasing number of photogenerated carriers, which forms an electric field that opposes the built-in field. When light illuminates the graphene/n-GaAs photodetector, GaAs absorbs the photons with energy larger than its bandgap and induces electron-hole pairs, which are separated by the function of the built-in field. Photo-induced holes move towards graphene, while photo-induced electrons move towards GaAs. The photo-induced holes fill up the surface states first because of the high surface state density of the GaAs material.Then the other photo-induced holes can be driven into graphene and collected by the electrode to generate the photoresponse.

    D*is one of the important parameters for a photodetector, which is defined as

    where A is the area (0.01 cm2) of the device, B is the electrical bandwidth, and PNis the noise’s equivalent power. PNis expressed as

    where R is the responsivity and SIis the meansquare of the noise’s current in the dark. According to the theory of noise, SIis the total sum of the 1/f noise ( SI(1/f)), the shot noise ( SI(shot)), and the thermal noise ( SI(thermal))[22], which can be calculated using

    At a modulation frequency of 1 Hz, the SI(1/f)is ~10?35A2·Hz?1, which can be represented by the following equation:

    where I(f) is the discrete Fourier transform of the d ark current waveform I(t), FSis the sampling rate,and N is the number of data points. The SI(shot) is calculated to be ~1.04×10?27A2·Hz?1by using

    where q is the elemental charge and Idis the dark current of the device. SI(thermal) is calculated to be~1.66×10?27A2·Hz?1at room temperature by using Nyquist’s equation, represented as

    where k is the Boltzmann constant, T is the temperature, and RSis the differential resistance of the device in the dark. As shown in Figure 2(c), D*at 0V was observed to decrease with increasing light power because of the reduction of responsivity. The maximum D*of the device was 1.82×1011Jones,which is 562times higher than the source-drain signal of a graphene/GaAs phototransistor that was fabricated in the same experiment conditions[11]. The obvious improvement of D*is attributed to the screen effect from the Schottky barrier. Comparing the two types of carrier transport processes, as illustrated in Figure 2(d) and 1(b), the 1/f noise dominates the mean square noise SIfor the source-drain photocurrent because of the trapping and detrapping processes at the interface during carrier transport, which is related to the carrier number and mobility fluctuation[9]. The 1/f noise of the source-gate measurement, as illustrated in Figure 1(b), was cut off because the interfacial states were filled by photoexcited holes first. Only then were the other photoexcited holes allowed the transport electrodes. The trapping barrier can be lowered only at elevated temperatures and bias. Because the source of noise was changed from well-known 1/f noise to thermal noise, D*improved greatly.

    Figure 3 shows the transient response measurement of the device under a laser power of 136μW at 0V at room temperature[23]. It should be noted that there is a peak when the light turns on, which can be repeated. We attributed it to the pyroelectricity effect caused by the electrical response to a sudden tiny temperature change when the light was turned on[24]. The rise time (τr) and decay time (τf) were measured to be 4 ms and 37ms, respectively. The relatively long decay time after switching off the light indicates that it took more time for carriers to be transported from the GaAs semiconductor to the depletion region via diffusion and then be injected into graphene and recombined. The fast response was attributed to the quick separation of photogenerated carriers by the built-in electric field at the interface. Compared with the results measured by source-drain electrodes, which respectively had a rise and decay time of 270ms and 28.5 s[11], the transit response performance also improved by ~2 orders of magnitude.

    Fig. 3 The response time of the photodiode at a zero bias voltage under a laser power of 136μW where τr is~4 ms and τf is ~37ms.

    4 Conclusion

    In this work, the optoelectronic performance of the graphene/n-GaAs structure measured by sourcegate electrodes was described. Due to the trapping and detrapping processes, there was a maximum specific detectivity of 1.82×1011Jones with a rise time of 4 ms and a decay time of 37ms, achieved at 0V at room temperature. We attribute the ~2orders of magnitude improvement in specific detectivity and its corresponding response time to the screening of interfacial states given by the Schottky barrier.

