• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    懸空氧化銦納米線(xiàn)晶體管制備與光電性能表征

    2021-02-05 07:15:30姜亦楊王旭東趙東洋孟祥建王建祿
    中國(guó)光學(xué) 2021年1期
    關(guān)鍵詞:王旭東上海大學(xué)材料科學(xué)

    姜亦楊,陳 艷 ,王旭東,趙東洋,林 鐵,沈 宏,孟祥建,汪 琳,王建祿

    (1. 上海大學(xué) 材料科學(xué)與工程學(xué)院,上海 200444;2. 中國(guó)科學(xué)院 上海技術(shù)物理研究所 紅外物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200083)

    1 Introduction

    Recently, as device processing enters the nanometer scale, device development based on nano-materials has received increasing attention[1-4]. Among various technical approaches, the "bottom-up" method emphasizes the rational construction of nanofunctional devices based on atoms and molecules,which is regarded as the core of nanotechnology.Nanowire-based devices have shown great application potential in Field Effect Transistors (FETs),light-emitting diodes, sensors, nano-lasers and nanogenerators, among others[3,5-10]. In particular, III-V semiconductor nanowires are attracting great attention due to their excellent electrical and optical properties[11?12]. Among the many potential nanowire materials, In2O3nanowires possess a wide bandgap of 2.8 eV and high field-effect mobility[13]. In2O3nanowires are easy to prepare and can be produced in various ways including physical vapor deposition[14], hydrothermal methods[15], chemical vapor deposition[16], pulsed laser deposition[17]and molecular beam epitaxy[1]. Many previous studies mainly focused on the preparation and electrical properties of nanowires due to their beneficial properties such as chemical stability, excellent crystallinity, easily doping, low-cost synthesis, quantum confinement effect, and high quantum efficiency[1].However, few studies have focused on their optoelectronic properties since the first report on the ultraviolet (UV) photodetection capabilities of In2O3nanowires[18]. Despite recent advances, the performance of photodetectors still cannot meet practical demand.

    This work presents a strategy to fabricate and suspend In2O3nanowire devices. Through its unique design and relatively simple manufacturing process,an In2O3nanowire channel can be separated from its substrate. The source and drain patterns are also defined by only one Electron Beam Lithography(EBL) step. Utilizing this device’s structure, we conducted an intrinsic study on the electrical characteristics of In2O3nanowire FETs, exhibiting an on/off current ratio larger than 103, a Subthreshold Swing (SS) of 241.5 mV/dec and a low dark current of ~10?13A. The calculated carrier mobility is approximately 54.6 cm2V?1s?1. The In2O3nanowire photodetector exhibits a high photoconductive gain of 4.3 × 103, a responsivity of 1.6 × 105A?W?1, and a specific detectivity of D*up to 9.3 × 1010Jones at a low power density of 0.06 mW·cm?2(λ = 450nm).The response time (rise time τr), which is defined as the time for the photocurrent to increase from 10%to 90% Ipeak, is about 150ms. It is faster than In2O3nanowire-based photodetectors that have been reported previously[19?20].

    2 Device fabrication and characterization

    The In2O3nanowires used in this study were synthesized by Chemical Vapor Deposition (CVD)through a Vapor-Liquid-Solid (VLS) growth mechanism. A mixture of high-purity In2O3powder and graphite powder with a weight ratio of 5:1 was put into a quartz boat. A silicon substrate with a pre-deposition of 1-nm and an Au catalyst was placed downstream in the quartz tube to collect the products. A furnace was set to 1 100°C in 22min and maintained for 1 hour under a constant flow of gas (argon/oxygen = 100:1, flow rate = 200sccm).Finally, the system was left to naturally cool to room temperature. The TEM image in Fig. 1(a)shows that a large quantity of wire-like In2O3microcrystals with good uniformity was fabricated by the CVD method. The diameter of the nanowire is approximately 50nm. Fig. 1(b) and (c) show a darkfield microscopy image of the In2O3nanowire FET and three-dimensional schematic view of the suspended single In2O3nanowire photodetector. In2O3nanowires used in this research were characterized by field-emission scanning electron microscopy and high-resolution transmission electron microscopy(HR-TEM, HT7700). The SEM result is shown in Fig. 1(d), confirming that the In2O3nanowire is free of the substrate.

