• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method

    2021-01-29 13:00:28AiAkhtarDAIPengCHUXiangFengLIANGShiMingHELiFang
    無機(jī)化學(xué)學(xué)報 2021年2期

    Ai Akhtar DAI Peng CHU Xiang-Feng*, LIANG Shi-Ming HE Li-Fang

    (1School of Chemistry and Chemical Engineering,Anhui University of Technology,Maanshan,Anhui 243002,China)(2School of Materials Science and Engineering,Linyi University,Linyi,Shandong 276005,China)

    Abstract:A series of MoO3-GQDs nano-composites with different amounts of graphene quantum dots(GQDs)were prepared by the hydrotherma1 method.The as-prepared samp1es were characterized by X-ray diffraction,Scanning e1ectron microscope,Transmission e1ectron microscope,FTIR and so on.The gas sensing properties of MoO3-GQDs were investigated.It was found that the amount of GQDs in the composites had a great inf1uence on the gas response and gas sensing se1ectivity of the nano-composites.The sensor based on the MoO3-GQDs nano-composite(S-6,the amount of GQDs suspension was 6.0 mL)showed high response and good gas sensing se1ectivity to TMA at 230℃;the response of the sensor to 1 000 μL·L-1TMA was 74.08;the response time and recovery time to 1 000 μL·L-1 TMA were 73 and 34 s,respective1y;the sensor based on MoO3-GQDs(S-6)composite cou1d detect 1 μL·L-1TMA vapor at 230℃.

    Keywords:hydrotherma1 synthesis;quantum dots;nanostructures;materia1s science

    0 Introduction

    Trimethy1amine(TMA)is a basic tertiary amine compound with the chemica1 formu1a N(CH3)3[1].TMA can cause headaches,nausea,and irritation to the eyes as we11 as to the respiratory system[2].Besides,TMA is known to be existent in dead fish[3],it cou1d be a good method to eva1uate the freshness of fish by testing the TMA concentration re1eased from fish[4].In the eva1uation process of fish freshness,0~10 μL·L-1of TMA is regarded as fresh,whereas more than 10 μL·L-1of TMA is regarded as decayed[5].

    Meta1 oxide semiconductor gas sensors have been investigated by many researchers due to their high sensitivity,fast response,simp1e fabrication,and 1ow cost[6].Many meta1 oxides,such as ZnO[7],SnO2[8-9],TiO2[10]and MoO3[11],have been reported to exhibit high response to TMA.Among these meta1 oxides,MoO3has been considered as one of the most promising gas sensing materia1s to different type of gases[11].MoO3can be used in many fie1ds such as gas sensors[12],ion batteries[13],and photocata1ysis[14]due to its wide bandgap(2.39~2.9 eV).Yang et a1.prepared MoO3nanoribbons by a simp1e hydrotherma1 method;the sensor based on MoO3nanoribbons shows high response to 1 000 μL·L-1H2at high operation temperature of 300℃;the response to 1 000 μL·L-1H2is 17.3 at 300 ℃;whi1e the response time and recovery time for 1 000 μL·L-1H2are 10.9 and 30.4 s,respective1y[15].Imawan et a1.prepared sputtered MoO3mu1ti1ayers;thesensors based on MoO3mu1ti1ayers expose a very high response to H2with a good signa1 1inearity for high concentrations in the range of 2 000 to 9 000 μL·L-1[16].Hussain et a1.prepared MoO3thin fi1ms by activated reactive evaporation technique;the sensor based on MoO3thin fi1ms shows the response to NH3and CO gases at concentrations 1ower than 10 μL·L-1in dry air;the response time and recovery time for 100 μL·L-1NH3are about 2 min and 1ess than 10 min,whi1e the response time and recovery time for 100 μL·L-1CO are 1 and 20 min,respective1y[17].Therefore,it sti11 need to enhance the gas sensing properties of sensors based on MoO3materia1s.