    猜你喜歡
    北京郵電大學(xué)北京工業(yè)大學(xué)學(xué)部
    黃河科技學(xué)院藝體學(xué)部作品選登
    北京工業(yè)大學(xué)
    廣西師范大學(xué)教育學(xué)部特殊教育系簡(jiǎn)介
    北京工業(yè)大學(xué)
    黃河科技學(xué)院藝體學(xué)部作品選登
    北京工業(yè)大學(xué)
    基于層次分析—模糊綜合評(píng)價(jià)的北京郵電大學(xué)新舊食堂的競(jìng)爭(zhēng)力研究
    北京工業(yè)大學(xué)
    Mobile Phone Using Among Youngsters
    信息環(huán)境下大學(xué)英語(yǔ)實(shí)驗(yàn)教學(xué)成效的綜合研究——以北京郵電大學(xué)為例
    国产精品久久久久久久久免| 亚洲av中文av极速乱 | 美女被艹到高潮喷水动态| 欧美区成人在线视频| 午夜福利18| 精品午夜福利在线看| 日日干狠狠操夜夜爽| 能在线免费观看的黄片| 亚洲人成网站高清观看| 国产亚洲精品久久久久久毛片| 亚洲成人中文字幕在线播放| 我要搜黄色片| 亚洲精品456在线播放app | 色播亚洲综合网| 99热这里只有是精品在线观看| 成人欧美大片| 97碰自拍视频| 俄罗斯特黄特色一大片| 很黄的视频免费| 免费人成在线观看视频色| 国产熟女欧美一区二区| 国产成年人精品一区二区| 一区二区三区免费毛片| 观看免费一级毛片| 在线a可以看的网站| 一a级毛片在线观看| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 欧美+日韩+精品| 午夜免费成人在线视频| 制服丝袜大香蕉在线| 国产日本99.免费观看| av专区在线播放| 永久网站在线| www.色视频.com| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 男人舔女人下体高潮全视频| 欧美成人a在线观看| 亚洲av不卡在线观看| 久久久久久久久久成人| 成人国产麻豆网| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 国内少妇人妻偷人精品xxx网站| 精品午夜福利在线看| 久久午夜亚洲精品久久| 真人做人爱边吃奶动态| 久久久午夜欧美精品| 琪琪午夜伦伦电影理论片6080| 成人av在线播放网站| 国产探花在线观看一区二区| 日韩欧美国产一区二区入口| 嫩草影院精品99| 一级黄片播放器| 小蜜桃在线观看免费完整版高清| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 国产精品精品国产色婷婷| 国产美女午夜福利| 国产精品不卡视频一区二区| 亚洲国产精品sss在线观看| 亚洲av一区综合| 欧美丝袜亚洲另类 | 久久天躁狠狠躁夜夜2o2o| 亚洲不卡免费看| 亚洲av二区三区四区| 成人国产麻豆网| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 免费不卡的大黄色大毛片视频在线观看 | 成年女人永久免费观看视频| 非洲黑人性xxxx精品又粗又长| 中文字幕久久专区| 国内精品一区二区在线观看| av中文乱码字幕在线| 一级毛片久久久久久久久女| 国产单亲对白刺激| 亚洲最大成人中文| 久久精品久久久久久噜噜老黄 | 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 国产成人aa在线观看| 成人综合一区亚洲| 一区二区三区高清视频在线| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 日韩精品中文字幕看吧| 九九久久精品国产亚洲av麻豆| 日本 欧美在线| 高清在线国产一区| 一进一出抽搐gif免费好疼| 国国产精品蜜臀av免费| 婷婷丁香在线五月| 亚洲中文字幕日韩| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 韩国av一区二区三区四区| 精品久久久久久,| 91在线精品国自产拍蜜月| 99热这里只有精品一区| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 我的女老师完整版在线观看| 国产成人av教育| 国产亚洲精品综合一区在线观看| eeuss影院久久| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在 | 日本三级黄在线观看| 日本成人三级电影网站| 久久久久久国产a免费观看| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 免费看a级黄色片| 校园人妻丝袜中文字幕| 国产av一区在线观看免费| 日本黄色视频三级网站网址| 国产av不卡久久| 美女 人体艺术 gogo| 亚洲国产日韩欧美精品在线观看| 美女免费视频网站| 高清毛片免费观看视频网站| 