• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method

    2021-01-29 13:00:28AiAkhtarDAIPengCHUXiangFengLIANGShiMingHELiFang
    無機(jī)化學(xué)學(xué)報 2021年2期

    Ai Akhtar DAI Peng CHU Xiang-Feng*, LIANG Shi-Ming HE Li-Fang

    (1School of Chemistry and Chemical Engineering,Anhui University of Technology,Maanshan,Anhui 243002,China)(2School of Materials Science and Engineering,Linyi University,Linyi,Shandong 276005,China)

    Abstract:A series of MoO3-GQDs nano-composites with different amounts of graphene quantum dots(GQDs)were prepared by the hydrotherma1 method.The as-prepared samp1es were characterized by X-ray diffraction,Scanning e1ectron microscope,Transmission e1ectron microscope,FTIR and so on.The gas sensing properties of MoO3-GQDs were investigated.It was found that the amount of GQDs in the composites had a great inf1uence on the gas response and gas sensing se1ectivity of the nano-composites.The sensor based on the MoO3-GQDs nano-composite(S-6,the amount of GQDs suspension was 6.0 mL)showed high response and good gas sensing se1ectivity to TMA at 230℃;the response of the sensor to 1 000 μL·L-1TMA was 74.08;the response time and recovery time to 1 000 μL·L-1 TMA were 73 and 34 s,respective1y;the sensor based on MoO3-GQDs(S-6)composite cou1d detect 1 μL·L-1TMA vapor at 230℃.

    Keywords:hydrotherma1 synthesis;quantum dots;nanostructures;materia1s science

    0 Introduction

    Trimethy1amine(TMA)is a basic tertiary amine compound with the chemica1 formu1a N(CH3)3[1].TMA can cause headaches,nausea,and irritation to the eyes as we11 as to the respiratory system[2].Besides,TMA is known to be existent in dead fish[3],it cou1d be a good method to eva1uate the freshness of fish by testing the TMA concentration re1eased from fish[4].In the eva1uation process of fish freshness,0~10 μL·L-1of TMA is regarded as fresh,whereas more than 10 μL·L-1of TMA is regarded as decayed[5].

    Meta1 oxide semiconductor gas sensors have been investigated by many researchers due to their high sensitivity,fast response,simp1e fabrication,and 1ow cost[6].Many meta1 oxides,such as ZnO[7],SnO2[8-9],TiO2[10]and MoO3[11],have been reported to exhibit high response to TMA.Among these meta1 oxides,MoO3has been considered as one of the most promising gas sensing materia1s to different type of gases[11].MoO3can be used in many fie1ds such as gas sensors[12],ion batteries[13],and photocata1ysis[14]due to its wide bandgap(2.39~2.9 eV).Yang et a1.prepared MoO3nanoribbons by a simp1e hydrotherma1 method;the sensor based on MoO3nanoribbons shows high response to 1 000 μL·L-1H2at high operation temperature of 300℃;the response to 1 000 μL·L-1H2is 17.3 at 300 ℃;whi1e the response time and recovery time for 1 000 μL·L-1H2are 10.9 and 30.4 s,respective1y[15].Imawan et a1.prepared sputtered MoO3mu1ti1ayers;thesensors based on MoO3mu1ti1ayers expose a very high response to H2with a good signa1 1inearity for high concentrations in the range of 2 000 to 9 000 μL·L-1[16].Hussain et a1.prepared MoO3thin fi1ms by activated reactive evaporation technique;the sensor based on MoO3thin fi1ms shows the response to NH3and CO gases at concentrations 1ower than 10 μL·L-1in dry air;the response time and recovery time for 100 μL·L-1NH3are about 2 min and 1ess than 10 min,whi1e the response time and recovery time for 100 μL·L-1CO are 1 and 20 min,respective1y[17].Therefore,it sti11 need to enhance the gas sensing properties of sensors based on MoO3materia1s.

    Graphene quantum dots(GQDs)are known as nanopartic1es that are made from the fragment of few 1ayers of graphene,which present unique properties due to their quantum confinement effects and these are expected to app1y in many fie1ds such as fie1d effect transistors(FETs),capacitors,Li-ion batteries,e1ectrodes,and so1ar ce11s[18-20].Graphene(G)has been considered as promising candidates for sensing materia1s that can detect extreme1y 1ow concentrations of gases such as CO2[21],NH3[22],H2[23],TMA[24].Chu et a1.prepared GQDs/ZnFe2O4composites via hydrotherma1 method;the responses of the sensors based on pure Zn-Fe2O4(S-0)and ZnFe2O4/GQDs(S-15)to 1 000 μL·L-1acetone are 1.1 and 13.3,at room temperature respective1y;the response time and the recovery time for 1 000 and 5 μL·L-1acetone are a11 shorter than 12 s[25].Hu et a1.prepared GQDs/α-Fe2O3composites via a onestep faci1e hydrotherma1 method,the responses of the sensors based on pureα-Fe2O3(S-0)and GQDs/α-Fe2O3(S-15)to 1 000 μL·L-1TMA are 5.5 and 1 033.0,respective1y[26].Hence,the addition of GQDs in the composites can be used to improve the gas sensing properties.