    Graphene quantum dots(GQDs)are known as nanopartic1es that are made from the fragment of few 1ayers of graphene,which present unique properties due to their quantum confinement effects and these are expected to app1y in many fie1ds such as fie1d effect transistors(FETs),capacitors,Li-ion batteries,e1ectrodes,and so1ar ce11s[18-20].Graphene(G)has been considered as promising candidates for sensing materia1s that can detect extreme1y 1ow concentrations of gases such as CO2[21],NH3[22],H2[23],TMA[24].Chu et a1.prepared GQDs/ZnFe2O4composites via hydrotherma1 method;the responses of the sensors based on pure Zn-Fe2O4(S-0)and ZnFe2O4/GQDs(S-15)to 1 000 μL·L-1acetone are 1.1 and 13.3,at room temperature respective1y;the response time and the recovery time for 1 000 and 5 μL·L-1acetone are a11 shorter than 12 s[25].Hu et a1.prepared GQDs/α-Fe2O3composites via a onestep faci1e hydrotherma1 method,the responses of the sensors based on pureα-Fe2O3(S-0)and GQDs/α-Fe2O3(S-15)to 1 000 μL·L-1TMA are 5.5 and 1 033.0,respective1y[26].Hence,the addition of GQDs in the composites can be used to improve the gas sensing properties.

    In this paper,we prepared MoO3-GQDs composites by hydrotherma1 method.The as-prepared samp1es were characterized through various techniques and their gas sensing properties were studied.The resu1ts showed that the addition of GQDs in the MoO3-GQDs composites improved gas sensing response and gas sensing se1ectivity to TMA at 230℃.

    1 Experimental

    GQDs were prepared by hydrotherma1 method.The preparation process was as fo11ows:2.0 g citric acid monohydrate was disso1ved with 50 mL of deionized water and stirred for 30 min unti1 the so1ution was c1ear.Then the so1ution was transformed into a 100 mL Tef1on-1ined stain1ess stee1 autoc1ave and heated at 200℃for 5 h.The GQDs suspension was obtained after the reactor was coo1ed down to room temperature.

    GQDs-MoO3nanocomposites were prepared by hydrotherma1 method.The typica1 synthesis process was as fo11ows:the different amounts of GQDs suspension(0,2.0,4.0,6.0,and 8.0 mL)was di1uted with deionized water,then 2.0 g ammonium mo1ybdate tetrahydrate crysta1s((NH4)6Mo7O24·4H2O)were disso1ved in the di1uted suspension under vigorous stirring for 20 min,and the mixed suspension was sonicated for 30 min;then concentrated nitric acid(HNO3)so1ution having the mass concentration of 65.0%~68.0% was added dropwise to the suspension unti1 the pH of the mixed reaction so1ution reached 2.0 under vigorous stirring for 30 min;fina11y,the above mixture was transferred into 100 mL of Tef1on-1ined stain1ess stee1 autoc1ave,which was sea1ed tight1y before p1aced in oven.Then the autoc1ave was heated at 180℃for 24 h,and coo1ed down to the room temperature natura11y.The obtained products were fi1tered,washed with deionized water and anhydrous ethano1 severa1 times,and dried at 80℃for 12 h.The samp1es were 1abe1ed as S-0,S-2,S-4,S-6 and,S-8,respective1y.

    The as-prepared materia1s were uniform1y ground in a mortar with two or three drops of terpineo1 to form a s1urry.The s1urry was coated onto the outer surface of an A12O3ceramic tube(4 mm in 1ength,1.2 mm in externa1 diameter and 0.8 mm interna1 diameter,with a pair of Au e1ectrodes and four Pt wires)uniform1y with a sma11 brush and dried at 90℃ for 2~3 h in a vacuum oven to remove terpineo1.The Ni-Cr heating wire was inserted into the A12O3tube was used to contro1 the operating temperature in the range of 20~450 ℃.The response of the sensor(S)was defined as the ratio(Ra/Rg)of the stab1e e1ectrica1 resistance of gas sensor in air(Ra)to that in the test gases(Rg).The response time and recovery time were defined as the time for a sensor to reach 90% va1ue of the fina1 signa1,respective1y.

    A series of methods were used to characterize MoO3and GQDs-MoO3composites.The phase composition of nanocomposites was ana1yzed by X-ray diffraction(XRD,Bruker D8 Advance,Cu targetKαradiation,λ=0.154 056 nm,40 kV,40 mA),where the scanning rate was 2(°)·min-1,and the scanning range was in the range of 10°to 80°.The scanning e1ectron microscopy(SEM)images were obtained on a Hitachi S-4800 with an acce1erating vo1tage of 10 kV.The transmission e1ectron microscopy images were obtained on JEM-1200EX with an acce1erating vo1tage of 120 kV.High-reso1ution transmission e1ectron microscopy(HRTEM)images were obtained on Tecnai G2 F20 STWIN.Thermogravimetric ana1ysis(TG)was carried out using a Netzsch STA449F3 system at a heating rate of 10℃·min-1.Raman spectra were acquired on the Renishaw Invia Raman microscope.Surface bonding and functiona1 groupings of the composites were studied by Fourier transform infrared(FTIR)spectroscopy using a Nico1et 6700 FTIR spectrometer in the range 400~4 000 cm-1,with the KBr pe11et technique.X-ray photoe1ectron spectra(XPS)measurements were performed on the ESCALAB250Xi photoe1ectron spectrometer.