    Fig. 1 Design and characterization of the single In2O3 nanowire device. (a) TEM of a single In2O3 nanowire. (b) Dark-field microscopy image of an In2O3 nanowire FET. (c) Three-dimensional schematic view of a suspended single In2O3 nanowire photodetector. (d) SEM of the suspended single In2O3 nanowire photodetector

    To fabricate suspended nanowire devices, the key part is to find a feasible way to fabricate a structure that is both suspended and stable. We found inspiration from previous work, which wrote about electron beam lithography on both poly-methylmethacrylate (PMMA) and hydrogen silsesquioxane (HSQ)[21]. The process flow for preparing the suspended In2O3nanowire FET is shown in Fig.2(Color online). Specific steps are as follows: firstly,a layer of 280-nm-thick PMMA is spin-coated onto the Si/SiO2substrate. Secondly, In2O3nanowires are drop-casted onto the temporary layer of the spincoated photoresist. The N-doped In2O3nanowires produced by CVD have a typical length of 10μm and a diameter of less than 100nm. Thirdly another photoresist layer is spin-coated. Standard e-beam lithography is performed to define the electrodes on a marked In2O3nanowire. Then, 15 nm chromium(Cr) and 300nm gold (Au) are deposited using thermal evaporation. Finally, the fabrication of the device is finished after the lift-off process. To improve ohmic contacts, devices were annealed at 200°C in Ar atmosphere for 2hours.

    Fig. 2Fabrication process of suspended nanowire devices

    3 Results and discussion

    The electrical properties of fabricated suspended In2O3transistors are investigated with a Lake Shore Probe Station together with an Agilent B1500(Agilent Technologies, Santa Clara, CA, USA)semiconductor parameter analyzer. The I–V curves of the nanowire-based photodetector are shown in Fig. 3(a) (Color online) and indicate that different atmospheres can affect electrical conductivity. The annealing process can effectively improve the contact of metal electrodes. Under dark conditions, oxygen molecules tend to chemisorb onto the surface of In2O3nanowire by trapping free electrons from the conduction band and then becoming negative ions O2–, which reduces the system’s free electron density. The larger current in a vacuum is a result of the lack of oxygen in such a test environment. Fig. 3(b)(Color online) shows the typical output characteristics of the device. The liner behavior suggests good ohmic contact between the nanowires and electrodes. As shown in Figs. 3(c) and 3(d) (Color online), low dark current (approximately 10?13A) in both transfer curves can be attributed to the design of the suspended structure, which can effectively avoid the limitation of gate leakage current. Transfer curves of the same device in different atmospheres show a similar clockwise hysteresis performance. It can be confirmed that the curve does not significantly shift with an increase in drain bias for a static Vgssweep range, which suggests ideal transistor characteristics for these suspended devices in a vacuum[22]. Compared with the sharp shift of transfer curves and higher turn-off voltage in air,this suspended design suggests applications in vacuum transistors are possible. The electron mobility μFEof a single In2O3nanowire device can be calculated by using the expressionμFE= gmL2/(CgVds),where the channel length L = 2.0μm, and gm=dIds/dVgsis the transconductance of the nanowire device. Cgis the back-gate capacitance including the two parts that can be deduced based on the cylinder on-plane model: Cg1= 2πε1εrL/[ln(4h1/d)][22], where ε1εris the dielectric constant of the air, h1(200nm)is the height of suspension, and d(50nm) is the In2O3nanowire’s diameter. Cg2=2πε2εrL/[ln(4h/d)],where ε2is the permittivity of the SiO2, and h2(280nm) is the thickness of the SiO2substrate.Vgsis the voltage between drain and source. The calculated carrier mobilities of the device in air and a vacuum are 12.4 cm2V?1s?1and 54.6 cm2V?1s?1, re-spectively. The system may be influenced by contact between nanowires and metal electrodes. The SS can be expressed by the equation SS =?Vg/?(lgId), where Vgis the applied gate voltage and Idis the drain current. The SS value calculated in the different atmospheres is 324.7mV/dec and 241.5 mV/dec, respectively. Previous work found that performance degradation is mainly attributed to the charge accumulation in the In2O3/SiO2interface,and the gate coupling in the non-suspended structure is not as desirable as that in suspended couplings[13]. It is necessary to design gate dielectric and electrode systems to make a breakthrough in SS value limitation (60mV/dec). The device shows a high on/off ratio that is larger than 103, which implies that this suspended device has immense potential in high-performance FETs.