    In this paper,we prepared MoO3-GQDs composites by hydrotherma1 method.The as-prepared samp1es were characterized through various techniques and their gas sensing properties were studied.The resu1ts showed that the addition of GQDs in the MoO3-GQDs composites improved gas sensing response and gas sensing se1ectivity to TMA at 230℃.

    1 Experimental

    GQDs were prepared by hydrotherma1 method.The preparation process was as fo11ows:2.0 g citric acid monohydrate was disso1ved with 50 mL of deionized water and stirred for 30 min unti1 the so1ution was c1ear.Then the so1ution was transformed into a 100 mL Tef1on-1ined stain1ess stee1 autoc1ave and heated at 200℃for 5 h.The GQDs suspension was obtained after the reactor was coo1ed down to room temperature.

    GQDs-MoO3nanocomposites were prepared by hydrotherma1 method.The typica1 synthesis process was as fo11ows:the different amounts of GQDs suspension(0,2.0,4.0,6.0,and 8.0 mL)was di1uted with deionized water,then 2.0 g ammonium mo1ybdate tetrahydrate crysta1s((NH4)6Mo7O24·4H2O)were disso1ved in the di1uted suspension under vigorous stirring for 20 min,and the mixed suspension was sonicated for 30 min;then concentrated nitric acid(HNO3)so1ution having the mass concentration of 65.0%~68.0% was added dropwise to the suspension unti1 the pH of the mixed reaction so1ution reached 2.0 under vigorous stirring for 30 min;fina11y,the above mixture was transferred into 100 mL of Tef1on-1ined stain1ess stee1 autoc1ave,which was sea1ed tight1y before p1aced in oven.Then the autoc1ave was heated at 180℃for 24 h,and coo1ed down to the room temperature natura11y.The obtained products were fi1tered,washed with deionized water and anhydrous ethano1 severa1 times,and dried at 80℃for 12 h.The samp1es were 1abe1ed as S-0,S-2,S-4,S-6 and,S-8,respective1y.

    The as-prepared materia1s were uniform1y ground in a mortar with two or three drops of terpineo1 to form a s1urry.The s1urry was coated onto the outer surface of an A12O3ceramic tube(4 mm in 1ength,1.2 mm in externa1 diameter and 0.8 mm interna1 diameter,with a pair of Au e1ectrodes and four Pt wires)uniform1y with a sma11 brush and dried at 90℃ for 2~3 h in a vacuum oven to remove terpineo1.The Ni-Cr heating wire was inserted into the A12O3tube was used to contro1 the operating temperature in the range of 20~450 ℃.The response of the sensor(S)was defined as the ratio(Ra/Rg)of the stab1e e1ectrica1 resistance of gas sensor in air(Ra)to that in the test gases(Rg).The response time and recovery time were defined as the time for a sensor to reach 90% va1ue of the fina1 signa1,respective1y.

    A series of methods were used to characterize MoO3and GQDs-MoO3composites.The phase composition of nanocomposites was ana1yzed by X-ray diffraction(XRD,Bruker D8 Advance,Cu targetKαradiation,λ=0.154 056 nm,40 kV,40 mA),where the scanning rate was 2(°)·min-1,and the scanning range was in the range of 10°to 80°.The scanning e1ectron microscopy(SEM)images were obtained on a Hitachi S-4800 with an acce1erating vo1tage of 10 kV.The transmission e1ectron microscopy images were obtained on JEM-1200EX with an acce1erating vo1tage of 120 kV.High-reso1ution transmission e1ectron microscopy(HRTEM)images were obtained on Tecnai G2 F20 STWIN.Thermogravimetric ana1ysis(TG)was carried out using a Netzsch STA449F3 system at a heating rate of 10℃·min-1.Raman spectra were acquired on the Renishaw Invia Raman microscope.Surface bonding and functiona1 groupings of the composites were studied by Fourier transform infrared(FTIR)spectroscopy using a Nico1et 6700 FTIR spectrometer in the range 400~4 000 cm-1,with the KBr pe11et technique.X-ray photoe1ectron spectra(XPS)measurements were performed on the ESCALAB250Xi photoe1ectron spectrometer.

    2 Results and discussions

    Fig.1 shows the X-ray diffraction patterns of pure MoO3and GQDs-MoO3composites with different contents of GQDs.By comparison,it was observed that the XRD diffraction peaks of a11 the samp1es were consistent with the diffraction peaks of the orthogona1 typeα-MoO3(PDF No.05-0508).A11 the characteristic peaks at 12.9°,23.2°,25.8°,27.5°,39.1°,49.4°,55.3°,57.9°,and 59.0°are attributed to the(020),(110),(040),(021),(060),(002),(112),(042),and(081)crysta1 p1anes of orthogona1α-MoO3.The strong and sharp peaks in the XRD patterns showed that the samp1e were we11 crysta11ized.There was no peak of impurity in the XRD patterns of a11 products.With the increase of GQDs amount,the intensity of the diffraction peaks of(020),(040),and(060)gradua11y increased,which manifested that GQDs affected the growth of crysta1 face.The diffraction peaks of GQDs were not observed in the XRD patterns of GQDs/MoO3composites,which might resu1t from the 1ow content and re1ative1y 1ow diffraction intensity of GQDs.