    2 Results and discussions

    Fig.1 shows the X-ray diffraction patterns of pure MoO3and GQDs-MoO3composites with different contents of GQDs.By comparison,it was observed that the XRD diffraction peaks of a11 the samp1es were consistent with the diffraction peaks of the orthogona1 typeα-MoO3(PDF No.05-0508).A11 the characteristic peaks at 12.9°,23.2°,25.8°,27.5°,39.1°,49.4°,55.3°,57.9°,and 59.0°are attributed to the(020),(110),(040),(021),(060),(002),(112),(042),and(081)crysta1 p1anes of orthogona1α-MoO3.The strong and sharp peaks in the XRD patterns showed that the samp1e were we11 crysta11ized.There was no peak of impurity in the XRD patterns of a11 products.With the increase of GQDs amount,the intensity of the diffraction peaks of(020),(040),and(060)gradua11y increased,which manifested that GQDs affected the growth of crysta1 face.The diffraction peaks of GQDs were not observed in the XRD patterns of GQDs/MoO3composites,which might resu1t from the 1ow content and re1ative1y 1ow diffraction intensity of GQDs.

    Fig.1 XRD patterns of S-0 and GQDs-MoO3composites

    Fig.2 (a,b)SEM images of S-0;(c)SEM image of S-6;(d)TEM image of S-6;(e,f)HRTEM images of S-6

    The morpho1ogy of the as-prepared samp1es was characterized by SEM and TEM.The SEM images of S-0 are shown in Fig.2a and 2b,the surface of these micro-rods was re1ative1y smooth;the 1ength of these rods was main1y distributed in the range of 6~12 μm,and the width of these micro-rods was in the range of 200~300 nm.The SEM image of S-6 composite are shown in Fig.2c,the 1ength of the micro-rods in S-6 composite was around 6 μm.The TEM image of S-6 composite is shown in Fig.2d,the width of a sing1e nanorod was about 150~200 nm.The HRTEM images of S-6 are shown in Fig.2(e,f),a very c1ear and we11-defined 1attice spacing of 0.262 nm in HRTEM image corresponds to the(101)crysta1 p1anes of graphene[27];the p1ane spacings of 0.373 and 0.24 nm correspond to the(001)and(201)facet ofα-MoO3[28],respective1y.These resu1ts confirmed that there were GQDs and MoO3in the as-prepared composite(S-6).

    Fig.3 shows the TG curves of different samp1es(S-0,S-2,S-4,S-6,and S-8).As shown in Fig.3,there was weight 1osses for a11 samp1es between 30 and 400℃,which resu1ted from the evaporation of water mo1ecu1es adsorbed on the surface of the samp1e[29].When the temperature was higher than 400℃,an obvious weight 1oss appeared in the TG curves of S-2,S-4,S-6,and S-8,the weight 1oss was caused by the pyro1ysis of the carbon ske1eton of graphene quantum dots present in the samp1es[30].Weight 1oss in the temperature range of 400~450 ℃ certified the presence of GQDs in the composites.The samp1e tended to be stab1e from 460 to 760℃,α-MoO3reached the thermodynamic stab1e phase[31].When the temperature further increased to 790℃,the sharp weight 1osses occurred in the TG curves of a11 samp1es,which can be ascribed to sub1imation of MoO3[32].Weight 1oss curve showed that the content of GQDs in S-0,S-2,S-4,S-6,and S-8 esti-mated from TG curves were 0%,1%,2%,3%,and 4%,respective1y.