    Fig. 3 Electric performance of the single In2O3 nanowire devices under dark conditions. (a) I-V curves of the nanowire-based photodetector in different atmospheres. (b) Output characteristics of the nanowire-based photodetector under different gate voltages. Orange arrow represent that Vg is from 20V to ?50V with ?10V steps. Transfer curve switch at different source-drain biases ranging from 0.1V to 1V (c) in the air and (d) in vacuum state. Black arrows represent the scanning direction of gate voltage.

    The spectral responsivity is measured using a series of laser sources (250, 375, 450, 520, 637nm;Thorlabs, Inc) combined with Agilent B2902. The Ids-Vdscharacteristics of the photodetector were measured in the dark and different wavelengths of light, as shown in Fig. 4(a) (Color online). The dark current of the device is 0.12μA. The light wavelengths of 637nm and 520nm (~1.10mW·cm?2)have little influence on the device’s photocurrent compared to the dark current. Contrarily, as shown in Fig. 4(b) (Color online), the photocurrent increases drastically when the wavelength of incident light reaches to 450nm, which has comparable energy to the bandgap of In2O3(2.8 eV). The respons-ivity (R) can be defined as Iph/(PA), where Iphis the photocurrent, P is the incident power density, and A is the effective irradiated area on the nanowire.Fig. 4(b) also shows the dramatic responsivity difference (about three orders of magnitude) on either side of the wavelength corresponding to In2O3bandgap. The value of R is as large as 1.6 × 105A·W?1when incident light reaches the UV band with an applied voltage of 0.1V. The results demonstrate the excellent photoresponsivity and wavelength selectivity of the In2O3nanowire-based photodetector.The photoconductive gain (G), responsivity (R), and specific detectivity (D*) are the key parameters for evaluating the sensitivity of the photodetectors[23].

    Fig. 4 Photoresponse properties of the single In2O3 nanowire devices. (a) Ids-Vds characteristics of the photodetector in the dark and different wavelengths of light. (b) Photocurrent and responsivity of the photodetector under different wavelengths of light. (c) Ids-Vds characteristics of the photodetector in the dark and different intensities of light(450nm). (d) Photoresponsivity and detectivity of the photodetector under the different intensities of light (450nm).

    The corresponding external quantum efficiency (EQE) is defined as the ratio between the number of collected electrons and the number of incident photons[19]. It can be expressed by the following equation, EQE =Rhc/(eλ ). The EQE of the device is calculated to be as high as (9.9 × 107)%with irradiation of UV light (~ 200nm). The high EQE is related to the exposure of the nanowire surface via the chemisorption/photodesorption of oxygen. It has been mentioned above that by trapping free electrons from the conduction band to becoming negative O2–ions, oxygen molecules tend to chemisorb onto the surface of an In2O3nanowire in dark conditions, thereby reducing the free electron density O2(g) + e–→ O2–(ad)[19]. Electron–hole pairs are created in the bulk when illuminated with shortwavelength light. Due to the existence of new valence subbands, the photogenerated holes move from the bulk to the surface and these accumulated holes will react with the adsorbed oxygen ions, then release a captured free electron, h++ O2?(ad) →O2(g)[19]. Furthermore, separation of the structure between In2O3nanowire and substrate caused ultrahigh surface-to-volume ratios and a free-standing interface, which played an important role in high R and EQE. Figure 4(c) (Color online) shows the Ids-Vdscharacteristics for different power intensities at a wavelength of 450nm. The Ids-Vdscurve shows a linear regime with increasing Vds. It could be predicted that there will be photon-generated carrier saturation and electron-hole recombination under strong light illumination if the bias and light intensity is large enough[24-26].