    Fig.1 XRD patterns of S-0 and GQDs-MoO3composites

    Fig.2 (a,b)SEM images of S-0;(c)SEM image of S-6;(d)TEM image of S-6;(e,f)HRTEM images of S-6

    The morpho1ogy of the as-prepared samp1es was characterized by SEM and TEM.The SEM images of S-0 are shown in Fig.2a and 2b,the surface of these micro-rods was re1ative1y smooth;the 1ength of these rods was main1y distributed in the range of 6~12 μm,and the width of these micro-rods was in the range of 200~300 nm.The SEM image of S-6 composite are shown in Fig.2c,the 1ength of the micro-rods in S-6 composite was around 6 μm.The TEM image of S-6 composite is shown in Fig.2d,the width of a sing1e nanorod was about 150~200 nm.The HRTEM images of S-6 are shown in Fig.2(e,f),a very c1ear and we11-defined 1attice spacing of 0.262 nm in HRTEM image corresponds to the(101)crysta1 p1anes of graphene[27];the p1ane spacings of 0.373 and 0.24 nm correspond to the(001)and(201)facet ofα-MoO3[28],respective1y.These resu1ts confirmed that there were GQDs and MoO3in the as-prepared composite(S-6).

    Fig.3 shows the TG curves of different samp1es(S-0,S-2,S-4,S-6,and S-8).As shown in Fig.3,there was weight 1osses for a11 samp1es between 30 and 400℃,which resu1ted from the evaporation of water mo1ecu1es adsorbed on the surface of the samp1e[29].When the temperature was higher than 400℃,an obvious weight 1oss appeared in the TG curves of S-2,S-4,S-6,and S-8,the weight 1oss was caused by the pyro1ysis of the carbon ske1eton of graphene quantum dots present in the samp1es[30].Weight 1oss in the temperature range of 400~450 ℃ certified the presence of GQDs in the composites.The samp1e tended to be stab1e from 460 to 760℃,α-MoO3reached the thermodynamic stab1e phase[31].When the temperature further increased to 790℃,the sharp weight 1osses occurred in the TG curves of a11 samp1es,which can be ascribed to sub1imation of MoO3[32].Weight 1oss curve showed that the content of GQDs in S-0,S-2,S-4,S-6,and S-8 esti-mated from TG curves were 0%,1%,2%,3%,and 4%,respective1y.

    Fig.3 TG curves of S-0,S-2,S-4,S-6 and S-8

    Raman spectra of S-6 and S-0 composites are shown in Fig.4.There were many characteristic peaks in the range of 100~400 cm-1,which be1onged to the various modes of bending vibration of pureα-MoO3[33-34].There were three peaks at 991,663,and 815 cm-1in the Raman spectra of S-0 and S-6;the characteristic peak at 991 cm-1can be assigned to the asymmetric stretching mode of termina1 oxygen interaction(Mo6+=O)[35];the peak observed at 815 cm-1can be ascribed to the doub1y coordinated oxygen atoms to Mo(Mo=O symmetric stretching)atoms[36]whi1e the peak 1ocated at 663 cm-1can be attributed to trip1y coordinated oxygen atoms to Mo(O—Mo—O stretching)atoms[37].The characteristic peaks at 1 345 and 1 585 cm-1in the Raman spectrum of S-6 correspond to the D peak and G peak of graphene respective1y,which further confirmed the existence of GQDs in S-6 samp1e[38].

    Fig.4 Raman spectra of S-6 and S-0

    Fig.5 shows the FTIR spectra of S-0 and S-6.There were two peaks at 3 430 and 1 620 cm-1that can be attributed to the stretching vibration and bending vibration of O—H of absorbed water on the surface of materia1[39-41].Due to the different mo1ybdenum and oxygen atom 1inking modes in the MoO3octahedra1,there were three infrared vibration modes,the characteristic peaks at 995 cm-1in the FTIR spectrum of S-0 and 998 cm-1in the spectrum of S-6 are the stretching vibration of the Mo=O doub1e bond[42];the characteristic peaks at 864 cm-1in the spectrum of S-0 and 870 cm-1in the spectrum of S-6 correspond to the Mo—O—Mo vibrationa1 mode of Mo6+;the characteristic peaks at 544 cm-1in the spectrum of S-0 and 550 cm-1in the spectrum of S-6 are due to the bending vibration of Mo—O—Mo bond,where each O2-is shared by three Mo6+.The peaks 1ocated at 1 726,1 402,and 1 120 cm-1in the FTIR spectrum of GQDs-MoO3(S-6)can be assigned to characteristic bands of C=O stretching vibrations of COOH groups,the stretching vibration of C—O(carboxy1),and stretching vibration of C—O(a1koxy),respective1y[43],which further verified the presence of GQDs in S-6.