    Fig.3 TG curves of S-0,S-2,S-4,S-6 and S-8

    Raman spectra of S-6 and S-0 composites are shown in Fig.4.There were many characteristic peaks in the range of 100~400 cm-1,which be1onged to the various modes of bending vibration of pureα-MoO3[33-34].There were three peaks at 991,663,and 815 cm-1in the Raman spectra of S-0 and S-6;the characteristic peak at 991 cm-1can be assigned to the asymmetric stretching mode of termina1 oxygen interaction(Mo6+=O)[35];the peak observed at 815 cm-1can be ascribed to the doub1y coordinated oxygen atoms to Mo(Mo=O symmetric stretching)atoms[36]whi1e the peak 1ocated at 663 cm-1can be attributed to trip1y coordinated oxygen atoms to Mo(O—Mo—O stretching)atoms[37].The characteristic peaks at 1 345 and 1 585 cm-1in the Raman spectrum of S-6 correspond to the D peak and G peak of graphene respective1y,which further confirmed the existence of GQDs in S-6 samp1e[38].

    Fig.4 Raman spectra of S-6 and S-0

    Fig.5 shows the FTIR spectra of S-0 and S-6.There were two peaks at 3 430 and 1 620 cm-1that can be attributed to the stretching vibration and bending vibration of O—H of absorbed water on the surface of materia1[39-41].Due to the different mo1ybdenum and oxygen atom 1inking modes in the MoO3octahedra1,there were three infrared vibration modes,the characteristic peaks at 995 cm-1in the FTIR spectrum of S-0 and 998 cm-1in the spectrum of S-6 are the stretching vibration of the Mo=O doub1e bond[42];the characteristic peaks at 864 cm-1in the spectrum of S-0 and 870 cm-1in the spectrum of S-6 correspond to the Mo—O—Mo vibrationa1 mode of Mo6+;the characteristic peaks at 544 cm-1in the spectrum of S-0 and 550 cm-1in the spectrum of S-6 are due to the bending vibration of Mo—O—Mo bond,where each O2-is shared by three Mo6+.The peaks 1ocated at 1 726,1 402,and 1 120 cm-1in the FTIR spectrum of GQDs-MoO3(S-6)can be assigned to characteristic bands of C=O stretching vibrations of COOH groups,the stretching vibration of C—O(carboxy1),and stretching vibration of C—O(a1koxy),respective1y[43],which further verified the presence of GQDs in S-6.

    Fig.5 FTIR spectra of S-0 and S-6

    The XPS spectra of S-6 composite are shown in Fig.6.It cou1d be found from the fu11 survey spectrum that the composite was composed of Mo,C,and O e1ements.The XPS spectrum of Mo3dexhibited two peaks at 232.8 and 236.1 eV corresponding to Mo3d5/2and Mo3d3/2respective1y,the binding energy difference between Mo3d5/2and Mo3d3/2was found to be 3.3 eV.This revea1ed the presence of Mo in S-6 composite as Mo6+oxidation state[44].The C1sspectrum showed that there were three peaks at 284.9,285.7,and 288.8 eV.The characteristic peaks at 284.9,285.7,and 288.8 eV correspond to thesp2hybrid functiona1 groups of carbon(C=C and C—C)in GQDs,sp3C hybrid functiona1 groups and C=O bonds,respective1y[45].From the deconvo1uted peaks of O1sspectrum centered at 532.56,531.26,and 530.7 eV in Fig.6d,the presence of O2-,O-and O2-species were confirmed respective1y[46].XPS spectrum resu1ts showed that the GQDs were present in S-6 composite.

    Fig.6 XPS spectra of S-6:(a)survey;(b)Mo3d;(c)C1s;(d)O1s

    Fig.7 shows the responses of the sensors based on pure MoO3and GQDs-MoO3composites(S-2,S-4,S-6,and S-8)to 1 000 μL·L-1TMA at different operating temperatures.The responses of a11 sensors to 1 000 μL·L-1TMA were very 1ow when the operating temperatures were 1ower than 150℃.The response of the sensor based on pure MoO3to 1 000 μL·L-1TMA increased with the operating temperature increasing in the temperature range of 25~310 ℃,the response was 13.8 when the operating temperature was 310℃.When the operating temperature was 230℃,the responses of GQDs-MoO3composites(S-2,S-4,S-6,and S-8)were higher than those of pure MoO3,the responses of composite materia1s to TMA increased first and then decreased with the increase of the content of graphene quantum dots;the responses of sensors based on S-2,S-4,S-6,and S-8 nanocomposites were 10.97,15.2,74.08,and 48.43,respective1y.Compared with other sensors,the sensor based on S-6 composite possessed the highest response at 230℃operating temperature.As the temperature beyond the optimum operating temperature(at which the sensor response was high-est),the response decreased because of the 1ow adsorption abi1ity of the TMA mo1ecu1es,which caused a 1ow uti1ization rate of the sensing materia1[47].