    The specific detectivity is an important figureof-merit characterizing the capability of the smallest detectable signal for a photodetector. Considering that the shot noise from the dark current is the major factor limiting the detectivity, the specific detectivity can be given by D*= RA′1/2/(2eIdark)1/2,where R is the responsivity, A′ is the effective area of the detector (A′ = L × d, L is the channel length, d is the nanowire’s diameter), e is the unit charge, and Idarkis the dark current. Figure 4(d) (Color online)shows the calculated values of responsivity and detectivity at different power intensities. The incident light’s power is calibrated with a PM100D power meter. It shows that R and D*increase dramatically with a decreasing light intensity, which can be caused by the trap states of the In2O3nanowires.The R and D*of the photodetector are up to 1.6 ×105A·W?1and 9.2× 1010Jones, respectively, under a low light intensity of 0.06 mW·cm?2. The highest responsivity is two orders of magnitude larger than that of commercial photodetectors based on Si,GaAs, and InGaAs[27]. Considering the small depletion of the intrinsic carriers in the nanowire channel,D*could be enhanced to up to 1015Jones if further gate dielectric and electrode structures are built (to drive dark current down from 10?6μA to 10?10μA).The photo-conductive gain (G) is defined as the ratio between the number of charges collected by the electrodes per unit of time and the number of photons absorbed by the nanowire per unit of time(G = Ne/Nph). It can be calculated as G =(Iph/e)/(PA/hν), where Iphis the photocurrent, e is the electronic charge, P is the incident power density, A is the effective irradiated area, and hν is the energy of an incident photon. The G of the photodetector is up to 4.34 × 105under a low light intensity of 0.062mW/cm?2, which is due to the long photongenerated carrier lifetime in the nanowire compared to the short carrier transit time between the electrodes[24,26,28]. High gain shows that large photocurrent output signals can be achieved with relatively low optical input.

    The repeatability and response speed are also important parameters for photodetection[29]. Timeresolved photoresponse measurements were performed to characterize the response speed of the photodetector when switching a green light on and off repeatedly (520nm). The photocurrent responses under 520nm of illumination with a back gate voltage of ?30V are shown in Fig. 5(a). The response time (rise time τr) and the recovery time (fall time τf), defined as the time for the photocurrent increasing (decreasing) from 10% to 90% (90% to 10%) of Ipeak(photocurrent peak), is 0.912s and 8 s,respectively. This data is extracted with a Tektronix MDO3014. It shows high stability and reliability with the on/off photoswitching behavior at Vds= 1V.As for the response speed characterization of UV light (375 nm)[25], a high-speed oscilloscope was used to monitor the fast-varying optical signal. Its longer recovery time may be related to the influence of the surface states[30]. The recombination of electrons and holes may be affected by the surface trap state of the nanowire after high-energy ultraviolet radiation. The rise time τrdrops sharply to 150ms, which is faster than previous reports for In2O3nanowires photodetectors, to our best knowledge[19-20,31]. This can be attributed to the reduction of the interaction effect between the nanowire and the substrate.

    Fig. 5 Time-response characterizations of the In2O3 single-nanowire photodetector. (a) Photocurrent response of the device,where the laser light is switched on/off at an interval of 20s (520nm, 2.6 mW·cm?2 at Vds = 1V. (b) Enlargement of the curve in the 53~72s range outlined in (a). (c) A single UV photocurrent response of the device (375 nm,1.6 mW·cm?2). (d) Time-resolved photoresponse of the device showing the rise and fall time of the photocurrent at Vds = 0.1V.

    4 Conclusion

    In summary, we have fabricated a suspended In2O3nanowire transistor based on one-step EBL micro-nano processing technology that can stable and complete separation between a nanowire and a substrate. The intrinsic electrical transportation and photoresponse properties of In2O3nanowire FETs are studied. The In2O3nanowire transistors achieve a stable electrical property in a vacuum. Furthermore, this type of photodetector exhibits excellent optoelectronic performance including broad spectral responsivity, good repeatability, and fast response. Suspended nanowire structures provide an ideal way to investigate the intrinsic properties of nano-materials and broadens their applications in flexible and thermal isolation devices.