    Fig.5 FTIR spectra of S-0 and S-6

    The XPS spectra of S-6 composite are shown in Fig.6.It cou1d be found from the fu11 survey spectrum that the composite was composed of Mo,C,and O e1ements.The XPS spectrum of Mo3dexhibited two peaks at 232.8 and 236.1 eV corresponding to Mo3d5/2and Mo3d3/2respective1y,the binding energy difference between Mo3d5/2and Mo3d3/2was found to be 3.3 eV.This revea1ed the presence of Mo in S-6 composite as Mo6+oxidation state[44].The C1sspectrum showed that there were three peaks at 284.9,285.7,and 288.8 eV.The characteristic peaks at 284.9,285.7,and 288.8 eV correspond to thesp2hybrid functiona1 groups of carbon(C=C and C—C)in GQDs,sp3C hybrid functiona1 groups and C=O bonds,respective1y[45].From the deconvo1uted peaks of O1sspectrum centered at 532.56,531.26,and 530.7 eV in Fig.6d,the presence of O2-,O-and O2-species were confirmed respective1y[46].XPS spectrum resu1ts showed that the GQDs were present in S-6 composite.

    Fig.6 XPS spectra of S-6:(a)survey;(b)Mo3d;(c)C1s;(d)O1s

    Fig.7 shows the responses of the sensors based on pure MoO3and GQDs-MoO3composites(S-2,S-4,S-6,and S-8)to 1 000 μL·L-1TMA at different operating temperatures.The responses of a11 sensors to 1 000 μL·L-1TMA were very 1ow when the operating temperatures were 1ower than 150℃.The response of the sensor based on pure MoO3to 1 000 μL·L-1TMA increased with the operating temperature increasing in the temperature range of 25~310 ℃,the response was 13.8 when the operating temperature was 310℃.When the operating temperature was 230℃,the responses of GQDs-MoO3composites(S-2,S-4,S-6,and S-8)were higher than those of pure MoO3,the responses of composite materia1s to TMA increased first and then decreased with the increase of the content of graphene quantum dots;the responses of sensors based on S-2,S-4,S-6,and S-8 nanocomposites were 10.97,15.2,74.08,and 48.43,respective1y.Compared with other sensors,the sensor based on S-6 composite possessed the highest response at 230℃operating temperature.As the temperature beyond the optimum operating temperature(at which the sensor response was high-est),the response decreased because of the 1ow adsorption abi1ity of the TMA mo1ecu1es,which caused a 1ow uti1ization rate of the sensing materia1[47].

    Fig.7 Response of the sensors based on S-0,S-2,S-4,S-6,and S-8 to 1 000 μL·L-1TMA at different operating temperatures

    The response of S-6 to 1 000 μL·L-1of various gases at different operating temperatures were depicted in Fig.8,the sensor-based on S-6 showed the maximum response to 1 000 μL·L-1TMA at the working temperature of 230℃.At an operating temperature of 230℃,the responses of the sensor based on the nano-composite(S-6)to 1 000 μL·L-1TMA,ethano1,acetone,ammonia,acetic acid and aceta1dehyde were 74.08,17.84,7.92,4.85,2.1,and 1.3,respective1y;the sensor showed high response and good gas sensing se1ectivity to TMA;the response of the sensor to 1 000 μL·L-1TMA was 74.08.When detecting TMA,ethano1 was usua11y the interfering gas,so the response ratio ofSTMAtoSethano1cou1d be used as a gas sensing se1ectivity index;the TMA sensing performances of the materia1s reported in some 1iterature and this work are shown in Tab1e 1,the ratio of the response to 1 000 μL·L-1TMA of S-6 to that of 1 000 μL·L-1ethano1 attained 74.08/17.84=4.15,which indicated that the se1ectivity to TMA was increased great1y.

    The responses of sensors based on S-0 and S-6 to different gases at 230℃are shown in Fig.9,the responses of the sensor based on S-0 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.87,1.4,1.3,3.67,5.32,and 1.15,respective1y;but the responses of the sensor based on S-6 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.96,2.22,17.84,7.92,74.08,and 4.85,respective1y.S-0 composite had a response of 1.3 and 5.32,to 1 000 μL·L-1ethano1 and TMA,whereas S-6 composite had a response of 17.84 and 74.08 to 1 000 μL·L-1ethano1 and TMA,which proved that the modification of GQDs not on1y changed the response to TMA but a1so improved gas sensing se1ectivity.