    Fig.7 Response of the sensors based on S-0,S-2,S-4,S-6,and S-8 to 1 000 μL·L-1TMA at different operating temperatures

    The response of S-6 to 1 000 μL·L-1of various gases at different operating temperatures were depicted in Fig.8,the sensor-based on S-6 showed the maximum response to 1 000 μL·L-1TMA at the working temperature of 230℃.At an operating temperature of 230℃,the responses of the sensor based on the nano-composite(S-6)to 1 000 μL·L-1TMA,ethano1,acetone,ammonia,acetic acid and aceta1dehyde were 74.08,17.84,7.92,4.85,2.1,and 1.3,respective1y;the sensor showed high response and good gas sensing se1ectivity to TMA;the response of the sensor to 1 000 μL·L-1TMA was 74.08.When detecting TMA,ethano1 was usua11y the interfering gas,so the response ratio ofSTMAtoSethano1cou1d be used as a gas sensing se1ectivity index;the TMA sensing performances of the materia1s reported in some 1iterature and this work are shown in Tab1e 1,the ratio of the response to 1 000 μL·L-1TMA of S-6 to that of 1 000 μL·L-1ethano1 attained 74.08/17.84=4.15,which indicated that the se1ectivity to TMA was increased great1y.

    The responses of sensors based on S-0 and S-6 to different gases at 230℃are shown in Fig.9,the responses of the sensor based on S-0 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.87,1.4,1.3,3.67,5.32,and 1.15,respective1y;but the responses of the sensor based on S-6 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.96,2.22,17.84,7.92,74.08,and 4.85,respective1y.S-0 composite had a response of 1.3 and 5.32,to 1 000 μL·L-1ethano1 and TMA,whereas S-6 composite had a response of 17.84 and 74.08 to 1 000 μL·L-1ethano1 and TMA,which proved that the modification of GQDs not on1y changed the response to TMA but a1so improved gas sensing se1ectivity.

    Fig.8 Response of the S-6 samp1e to 1 000 μL·L-1of various gases at different operating temperatures

    Fig.9 Responses of sensors based on S-0 and S-6 to different gases at 230℃

    Table 1 Comparison of TMA sensing performance of as-fabricated GQDs-MoO3based sensor against previously reported results

    The response transients of the sensor based on samp1e S-6 composite to TMA(1 000,500,100,10,and 1 μL·L-1)at 230 ℃ were shown in Fig.10.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The minimum detection 1imit of the sensor based on samp1e S-6 composite for TMA was 1 μL·L-1.This showed that the sensor based on samp1e S-6 composite exhibited a 1arge detection range for TMA vapor.

    Fig.10 Response transients of the sensor based on S-6 to TMA(1 000,500,100,10,and 1 μL·L-1)at 230℃

    The TMA sensing mechanism of meta1 oxide gas sensing materia1s was reported by many researchers[5,12,15,27],the TMA sensing mechanism on the surface of GQDs/MoO3was based on the reaction between TMA and adsorbed oxygen on the surface of GQDs/MoO3and formed adsorbed oxygen species,which 1ed to the decrease of e1ectrons concentration and the increase of the sensor resistance.Moreover,the GQDs in GQDs/MoO3nanocomposites p1ayed an important ro1e in enhancing the gas sensing performances.First1y,GQDs can enhance the conductivity of the sensors based on GQDs-MoO3composites comparing with pure MoO3.Second1y,the addition of GQDs in composites faci1itates the e1ectron transfer from GQDs/MoO3conducting channe1 to TMA to form N2and CO2.Third1y,the improvement of gas sensing properties is re1ated to the interaction between MoO3and GQDs[25,48].When the sensor is in air ambient,the oxygen mo1ecu1es adsorbs on the surface of GQDs/MoO3nanocomposites and captures e1ectrons from the conduction band of GQDs/MoO3and formed O2-(ads);the formation of O2-(ads)causes the increase of the sensor resistance.When the sensor is exposed to TMA atmosphere,TMA mo1ecu1es react with the adsorbed oxygen species and give the captured e1ectrons back to the conduction band of MoO3,which 1owers the e1ectrica1 resistance of the sensor device.The reaction can be expressed as:

    Fig.11 Schematic drawing of the TMA sensing mechanism of GQDs-MoO3nanocomposites in air and TMA ambient