    猜你喜歡
    王旭東上海大學(xué)材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    王旭東
    材料科學(xué)與工程學(xué)科
    歲月感懷
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    王旭東山水畫(huà)技法(十二)
    老年教育(2018年12期)2018-12-29 12:43:06
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專(zhuān)家
    日本a在线网址| 国产 一区 欧美 日韩| 国产精品1区2区在线观看.| 日日夜夜操网爽| 国产激情偷乱视频一区二区| 中文字幕高清在线视频| 精品国内亚洲2022精品成人| 制服人妻中文乱码| 蜜桃久久精品国产亚洲av| 九色国产91popny在线| 真人做人爱边吃奶动态| 久久精品亚洲精品国产色婷小说| 亚洲在线自拍视频| 夜夜看夜夜爽夜夜摸| 国产精品永久免费网站| 嫁个100分男人电影在线观看| 成人无遮挡网站| 观看美女的网站| 日韩欧美免费精品| 我要搜黄色片| 久久久久久九九精品二区国产| 国产99白浆流出| 免费看光身美女| 热99re8久久精品国产| 男人的好看免费观看在线视频| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| 久久精品国产综合久久久| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 神马国产精品三级电影在线观看| 久久亚洲精品不卡| 亚洲av美国av| 国产黄片美女视频| 亚洲欧美日韩高清在线视频| 久9热在线精品视频| а√天堂www在线а√下载| 亚洲av美国av| 久久99热这里只有精品18| 国产伦精品一区二区三区视频9 | 1024手机看黄色片| 18禁国产床啪视频网站| 欧美大码av| a级毛片a级免费在线| 麻豆久久精品国产亚洲av| 一卡2卡三卡四卡精品乱码亚洲| 欧美黑人巨大hd| 亚洲av免费在线观看| 欧美黄色片欧美黄色片| 九色成人免费人妻av| 久久久久久国产a免费观看| 中文字幕熟女人妻在线| 国产伦人伦偷精品视频| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 日本一本二区三区精品| 男人和女人高潮做爰伦理| 国产精品精品国产色婷婷| 亚洲av日韩精品久久久久久密| 床上黄色一级片| 国产精品av视频在线免费观看| 3wmmmm亚洲av在线观看| 精品电影一区二区在线| 不卡一级毛片| 国内精品美女久久久久久| 成年女人看的毛片在线观看| 国产毛片a区久久久久| 久久精品亚洲精品国产色婷小说| 特级一级黄色大片| 老司机在亚洲福利影院| 国产真实伦视频高清在线观看 | 成年版毛片免费区| 色在线成人网| 日本精品一区二区三区蜜桃| 中文字幕av成人在线电影| 欧美最新免费一区二区三区 | xxxwww97欧美| 亚洲国产精品999在线| 久久久精品大字幕| 国产精品亚洲一级av第二区| 最新中文字幕久久久久| 亚洲精品456在线播放app | 日韩有码中文字幕| 国产黄色小视频在线观看| 99在线人妻在线中文字幕| 老熟妇仑乱视频hdxx| 亚洲欧美精品综合久久99| 丰满的人妻完整版| 国产黄片美女视频| 亚洲av成人精品一区久久| 成人18禁在线播放| 99国产精品一区二区蜜桃av| 在线观看av片永久免费下载| 亚洲人成网站在线播放欧美日韩| 中文字幕久久专区| 成熟少妇高潮喷水视频| 亚洲av电影不卡..在线观看| 亚洲不卡免费看| 国产av一区在线观看免费| 天堂影院成人在线观看| 国产成人a区在线观看| 男女那种视频在线观看| 亚洲国产中文字幕在线视频| 精品久久久久久久久久久久久| 亚洲在线自拍视频| 欧美日本视频| 国产亚洲精品一区二区www| 一本综合久久免费| 国内精品美女久久久久久| www.色视频.com| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 美女被艹到高潮喷水动态| 精品一区二区三区视频在线观看免费| 国产伦精品一区二区三区视频9 | 成人av在线播放网站| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 国产伦在线观看视频一区| 久久国产精品影院| 伊人久久大香线蕉亚洲五| 久久亚洲精品不卡| 丰满乱子伦码专区| 51国产日韩欧美| 国产亚洲精品一区二区www| 久久精品国产自在天天线| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 欧美激情在线99| 级片在线观看| 久久久久亚洲av毛片大全| 搡老妇女老女人老熟妇| 看免费av毛片| 亚洲成人中文字幕在线播放| 1024手机看黄色片| 色老头精品视频在线观看| 久久精品国产清高在天天线| 日韩亚洲欧美综合| 老司机深夜福利视频在线观看| 