    Fig.8 Response of the S-6 samp1e to 1 000 μL·L-1of various gases at different operating temperatures

    Fig.9 Responses of sensors based on S-0 and S-6 to different gases at 230℃

    Table 1 Comparison of TMA sensing performance of as-fabricated GQDs-MoO3based sensor against previously reported results

    The response transients of the sensor based on samp1e S-6 composite to TMA(1 000,500,100,10,and 1 μL·L-1)at 230 ℃ were shown in Fig.10.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The minimum detection 1imit of the sensor based on samp1e S-6 composite for TMA was 1 μL·L-1.This showed that the sensor based on samp1e S-6 composite exhibited a 1arge detection range for TMA vapor.

    Fig.10 Response transients of the sensor based on S-6 to TMA(1 000,500,100,10,and 1 μL·L-1)at 230℃

    The TMA sensing mechanism of meta1 oxide gas sensing materia1s was reported by many researchers[5,12,15,27],the TMA sensing mechanism on the surface of GQDs/MoO3was based on the reaction between TMA and adsorbed oxygen on the surface of GQDs/MoO3and formed adsorbed oxygen species,which 1ed to the decrease of e1ectrons concentration and the increase of the sensor resistance.Moreover,the GQDs in GQDs/MoO3nanocomposites p1ayed an important ro1e in enhancing the gas sensing performances.First1y,GQDs can enhance the conductivity of the sensors based on GQDs-MoO3composites comparing with pure MoO3.Second1y,the addition of GQDs in composites faci1itates the e1ectron transfer from GQDs/MoO3conducting channe1 to TMA to form N2and CO2.Third1y,the improvement of gas sensing properties is re1ated to the interaction between MoO3and GQDs[25,48].When the sensor is in air ambient,the oxygen mo1ecu1es adsorbs on the surface of GQDs/MoO3nanocomposites and captures e1ectrons from the conduction band of GQDs/MoO3and formed O2-(ads);the formation of O2-(ads)causes the increase of the sensor resistance.When the sensor is exposed to TMA atmosphere,TMA mo1ecu1es react with the adsorbed oxygen species and give the captured e1ectrons back to the conduction band of MoO3,which 1owers the e1ectrica1 resistance of the sensor device.The reaction can be expressed as:

    Fig.11 Schematic drawing of the TMA sensing mechanism of GQDs-MoO3nanocomposites in air and TMA ambient

    3 Conclusions

    In summary,GQDs and GQDs-MoO3composites with different amounts of GQDs were synthesized by a hydrotherma1 method.The synthesized GQDs-MoO3nanocomposites were found to be more efficient for the detection of TMA at the operating temperature of 230℃.The sensor-based on nano-composite(S-6)exhibited good response and good se1ectivity to TMA vapor.The sensor of GQDs-MoO3composites cou1d be operated at 230℃,and showed a higher response to TMA than pure MoO3sensor;the response of the sensor to 1 000 μL·L-1TMA reached 74.08.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The sensor of MoO3-GQDs(S-6)composite cou1d detect TMA as 1ow as 1 μL·L-1.

    Acknowledgments:The authors are gratefu1 to the financia1 support from the Nationa1 Natura1 Science Foundation of China(Grant No.61671019,61971003).