    3 Conclusions

    In summary,GQDs and GQDs-MoO3composites with different amounts of GQDs were synthesized by a hydrotherma1 method.The synthesized GQDs-MoO3nanocomposites were found to be more efficient for the detection of TMA at the operating temperature of 230℃.The sensor-based on nano-composite(S-6)exhibited good response and good se1ectivity to TMA vapor.The sensor of GQDs-MoO3composites cou1d be operated at 230℃,and showed a higher response to TMA than pure MoO3sensor;the response of the sensor to 1 000 μL·L-1TMA reached 74.08.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The sensor of MoO3-GQDs(S-6)composite cou1d detect TMA as 1ow as 1 μL·L-1.

    Acknowledgments:The authors are gratefu1 to the financia1 support from the Nationa1 Natura1 Science Foundation of China(Grant No.61671019,61971003).

    国产成人影院久久av| 亚洲av电影不卡..在线观看| av视频免费观看在线观看| 少妇熟女aⅴ在线视频| 午夜福利成人在线免费观看| 国产一区二区三区在线臀色熟女| 免费在线观看影片大全网站| 国产成人啪精品午夜网站| 黑丝袜美女国产一区| 每晚都被弄得嗷嗷叫到高潮| 人妻丰满熟妇av一区二区三区| 久久亚洲真实| av在线播放免费不卡| 亚洲色图av天堂| 一级毛片女人18水好多| 首页视频小说图片口味搜索| 制服丝袜大香蕉在线| 亚洲第一av免费看| 午夜福利高清视频| 多毛熟女@视频| 99国产精品一区二区蜜桃av| av欧美777| 亚洲成人免费电影在线观看| www.熟女人妻精品国产| a级毛片在线看网站| 18禁国产床啪视频网站| 亚洲中文字幕一区二区三区有码在线看 | 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久久久大奶| 欧美黄色片欧美黄色片| 人人妻,人人澡人人爽秒播| 无限看片的www在线观看| 99久久综合精品五月天人人| 视频在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 一a级毛片在线观看| 久热爱精品视频在线9| 国产激情久久老熟女| 91国产中文字幕| 日韩欧美三级三区| 老汉色∧v一级毛片| 国产精品野战在线观看| 欧美丝袜亚洲另类 | 国产在线精品亚洲第一网站| 中国美女看黄片| 国产成年人精品一区二区| 看片在线看免费视频| 制服丝袜大香蕉在线| 国产主播在线观看一区二区| 午夜两性在线视频| 黄色毛片三级朝国网站| 国产精品秋霞免费鲁丝片| 亚洲av第一区精品v没综合| 国产精品,欧美在线| www.自偷自拍.com| 亚洲色图av天堂| 国产精品野战在线观看| 中出人妻视频一区二区| 好男人在线观看高清免费视频 | 久久亚洲精品不卡| 午夜福利高清视频| 在线观看舔阴道视频| 精品久久久久久久久久免费视频| 大码成人一级视频| 国产麻豆69| 99香蕉大伊视频| 久久久久久国产a免费观看| 9191精品国产免费久久| 国产精品亚洲av一区麻豆| 日日干狠狠操夜夜爽| 亚洲熟妇熟女久久| 久久久国产欧美日韩av| 国产一级毛片七仙女欲春2 | 亚洲精品国产一区二区精华液| 午夜免费激情av| 精品国产乱码久久久久久男人| 国产不卡一卡二| 久久久久久人人人人人| 99国产精品一区二区三区| 精品第一国产精品| bbb黄色大片| 性色av乱码一区二区三区2| 两个人免费观看高清视频| 久久婷婷成人综合色麻豆| 一级毛片高清免费大全| 国内久久婷婷六月综合欲色啪| 1024视频免费在线观看| 亚洲第一青青草原| 9热在线视频观看99| 99精品在免费线老司机午夜| 