欧美在线黄色| 久久九九热精品免费| 一区二区三区国产精品乱码| 久久99热这里只有精品18| 真人一进一出gif抽搐免费| 午夜视频国产福利| 日本 av在线| 成年人黄色毛片网站| 国产激情欧美一区二区| eeuss影院久久| 日韩欧美精品免费久久 | 大型黄色视频在线免费观看| 91久久精品国产一区二区成人 | 国产真实伦视频高清在线观看 | 日日干狠狠操夜夜爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久久久久精品吃奶| 国产成人a区在线观看| 亚洲一区二区三区色噜噜| 噜噜噜噜噜久久久久久91| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 亚洲av一区综合| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 国产精品影院久久| 亚洲精品在线观看二区| 色噜噜av男人的天堂激情| 村上凉子中文字幕在线| 在线观看一区二区三区| 成年女人永久免费观看视频| 中国美女看黄片| 日日干狠狠操夜夜爽| 最近在线观看免费完整版| 无人区码免费观看不卡| 欧美一级毛片孕妇| 在线观看舔阴道视频| 真人做人爱边吃奶动态| 亚洲 欧美 日韩 在线 免费| 国产精品av视频在线免费观看| 成人午夜高清在线视频| aaaaa片日本免费| 国产成人av激情在线播放| www日本在线高清视频| av中文乱码字幕在线| 国产亚洲欧美在线一区二区| 狂野欧美激情性xxxx| 日本黄色视频三级网站网址| 69av精品久久久久久| 啦啦啦观看免费观看视频高清| 国产av在哪里看| 亚洲精品久久国产高清桃花| 国产精品亚洲美女久久久| 欧美午夜高清在线| 久久久国产成人精品二区| 熟女电影av网| 亚洲国产精品成人综合色| 怎么达到女性高潮| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 在线国产一区二区在线| 久久婷婷人人爽人人干人人爱| 黄色片一级片一级黄色片| 亚洲色图av天堂| АⅤ资源中文在线天堂| 精品人妻一区二区三区麻豆 | 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 欧美一级毛片孕妇| 日本五十路高清| www.www免费av| 国产熟女xx| 中文字幕人成人乱码亚洲影| av女优亚洲男人天堂| 婷婷亚洲欧美| 国产精品精品国产色婷婷| 欧美大码av| 国产野战对白在线观看| 好男人在线观看高清免费视频| 欧美乱色亚洲激情| 90打野战视频偷拍视频| 99热精品在线国产| 日韩欧美三级三区| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 动漫黄色视频在线观看| 日韩欧美国产一区二区入口| 99热这里只有是精品50| 香蕉久久夜色| 日韩成人在线观看一区二区三区| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 欧美色视频一区免费| 精品99又大又爽又粗少妇毛片 | 亚洲18禁久久av| tocl精华| 精品久久久久久久久久久久久| av福利片在线观看| 婷婷精品国产亚洲av在线| 精品久久久久久久毛片微露脸| 午夜老司机福利剧场| 日本三级黄在线观看| 无限看片的www在线观看| 黄色日韩在线| 精品久久久久久,| 我要搜黄色片| 午夜激情欧美在线| 日日摸夜夜添夜夜添小说| 搡女人真爽免费视频火全软件 | 国产高潮美女av| 日本 欧美在线| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 97超视频在线观看视频| 高清在线国产一区| 搡女人真爽免费视频火全软件 | 精品一区二区三区人妻视频| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 18禁黄网站禁片午夜丰满| 99精品在免费线老司机午夜| 亚洲成人精品中文字幕电影| 亚洲av熟女| 窝窝影院91人妻| 色哟哟哟哟哟哟| 久久中文看片网| 老司机午夜十八禁免费视频| 国产精品永久免费网站| 亚洲av成人不卡在线观看播放网| 男女视频在线观看网站免费| 99热精品在线国产| 日韩 欧美 亚洲 中文字幕| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 最好的美女福利视频网| 最近最新免费中文字幕在线| 欧美国产日韩亚洲一区| 三级男女做爰猛烈吃奶摸视频| 99精品欧美一区二区三区四区| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 热99在线观看视频| 啪啪无遮挡十八禁网站| 久久久精品大字幕| 国产av在哪里看| 久久亚洲真实| 美女被艹到高潮喷水动态| 日韩精品青青久久久久久| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 我的老师免费观看完整版| 久久久久久大精品| 国产视频内射| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 亚洲,欧美精品.