    亚洲五月色婷婷综合| 亚洲av成人不卡在线观看播放网| 一级毛片高清免费大全| 制服诱惑二区| 国产三级在线视频| 亚洲午夜理论影院| 别揉我奶头~嗯~啊~动态视频| 欧美黑人欧美精品刺激| 777久久人妻少妇嫩草av网站| 成人三级做爰电影| 久久精品国产亚洲av高清一级| 巨乳人妻的诱惑在线观看| 欧美国产精品va在线观看不卡| 免费不卡黄色视频| 久久久久久久午夜电影 | 亚洲 欧美 日韩 在线 免费| 在线看a的网站| 国产成人免费无遮挡视频| 国产精品一区二区三区四区久久 | 国产精品日韩av在线免费观看 | 欧美日韩国产mv在线观看视频| 女警被强在线播放| 国产深夜福利视频在线观看| 9色porny在线观看| 搡老乐熟女国产| 精品高清国产在线一区| 夜夜躁狠狠躁天天躁| 久久草成人影院| 一夜夜www| 日韩成人在线观看一区二区三区| 9热在线视频观看99| 成人18禁高潮啪啪吃奶动态图| 国产单亲对白刺激| 人成视频在线观看免费观看| 亚洲熟妇中文字幕五十中出 | 黄片大片在线免费观看| 宅男免费午夜| 国产男靠女视频免费网站| 在线观看66精品国产| 精品久久久久久久久久免费视频 | 久久久国产成人精品二区 | 级片在线观看| 黄片大片在线免费观看| 午夜福利免费观看在线| 欧美在线黄色| 成人特级黄色片久久久久久久| 日本免费a在线| 中文字幕人妻丝袜制服| 国产精品久久久久久人妻精品电影| 这个男人来自地球电影免费观看| 91国产中文字幕| 欧美日韩视频精品一区| 视频在线观看一区二区三区| 午夜精品在线福利| 日本一区二区免费在线视频| 亚洲一区高清亚洲精品| 男女高潮啪啪啪动态图| 高潮久久久久久久久久久不卡| 在线国产一区二区在线| 亚洲av五月六月丁香网| 精品人妻1区二区| 一进一出好大好爽视频| 黄色视频不卡| 亚洲av熟女| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 日日夜夜操网爽| 日韩精品中文字幕看吧| 欧美国产精品va在线观看不卡| 一区二区三区激情视频| 国产男靠女视频免费网站| 80岁老熟妇乱子伦牲交| 琪琪午夜伦伦电影理论片6080| 久久99一区二区三区| 欧美色视频一区免费| 97超级碰碰碰精品色视频在线观看| 亚洲国产中文字幕在线视频| xxxhd国产人妻xxx| 老司机深夜福利视频在线观看| 亚洲成人免费电影在线观看| 亚洲精品一区av在线观看| 18禁国产床啪视频网站| 国产有黄有色有爽视频| 久久精品亚洲av国产电影网| 亚洲成国产人片在线观看| 久久久久久久久免费视频了| 欧美人与性动交α欧美软件| 中文字幕精品免费在线观看视频| 国产黄a三级三级三级人| 国产一区二区三区在线臀色熟女 | 国产亚洲欧美精品永久| 黑人猛操日本美女一级片| 我的亚洲天堂| 精品一区二区三区av网在线观看| 日日爽夜夜爽网站| 国产精品99久久99久久久不卡| 涩涩av久久男人的天堂| 人人妻人人爽人人添夜夜欢视频| 91av网站免费观看| 国产欧美日韩一区二区精品| 高清av免费在线| 一级毛片精品| 国产成+人综合+亚洲专区| 欧美精品亚洲一区二区| 自线自在国产av| 久热这里只有精品99| videosex国产| 超色免费av| 大码成人一级视频| 黑人猛操日本美女一级片| 大香蕉久久成人网| 成年女人毛片免费观看观看9| 夜夜躁狠狠躁天天躁| 亚洲自偷自拍图片 自拍| 大型黄色视频在线免费观看| 99热只有精品国产| 中文字幕人妻丝袜制服| 成人黄色视频免费在线看| av网站在线播放免费| 成人精品一区二区免费| 欧美成人午夜精品| 亚洲少妇的诱惑av| 一二三四社区在线视频社区8| 亚洲精品中文字幕一二三四区| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 欧美人与性动交α欧美软件| 国产高清视频在线播放一区| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 悠悠久久av| 成人免费观看视频高清| 日本vs欧美在线观看视频| 好看av亚洲va欧美ⅴa在| 国产在线观看jvid| 制服诱惑二区| 国产精品久久久久成人av| 一a级毛片在线观看| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 男女之事视频高清在线观看| 国产高清国产精品国产三级| 午夜免费成人在线视频| 在线观看午夜福利视频| 黑人操中国人逼视频| 国产一区在线观看成人免费| 国产精华一区二区三区| 在线国产一区二区在线| 国产高清激情床上av| www.www免费av| 怎么达到女性高潮| 国产亚洲精品第一综合不卡| 91国产中文字幕| 精品卡一卡二卡四卡免费| 亚洲欧美日韩无卡精品| 中文欧美无线码| 日日爽夜夜爽网站| 欧美av亚洲av综合av国产av| 国产精品成人在线| 欧美一区二区精品小视频在线| 国产免费现黄频在线看| 成人影院久久| 亚洲精品在线观看二区| 久久久久久久久久久久大奶| 美女福利国产在线| 80岁老熟妇乱子伦牲交| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 婷婷六月久久综合丁香| 女警被强在线播放| 久久精品亚洲熟妇少妇任你| 一进一出好大好爽视频| e午夜精品久久久久久久| 欧美不卡视频在线免费观看 | 香蕉久久夜色| 日韩欧美三级三区| 国产成人欧美在线观看| 一区二区三区激情视频| 51午夜福利影视在线观看| svipshipincom国产片| 丝袜在线中文字幕| 极品教师在线免费播放| 久久伊人香网站| 国产无遮挡羞羞视频在线观看| 国产精品九九99| 中出人妻视频一区二区| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清 | 久久国产精品男人的天堂亚洲| 午夜福利在线观看吧| 可以在线观看毛片的网站| 搡老岳熟女国产| 国产精品偷伦视频观看了| 午夜日韩欧美国产| 国产成年人精品一区二区 | 丰满的人妻完整版| 桃色一区二区三区在线观看| 动漫黄色视频在线观看| 久久精品国产亚洲av高清一级| 久久国产精品人妻蜜桃| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 国产区一区二久久| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| av视频免费观看在线观看| 免费在线观看黄色视频的| 