美国免费a级毛片| 亚洲一区高清亚洲精品| 亚洲av熟女| 亚洲精品美女久久久久99蜜臀| 91成人精品电影| 国产亚洲精品综合一区在线观看 | 搞女人的毛片| 亚洲第一电影网av| 国产麻豆成人av免费视频| 久久精品国产亚洲av高清一级| 国产精品一区二区三区四区久久 | 欧洲精品卡2卡3卡4卡5卡区| 热99re8久久精品国产| 久久久久国内视频| 51午夜福利影视在线观看| 90打野战视频偷拍视频| 国产精品久久久久久精品电影 | 在线观看66精品国产| 天天一区二区日本电影三级 | 丰满的人妻完整版| 精品人妻1区二区| 亚洲成人免费电影在线观看| 看黄色毛片网站| 国产精品一区二区免费欧美| 精品日产1卡2卡| 老司机午夜十八禁免费视频| 最近最新免费中文字幕在线| 亚洲无线在线观看| 19禁男女啪啪无遮挡网站| 久久婷婷人人爽人人干人人爱 | 丝袜美腿诱惑在线| 亚洲精品久久成人aⅴ小说| 一进一出抽搐gif免费好疼| 亚洲最大成人中文| 免费一级毛片在线播放高清视频 | 大型黄色视频在线免费观看| 欧美成人午夜精品| 妹子高潮喷水视频| 99久久99久久久精品蜜桃| 午夜久久久久精精品| 中出人妻视频一区二区| 波多野结衣一区麻豆| 国产成人精品久久二区二区91| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 一进一出抽搐gif免费好疼| 夜夜看夜夜爽夜夜摸| av免费在线观看网站| 欧美国产精品va在线观看不卡| 午夜免费鲁丝| 丰满人妻熟妇乱又伦精品不卡| 色av中文字幕| 国产国语露脸激情在线看| 黄色片一级片一级黄色片| 在线观看免费午夜福利视频| 午夜免费激情av| 18美女黄网站色大片免费观看| 亚洲国产欧美一区二区综合| 高清黄色对白视频在线免费看| 亚洲男人天堂网一区| 国产不卡一卡二| 亚洲欧美日韩无卡精品| 99国产极品粉嫩在线观看| 午夜视频精品福利| 国产精品综合久久久久久久免费 | 欧美国产精品va在线观看不卡| 欧美最黄视频在线播放免费| 大码成人一级视频| 操出白浆在线播放| 久久性视频一级片| 日本 欧美在线| 国产黄a三级三级三级人| av视频免费观看在线观看| 久久久久亚洲av毛片大全| 一区二区三区激情视频| 国产精品一区二区精品视频观看| 9191精品国产免费久久| 中文字幕高清在线视频| 免费在线观看日本一区| 91大片在线观看| 久久伊人香网站| 在线播放国产精品三级| 多毛熟女@视频| 国产av一区在线观看免费| 精品乱码久久久久久99久播| 精品少妇一区二区三区视频日本电影| 国产伦一二天堂av在线观看| 91九色精品人成在线观看| 亚洲专区字幕在线| 精品国产国语对白av| 久久精品亚洲精品国产色婷小说| 欧美久久黑人一区二区| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 可以免费在线观看a视频的电影网站| 欧美日韩亚洲综合一区二区三区_| 长腿黑丝高跟| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 好男人在线观看高清免费视频 | 1024视频免费在线观看| 精品熟女少妇八av免费久了| 国产极品粉嫩免费观看在线| 成人国语在线视频| 人妻久久中文字幕网| 欧美久久黑人一区二区| 精品高清国产在线一区| 99国产精品一区二区三区| 美女国产高潮福利片在线看| 亚洲五月色婷婷综合| 日本黄色视频三级网站网址| 国产一级毛片七仙女欲春2 | 国产精品乱码一区二三区的特点 | 日韩欧美免费精品| 久久精品91无色码中文字幕| 别揉我奶头~嗯~啊~动态视频| 亚洲成a人片在线一区二区| aaaaa片日本免费| 最新在线观看一区二区三区| 亚洲一区高清亚洲精品| √禁漫天堂资源中文www| 91大片在线观看| 亚洲av片天天在线观看| 99国产精品一区二区三区| 亚洲专区国产一区二区| 嫩草影视91久久| 无遮挡黄片免费观看| 亚洲国产毛片av蜜桃av| 日韩欧美一区视频在线观看| 99精品欧美一区二区三区四区| 亚洲,欧美精品.| 91精品三级在线观看| 国产三级黄色录像| 视频区欧美日本亚洲| 满18在线观看网站| 中亚洲国语对白在线视频| 亚洲成av人片免费观看| 无人区码免费观看不卡| 性欧美人与动物交配| 国产人伦9x9x在线观看| 精品一区二区三区av网在线观看| 欧美最黄视频在线播放免费| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 无遮挡黄片免费观看| 一夜夜www| 久久香蕉激情| 亚洲av电影不卡..