国产伦精品一区二区三区四那| 午夜福利在线在线| 女人十人毛片免费观看3o分钟| 日本在线视频免费播放| 一区二区三区高清视频在线| 久久6这里有精品| av黄色大香蕉| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 亚洲在线观看片| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 黄色欧美视频在线观看| 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| 窝窝影院91人妻| 日本五十路高清| 色播亚洲综合网| 亚洲av成人精品一区久久| 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 高清在线国产一区| 人人妻人人澡欧美一区二区| 日韩高清综合在线| av在线亚洲专区| 久久精品夜夜夜夜夜久久蜜豆| 嫁个100分男人电影在线观看| 99久久精品一区二区三区| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 午夜视频国产福利| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产 | 精品欧美国产一区二区三| 中国美白少妇内射xxxbb| 一区福利在线观看| 51国产日韩欧美| 免费看光身美女| 久久久久久久久大av| 国产淫片久久久久久久久| 国产午夜精品论理片| 国产高清激情床上av| 久久午夜亚洲精品久久| 日韩,欧美,国产一区二区三区 | 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 精品欧美国产一区二区三| 尾随美女入室| 日日撸夜夜添| 免费看日本二区| 九九在线视频观看精品| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 热99在线观看视频| 韩国av在线不卡| .国产精品久久| 亚洲内射少妇av| 成人二区视频| 中文字幕av成人在线电影| 亚洲aⅴ乱码一区二区在线播放| 黄色欧美视频在线观看| 草草在线视频免费看| 亚洲欧美日韩高清专用| 白带黄色成豆腐渣| 国产精品女同一区二区软件 | 国产精品三级大全| 老女人水多毛片| 国产三级在线视频| 俺也久久电影网| 国产亚洲精品综合一区在线观看| 精品午夜福利在线看| 性欧美人与动物交配| 亚洲中文字幕日韩| 日韩av在线大香蕉| 欧美日韩国产亚洲二区| 免费高清视频大片| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 色哟哟·www| 午夜福利成人在线免费观看| 日韩一本色道免费dvd| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 亚洲精品成人久久久久久| 在现免费观看毛片| 亚洲av二区三区四区| 淫秽高清视频在线观看| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 日本 欧美在线| 中文字幕高清在线视频| 亚洲精品色激情综合| 国产精品伦人一区二区| 亚洲 国产 在线| 夜夜爽天天搞| 亚洲性久久影院| 久久中文看片网| 欧美3d第一页| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 一进一出抽搐动态| 日本成人三级电影网站| 最近中文字幕高清免费大全6 | 99热网站在线观看| 很黄的视频免费| 在线天堂最新版资源| 国产黄色小视频在线观看| 免费观看精品视频网站| 国产高清激情床上av| 很黄的视频免费| 日本黄色视频三级网站网址| 色精品久久人妻99蜜桃| 黄色配什么色好看| 亚洲国产欧美人成| 久久久久精品国产欧美久久久| 免费看a级黄色片| 久久国内精品自在自线图片| 国产黄片美女视频| 一区二区三区四区激情视频 | 国产精品一区二区三区四区免费观看 | 成人特级av手机在线观看| 色尼玛亚洲综合影院| 午夜影院日韩av| 一本一本综合久久| 欧美日韩综合久久久久久 | 久久国产精品人妻蜜桃| 日韩精品有码人妻一区| 欧美中文日本在线观看视频| 久久久午夜欧美精品| 给我免费播放毛片高清在线观看| 精品福利观看| 亚洲七黄色美女视频| 国产在线男女| 长腿黑丝高跟| 久久人妻av系列| 亚洲自拍偷在线| 久99久视频精品免费| 在线a可以看的网站| 一个人免费在线观看电影| 国产探花在线观看一区二区| 欧美黑人欧美精品刺激| 直男gayav资源| 91av网一区二区| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 亚洲黑人精品在线| 日韩精品中文字幕看吧| 日本a在线网址| 午夜免费男女啪啪视频观看 | 日本一二三区视频观看| 欧美最新免费一区二区三区| 亚洲欧美日韩卡通动漫| 韩国av一区二区三区四区| 少妇的逼好多水| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 