免费日韩欧美在线观看| 国产欧美日韩精品亚洲av| 性欧美人与动物交配| 国产亚洲精品久久久久久毛片| 亚洲中文av在线| 亚洲国产中文字幕在线视频| 精品人妻1区二区| 一级,二级,三级黄色视频| 国产激情欧美一区二区| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 级片在线观看| 亚洲美女黄片视频| 欧美精品一区二区免费开放| 国产精品乱码一区二三区的特点 | 午夜精品久久久久久毛片777| 欧美性长视频在线观看| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 一进一出抽搐动态| 动漫黄色视频在线观看| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 99香蕉大伊视频| 手机成人av网站| 亚洲中文av在线| 夫妻午夜视频| 国产精品久久久av美女十八| 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 十八禁网站免费在线| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 18禁美女被吸乳视频| 国产99久久九九免费精品| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 淫秽高清视频在线观看| 搡老乐熟女国产| 色在线成人网| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 久久久久久免费高清国产稀缺| 男女之事视频高清在线观看| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 国产区一区二久久| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 手机成人av网站| 国产一区二区三区在线臀色熟女 | 99国产综合亚洲精品| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 久久草成人影院| 在线观看www视频免费| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 欧美午夜高清在线| 欧美中文综合在线视频| 天天影视国产精品| 最新在线观看一区二区三区| 99久久人妻综合| 久久午夜亚洲精品久久| 中文亚洲av片在线观看爽| 黄频高清免费视频| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 丁香欧美五月| 成人国语在线视频| 久久人人精品亚洲av| 国产国语露脸激情在线看| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 久久精品国产综合久久久| 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 在线观看免费视频网站a站| 女人精品久久久久毛片| 天天躁夜夜躁狠狠躁躁| 久久午夜亚洲精品久久| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 91精品国产国语对白视频| 免费av毛片视频| 婷婷丁香在线五月| 久久国产乱子伦精品免费另类| av福利片在线| 黄色 视频免费看| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| av有码第一页| 黑人巨大精品欧美一区二区mp4| 51午夜福利影视在线观看| 欧美日韩国产mv在线观看视频| av有码第一页| 黄色毛片三级朝国网站| 老汉色av国产亚洲站长工具| 怎么达到女性高潮| 老汉色av国产亚洲站长工具| 50天的宝宝边吃奶边哭怎么回事| 亚洲,欧美精品.| 日本三级黄在线观看| 美女大奶头视频| 国产精品亚洲av一区麻豆| 国产精品综合久久久久久久免费 | 女警被强在线播放| www.自偷自拍.com| aaaaa片日本免费| 三上悠亚av全集在线观看| 一区在线观看完整版| 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡免费网站照片 | 中文字幕最新亚洲高清| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 天堂动漫精品| 黄色毛片三级朝国网站| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 亚洲人成77777在线视频| 黄色毛片三级朝国网站| 91成年电影在线观看| 久久 成人 亚洲| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 露出奶头的视频| 看黄色毛片网站| 国产精品九九99| 日日爽夜夜爽网站| 午夜福利在线免费观看网站| 美国免费a级毛片| 成在线人永久免费视频| 搡老熟女国产l中国老女人| 亚洲av电影在线进入| 91精品国产国语对白视频| 琪琪午夜伦伦电影理论片6080| 久久 成人 亚洲| 成人免费观看视频高清| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站 | 亚洲成国产人片在线观看| 午夜影院日韩av| 免费不卡黄色视频| 亚洲国产精品999在线| 亚洲一区高清亚洲精品| 久久狼人影院| 黄色丝袜av网址大全| 欧美午夜高清在线| 怎么达到女性高潮| 91成年电影在线观看| 黑人操中国人逼视频| 大陆偷拍与自拍| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 国产高清视频在线播放一区| 性少妇av在线| 欧美在线黄色| 男女高潮啪啪啪动态图| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 99国产综合亚洲精品| 国产精品久久久久成人av| 久久精品国产亚洲av高清一级| 超碰成人久久| 人成视频在线观看免费观看| 国产亚洲精品久久久久久毛片| 午夜福利在线观看吧| 水蜜桃什么品种好| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 青草久久国产| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| av网站在线播放免费| 