| 中亚洲国语对白在线视频| 亚洲成a人片在线一区二区| 亚洲精品乱码久久久v下载方式 | 最近最新免费中文字幕在线| 日本在线视频免费播放| 内射极品少妇av片p| av天堂在线播放| 69人妻影院| 99久国产av精品| 亚洲无线观看免费| 中文字幕人成人乱码亚洲影| 色精品久久人妻99蜜桃| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 国产不卡一卡二| 久久久国产成人精品二区| 久久久久亚洲av毛片大全| 在线观看免费午夜福利视频| 在线观看av片永久免费下载| 麻豆成人午夜福利视频| 老汉色∧v一级毛片| 黄片大片在线免费观看| 国产精品久久久久久久电影 | 久久精品人妻少妇| 51国产日韩欧美| 欧美一区二区精品小视频在线| 亚洲精品久久国产高清桃花| 熟女电影av网| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 搞女人的毛片| 偷拍熟女少妇极品色| 18+在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 午夜日韩欧美国产| 国产一区二区三区在线臀色熟女| 91九色精品人成在线观看| 露出奶头的视频| 天堂av国产一区二区熟女人妻| 亚洲18禁久久av| 国产精品一区二区免费欧美| www.999成人在线观看| 亚洲人成网站高清观看| 黄片小视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| a级毛片a级免费在线| 亚洲五月婷婷丁香| 欧美最黄视频在线播放免费| 热99在线观看视频| 18禁黄网站禁片午夜丰满| 老司机在亚洲福利影院| 国产精品一区二区三区四区久久| 老司机福利观看| 伊人久久大香线蕉亚洲五| 天天躁日日操中文字幕| 精品人妻一区二区三区麻豆 | 国产乱人伦免费视频| 18禁美女被吸乳视频| 国产在线精品亚洲第一网站| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 99热精品在线国产| 91av网一区二区| 久久九九热精品免费| 99久久99久久久精品蜜桃| 亚洲精品日韩av片在线观看 | 国内久久婷婷六月综合欲色啪| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 亚洲人成网站高清观看| 国产野战对白在线观看| 禁无遮挡网站| 中文资源天堂在线| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 中国美女看黄片| 国产探花极品一区二区| 丰满乱子伦码专区| 国产成人av激情在线播放| 久久精品国产自在天天线| 国内精品久久久久久久电影| 1000部很黄的大片| 最后的刺客免费高清国语| 内射极品少妇av片p| 美女高潮喷水抽搐中文字幕| 麻豆成人午夜福利视频| 国产午夜精品论理片| 五月玫瑰六月丁香| 日本在线视频免费播放| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 97超视频在线观看视频| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 久久久久久国产a免费观看| 成人鲁丝片一二三区免费| 1000部很黄的大片| 91在线精品国自产拍蜜月 | 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 精品免费久久久久久久清纯| 级片在线观看| 嫩草影视91久久| 嫩草影院入口| 国产激情欧美一区二区| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 欧美3d第一页| 黄色女人牲交| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 最近最新中文字幕大全免费视频| 国产视频一区二区在线看| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| 在线看三级毛片| 五月伊人婷婷丁香| 观看免费一级毛片| 亚洲av日韩精品久久久久久密| 欧美乱码精品一区二区三区| 夜夜爽天天搞| 亚洲国产高清在线一区二区三| 成人av在线播放网站| 婷婷精品国产亚洲av在线| 蜜桃亚洲精品一区二区三区| 亚洲激情在线av| 亚洲在线自拍视频| 欧美日韩中文字幕国产精品一区二区三区| 深夜精品福利| a级一级毛片免费在线观看| or卡值多少钱| 成年版毛片免费区| 亚洲欧美日韩高清专用| 欧美一区二区精品小视频在线| 免费在线观看成人毛片| www日本黄色视频网| 尤物成人国产欧美一区二区三区| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 国产99白浆流出| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久,| 国产亚洲精品一区二区www| 免费搜索国产男女视频| 人妻夜夜爽99麻豆av| xxxwww97欧美| 国产精品久久久人人做人人爽| 人妻丰满熟妇av一区二区三区| 久久久久久久午夜电影| 亚洲国产精品合色在线| 久久午夜亚洲精品久久| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 亚洲精品国产精品久久久不卡| 成人永久免费在线观看视频| 中国美女看黄片| 久久久久久人人人人人| 99久国产av精品| 亚洲,欧美精品.| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 很黄的视频免费| 久久亚洲精品不卡| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 日本黄色视频三级网站网址| xxxwww97欧美| 久久久久久久久大av| 午夜视频国产福利| 亚洲欧美日韩卡通动漫| av在线蜜桃| 欧美黄色淫秽网站| 国产精品,欧美在线| 免费一级毛片在线播放高清视频| 日日干狠狠操夜夜爽| 亚洲精品在线美女| 久久久久性生活片| 国产精品久久久人人做人人爽| 丁香六月欧美| 欧美性感艳星| 全区人妻精品视频| 成年免费大片在线观看| 日韩欧美一区二区三区在线观看| av专区在线播放| 国产高清有码在线观看视频| 国内精品美女久久久久久| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| netflix在线观看网站| 丝袜美腿在线中文| 人妻夜夜爽99麻豆av| 成年女人毛片免费观看观看9| 国产精品免费一区二区三区在线| 中文资源天堂在线| 午夜免费激情av| 亚洲真实伦在线观看| 精品久久久久久久久久久久久| 久久久国产精品麻豆| 国产乱人伦免费视频| 熟女人妻精品中文字幕| 亚洲片人在线观看| 真人做人爱边吃奶动态| 亚洲精品影视一区二区三区av| 日韩免费av在线播放| 熟女少妇亚洲综合色aaa.| 99热只有精品国产| 老司机深夜福利视频在线观看| 青草久久国产| 成人三级黄色视频| 啦啦啦观看免费观看视频高清| 香蕉丝袜av| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| 久久久久久久久大av| 国产在线精品亚洲第一网站| www.999成人在线观看| 国产精品电影一区二区三区| 亚洲人成网站在线播放欧美日韩| 午夜福利在线观看吧| 亚洲av二区三区四区| 99riav亚洲国产免费| 精品国产超薄肉色丝袜足j| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| www.www免费av| 我的老师免费观看完整版| 国产精品美女特级片免费视频播放器| 亚洲真实伦在线观看| 99热6这里只有精品| 日本黄色视频三级网站网址| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 国产美女午夜福利| 无遮挡黄片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人久久性| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 免费看光身美女| 欧美成人一区二区免费高清观看| 国产老妇女一区| 亚洲成av人片免费观看| 日韩人妻高清精品专区| aaaaa片日本免费| eeuss影院久久| 中文字幕人妻熟人妻熟丝袜美 | 欧美3d第一页| 最新中文字幕久久久久| 最近最新中文字幕大全电影3| 久久精品国产清高在天天线| 国产探花在线观看一区二区| 嫩草影院精品99| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 亚洲 国产 在线| 蜜桃亚洲精品一区二区三区| 草草在线视频免费看| 国产综合懂色| 久久久国产精品麻豆| 一个人看视频在线观看www免费 | 岛国在线观看网站| 十八禁人妻一区二区| 亚洲精品在线美女| 午夜激情福利司机影院| 3wmmmm亚洲av在线观看| 久久久精品大字幕| a级毛片a级免费在线| 老司机在亚洲福利影院| 欧美色视频一区免费| 亚洲欧美日韩无卡精品| 美女 人体艺术 gogo| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 3wmmmm亚洲av在线观看| 男女那种视频在线观看| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 国产91精品成人一区二区三区| 美女被艹到高潮喷水动态| 国产伦人伦偷精品视频| 欧美最新免费一区二区三区 | 性色av乱码一区二区三区2| 免费看光身美女| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美中文日本在线观看视频| 18禁国产床啪视频网站| 国产欧美日韩精品一区二区|