18禁裸乳无遮挡免费网站照片| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 中文字幕高清在线视频| 国产精品日韩av在线免费观看| 国产精品一区二区免费欧美| 在线免费观看的www视频| 亚洲人成网站在线播| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 91午夜精品亚洲一区二区三区 | 亚洲成人精品中文字幕电影| 99热6这里只有精品| 两个人的视频大全免费| 亚洲最大成人手机在线| 国产熟女欧美一区二区| 一本久久中文字幕| 国产精品久久久久久久电影| 午夜老司机福利剧场| 黄色一级大片看看| 一区二区三区四区激情视频 | 日日夜夜操网爽| 高清日韩中文字幕在线| 国产av一区在线观看免费| 午夜福利欧美成人| 午夜福利成人在线免费观看| 五月伊人婷婷丁香| 干丝袜人妻中文字幕| 日韩精品青青久久久久久| 精品一区二区三区视频在线| 久久精品91蜜桃| 午夜福利在线观看吧| 伦理电影大哥的女人| 日本爱情动作片www.在线观看 | 国产精品福利在线免费观看| 久久久久性生活片| 人人妻,人人澡人人爽秒播| 久99久视频精品免费| 色哟哟哟哟哟哟| 免费观看的影片在线观看| 一个人看的www免费观看视频| 一个人免费在线观看电影| 亚洲无线观看免费| 一个人免费在线观看电影| 韩国av一区二区三区四区| 91久久精品国产一区二区三区| 美女被艹到高潮喷水动态| 十八禁网站免费在线| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 精品久久久久久成人av| 一区福利在线观看| 久久精品国产鲁丝片午夜精品 | 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件 | 精品久久久噜噜| 久久亚洲精品不卡| 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| av黄色大香蕉| 亚州av有码| 国产高清三级在线| 欧美黑人欧美精品刺激| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 日韩一区二区视频免费看| 亚洲内射少妇av| 成人一区二区视频在线观看| 有码 亚洲区| 啦啦啦观看免费观看视频高清| 国产高清视频在线观看网站| 人妻丰满熟妇av一区二区三区| 国产高清视频在线观看网站| 成人欧美大片| 亚洲最大成人av| 亚洲午夜理论影院| 亚洲av一区综合| 欧美激情国产日韩精品一区| 欧美激情在线99| 欧美不卡视频在线免费观看| 午夜福利在线观看吧| 国产高清不卡午夜福利| 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 最近在线观看免费完整版| 国内精品美女久久久久久| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 欧美色欧美亚洲另类二区| 久久久午夜欧美精品| 国产日本99.免费观看| 国产精品福利在线免费观看| 精品日产1卡2卡| 日韩中字成人| 色尼玛亚洲综合影院| 99热网站在线观看| 日韩大尺度精品在线看网址| 久久久久久大精品| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 伦精品一区二区三区| 国产精品女同一区二区软件 | 男插女下体视频免费在线播放| 免费观看在线日韩| 一进一出抽搐动态| 国产精品无大码| 91麻豆av在线| 香蕉av资源在线| 真实男女啪啪啪动态图| 精品久久国产蜜桃| 国产伦在线观看视频一区| 日本a在线网址| 色综合色国产| 久久天躁狠狠躁夜夜2o2o| 在线天堂最新版资源| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 美女免费视频网站| 精品人妻一区二区三区麻豆 | 露出奶头的视频| 亚洲性久久影院| 一区二区三区四区激情视频 | 成人永久免费在线观看视频| 亚洲av熟女| 亚洲色图av天堂| videossex国产| 波野结衣二区三区在线| 99久久精品国产国产毛片| 99久久久亚洲精品蜜臀av| 国产美女午夜福利| 久久国产乱子免费精品| 国产av一区在线观看免费| 88av欧美| 国产亚洲精品综合一区在线观看| 最近中文字幕高清免费大全6 | 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡| 91久久精品国产一区二区成人| 国语自产精品视频在线第100页| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 国产亚洲精品综合一区在线观看| 岛国在线免费视频观看| 在线天堂最新版资源| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 免费看日本二区| 草草在线视频免费看| 亚洲久久久久久中文字幕| 国产精品,欧美在线| 国产探花在线观看一区二区| 偷拍熟女少妇极品色| 欧美不卡视频在线免费观看| 