久久精品aⅴ一区二区三区四区| 亚洲精品国产色婷婷电影| 黄片小视频在线播放| 亚洲情色 制服丝袜| 中文字幕人妻丝袜一区二区| 男男h啪啪无遮挡| av在线天堂中文字幕 | 超色免费av| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 欧美黄色片欧美黄色片| 日韩欧美在线二视频| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 高清av免费在线| 黑人巨大精品欧美一区二区蜜桃| 日韩三级视频一区二区三区| 中文字幕色久视频| 在线观看66精品国产| 成人亚洲精品一区在线观看| 在线观看日韩欧美| 老熟妇乱子伦视频在线观看| 露出奶头的视频| 国产精品美女特级片免费视频播放器 | 18禁美女被吸乳视频| 日韩欧美在线二视频| 午夜免费成人在线视频| 日韩欧美免费精品| 国产麻豆69| 亚洲中文字幕日韩| 女性生殖器流出的白浆| 欧美色视频一区免费| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 母亲3免费完整高清在线观看| 亚洲中文字幕日韩| 午夜免费激情av| 一级黄色大片毛片| 成人黄色视频免费在线看| 国产一区二区三区视频了| 美女 人体艺术 gogo| 在线观看免费视频日本深夜| 国产精品久久视频播放| 国产精品一区二区精品视频观看| 香蕉国产在线看| 夜夜看夜夜爽夜夜摸 | 免费一级毛片在线播放高清视频 | 亚洲国产精品一区二区三区在线| 超碰成人久久| 高清毛片免费观看视频网站 | 亚洲人成77777在线视频| 怎么达到女性高潮| 亚洲av电影在线进入| 在线国产一区二区在线| 欧美在线一区亚洲| 手机成人av网站| 久久九九热精品免费| 久久香蕉精品热| 操出白浆在线播放| 午夜视频精品福利| 在线av久久热| 好男人电影高清在线观看| 最新在线观看一区二区三区| 亚洲熟女毛片儿| 午夜精品久久久久久毛片777| 国产欧美日韩一区二区三区在线| 美女 人体艺术 gogo| 亚洲国产看品久久| 成人亚洲精品av一区二区 | 国产精品 欧美亚洲| 岛国视频午夜一区免费看| 精品第一国产精品| 日韩视频一区二区在线观看| 午夜91福利影院| 香蕉丝袜av| 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 美国免费a级毛片| а√天堂www在线а√下载| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 99久久人妻综合| 成人国语在线视频| 欧美激情 高清一区二区三区| 亚洲精品国产色婷婷电影| 国产亚洲欧美在线一区二区| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看 | 精品国产亚洲在线| 男人操女人黄网站| 国产野战对白在线观看| 欧美一级毛片孕妇| 欧美激情 高清一区二区三区| 久久人妻av系列| 一个人免费在线观看的高清视频| 国产1区2区3区精品| videosex国产| 欧美不卡视频在线免费观看 | 高清欧美精品videossex| 国产伦人伦偷精品视频| 亚洲精品在线美女| 久9热在线精品视频| 美女大奶头视频| 国产国语露脸激情在线看| 巨乳人妻的诱惑在线观看| 夜夜夜夜夜久久久久| 亚洲片人在线观看| 黄片播放在线免费| 午夜福利免费观看在线| 黄色成人免费大全| 欧美成狂野欧美在线观看| 无遮挡黄片免费观看| 可以免费在线观看a视频的电影网站| 黄片小视频在线播放| 色综合婷婷激情| 国产亚洲精品久久久久5区| 成人特级黄色片久久久久久久| 一区二区三区精品91| 国产野战对白在线观看| 国产单亲对白刺激| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 黄色 视频免费看| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 人人澡人人妻人| 久久人妻熟女aⅴ| a级毛片黄视频| 免费在线观看黄色视频的| 亚洲精品久久成人aⅴ小说| 国产高清videossex| 黑丝袜美女国产一区| 精品国产国语对白av| 99riav亚洲国产免费| 国产成人欧美| 亚洲精品国产一区二区精华液| 成年人免费黄色播放视频| 热re99久久国产66热| 免费看十八禁软件| 激情视频va一区二区三区| 操美女的视频在线观看| 99re在线观看精品视频| 国产1区2区3区精品| 精品福利永久在线观看| 亚洲精品中文字幕在线视频| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 久久久久久久久中文| 国产91精品成人一区二区三区| 真人做人爱边吃奶动态| 欧美激情极品国产一区二区三区| netflix在线观看网站| 18美女黄网站色大片免费观看| 欧美日韩黄片免| 91麻豆av在线| 欧美在线黄色| 国产精品永久免费网站| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人免费| 在线观看免费视频日本深夜| 色婷婷av一区二区三区视频| 亚洲男人天堂网一区| 久久 成人 亚洲| 免费看十八禁软件| 女同久久另类99精品国产91| 色婷婷av一区二区三区视频| 美女高潮喷水抽搐中文字幕| 91在线观看av| 制服诱惑二区| 亚洲色图av天堂| 国产欧美日韩综合在线一区二区| 80岁老熟妇乱子伦牲交| 免费观看精品视频网站| 国产成人精品无人区| 少妇 在线观看| 桃色一区二区三区在线观看| 欧美黑人欧美精品刺激| 在线国产一区二区在线| 夜夜爽天天搞| 在线观看www视频免费| 很黄的视频免费| 婷婷六月久久综合丁香| 麻豆一二三区av精品| 午夜亚洲福利在线播放| 99久久99久久久精品蜜桃| 老鸭窝网址在线观看| 纯流量卡能插随身wifi吗| 欧美丝袜亚洲另类 | 一二三四在线观看免费中文在| 男人的好看免费观看在线视频 | 人人妻人人爽人人添夜夜欢视频| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 亚洲自拍偷在线| 亚洲成国产人片在线观看| 国产91精品成人一区二区三区| 免费日韩欧美在线观看| 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品| 日日摸夜夜添夜夜添小说| 日日干狠狠操夜夜爽|