成年人黄色毛片网站| 嫩草影视91久久| 欧美色欧美亚洲另类二区| 3wmmmm亚洲av在线观看| 男女那种视频在线观看| 嫩草影院精品99| 国内精品一区二区在线观看| 国产精华一区二区三区| 91午夜精品亚洲一区二区三区 | 婷婷精品国产亚洲av在线| aaaaa片日本免费| 97人妻精品一区二区三区麻豆| 直男gayav资源| 亚洲av成人av| 欧美日本视频| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 99热这里只有是精品在线观看| 国产精品无大码| 久久久久久久久久久丰满 | 午夜久久久久精精品| 国产成人福利小说| 国产免费男女视频| a在线观看视频网站| 91久久精品电影网| 如何舔出高潮| 欧美黑人欧美精品刺激| 欧美日韩国产亚洲二区| 日韩欧美精品免费久久| 中文字幕av成人在线电影| 91麻豆av在线| 国产高清视频在线观看网站| 日日摸夜夜添夜夜添av毛片 | 成人av一区二区三区在线看| 麻豆av噜噜一区二区三区| 久久精品国产亚洲av香蕉五月| 国产探花在线观看一区二区| 一个人免费在线观看电影| 精品不卡国产一区二区三区| 少妇人妻精品综合一区二区 | 亚洲国产精品合色在线| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频| 直男gayav资源| 国产精品三级大全| 国产精品国产高清国产av| 亚洲av免费高清在线观看| 自拍偷自拍亚洲精品老妇| 国产精品永久免费网站| 琪琪午夜伦伦电影理论片6080| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 国产精品永久免费网站| 欧美一区二区国产精品久久精品| 亚洲av五月六月丁香网| 人妻少妇偷人精品九色| 男女下面进入的视频免费午夜| 啦啦啦观看免费观看视频高清| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 18禁黄网站禁片免费观看直播| av在线老鸭窝| 欧美性猛交╳xxx乱大交人| 亚洲专区国产一区二区| 亚洲人成伊人成综合网2020| 久久这里只有精品中国| 赤兔流量卡办理| 欧美黑人巨大hd| 日韩欧美 国产精品| 精品日产1卡2卡| 久久人人爽人人爽人人片va| 人妻制服诱惑在线中文字幕| 国内精品宾馆在线| 日本色播在线视频| 亚洲在线自拍视频| 最近中文字幕高清免费大全6 | 色精品久久人妻99蜜桃| 日韩精品青青久久久久久| 国产久久久一区二区三区| 琪琪午夜伦伦电影理论片6080| 免费无遮挡裸体视频| 精品人妻熟女av久视频| 亚洲美女视频黄频| 人人妻人人看人人澡| videossex国产| 午夜福利在线在线| 国产aⅴ精品一区二区三区波| 99九九线精品视频在线观看视频| 成人特级黄色片久久久久久久| 麻豆av噜噜一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲无线观看免费| 毛片女人毛片| 日韩欧美精品v在线| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 免费av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 成人国产麻豆网| 亚洲中文日韩欧美视频| 午夜老司机福利剧场| 日本与韩国留学比较| 中文在线观看免费www的网站| 俄罗斯特黄特色一大片| 精品一区二区三区视频在线观看免费| 中出人妻视频一区二区| 欧美精品国产亚洲| 亚洲最大成人中文| 日韩 亚洲 欧美在线| 国产免费av片在线观看野外av| 在线播放无遮挡| 美女cb高潮喷水在线观看| 国产 一区精品| 啦啦啦韩国在线观看视频| 99国产精品一区二区蜜桃av| 91午夜精品亚洲一区二区三区 | 欧美性猛交黑人性爽| 欧美日韩综合久久久久久 | 日韩人妻高清精品专区| 尤物成人国产欧美一区二区三区| 欧美一区二区亚洲| 三级国产精品欧美在线观看| 亚洲久久久久久中文字幕| 国产一区二区三区在线臀色熟女| 日本黄色视频三级网站网址| 婷婷丁香在线五月| 欧美性猛交黑人性爽| 国产视频一区二区在线看| 国产亚洲欧美98| 欧美精品国产亚洲| 亚洲av二区三区四区| 两人在一起打扑克的视频| 十八禁网站免费在线| 免费无遮挡裸体视频| 97超级碰碰碰精品色视频在线观看| 深夜精品福利| 成人高潮视频无遮挡免费网站| 欧美xxxx性猛交bbbb| 色吧在线观看| 天天一区二区日本电影三级| 国产人妻一区二区三区在| 亚洲综合色惰| 国产探花极品一区二区| bbb黄色大片| 丰满人妻一区二区三区视频av| 日韩国内少妇激情av| 亚洲成人久久爱视频| 国产精品,欧美在线| 亚洲最大成人中文| 51国产日韩欧美| 亚洲av美国av| 99久久九九国产精品国产免费| 免费在线观看成人毛片| 免费不卡的大黄色大毛片视频在线观看 | 三级男女做爰猛烈吃奶摸视频| 免费看av在线观看网站| 变态另类丝袜制服| 国产精品亚洲一级av第二区| 久久精品国产99精品国产亚洲性色| 男女边吃奶边做爰视频|