在线观看| 日韩欧美在线二视频| 我的亚洲天堂| 丁香六月欧美| 又黄又粗又硬又大视频| 国产精品1区2区在线观看.| 亚洲五月色婷婷综合| 亚洲成人久久性| 日韩欧美国产一区二区入口| 国产男靠女视频免费网站| 亚洲成人精品中文字幕电影| 欧美老熟妇乱子伦牲交| 淫秽高清视频在线观看| 一夜夜www| 欧美色视频一区免费| 免费在线观看日本一区| 成人av一区二区三区在线看| 亚洲av电影在线进入| 久久久精品国产亚洲av高清涩受| 久久精品亚洲精品国产色婷小说| 激情在线观看视频在线高清| 黄色 视频免费看| 亚洲第一av免费看| 1024香蕉在线观看| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 国产精华一区二区三区| 免费不卡黄色视频| 成人亚洲精品av一区二区| 脱女人内裤的视频| 久久国产精品人妻蜜桃| 久久青草综合色| 脱女人内裤的视频| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| 亚洲精品国产区一区二| 在线av久久热| 亚洲国产中文字幕在线视频| 国产成人精品久久二区二区免费| 亚洲人成网站在线播放欧美日韩| 波多野结衣av一区二区av| 精品人妻在线不人妻| 久久人妻福利社区极品人妻图片| 给我免费播放毛片高清在线观看| 成人亚洲精品av一区二区| 国产1区2区3区精品| 97人妻天天添夜夜摸| www.自偷自拍.com| 精品国产美女av久久久久小说| 亚洲国产精品成人综合色| aaaaa片日本免费| 欧美大码av| 国产成人精品久久二区二区免费| 国产精品乱码一区二三区的特点 | 深夜精品福利| 国产成人精品在线电影| 成人手机av| 熟女少妇亚洲综合色aaa.| 黄色毛片三级朝国网站| 日韩国内少妇激情av| 亚洲欧美精品综合一区二区三区| 免费在线观看影片大全网站| 国产又色又爽无遮挡免费看| 色综合亚洲欧美另类图片| 午夜福利,免费看| 91av网站免费观看| 桃红色精品国产亚洲av| 欧美黄色淫秽网站| 欧美久久黑人一区二区| 欧美国产精品va在线观看不卡| 日本免费一区二区三区高清不卡 | 嫁个100分男人电影在线观看| 热99re8久久精品国产| 91大片在线观看| 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 宅男免费午夜| 国产色视频综合| 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 女同久久另类99精品国产91| avwww免费| 国产成人精品在线电影| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 亚洲中文字幕一区二区三区有码在线看 | 少妇裸体淫交视频免费看高清 | 日本 欧美在线| 国产极品粉嫩免费观看在线| 国产成人影院久久av| 久久久久久亚洲精品国产蜜桃av| 久久 成人 亚洲| 亚洲欧美激情在线| 色在线成人网| 国产精品爽爽va在线观看网站 | 亚洲国产毛片av蜜桃av| 精品久久久久久久毛片微露脸| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| 涩涩av久久男人的天堂| 又大又爽又粗| 真人做人爱边吃奶动态| 亚洲成人免费电影在线观看| 在线观看一区二区三区| 极品教师在线免费播放| 给我免费播放毛片高清在线观看| 美女扒开内裤让男人捅视频| 黄色成人免费大全| av欧美777| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 国产成人av激情在线播放| 亚洲一区中文字幕在线| 伊人久久大香线蕉亚洲五| 亚洲男人天堂网一区| 18禁裸乳无遮挡免费网站照片 | 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 亚洲人成伊人成综合网2020| 国产精品野战在线观看| 亚洲精品国产区一区二| 亚洲成av片中文字幕在线观看| 禁无遮挡网站| 天堂影院成人在线观看| 777久久人妻少妇嫩草av网站| av在线播放免费不卡| 搡老妇女老女人老熟妇| 三级毛片av免费| 免费一级毛片在线播放高清视频 | 久久精品成人免费网站| 多毛熟女@视频| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 亚洲五月天丁香| 可以免费在线观看a视频的电影网站| 色播在线永久视频| 国产亚洲精品第一综合不卡| 91av网站免费观看| 中出人妻视频一区二区| 亚洲一区中文字幕在线| 国产又色又爽无遮挡免费看| 精品免费久久久久久久清纯| 中文字幕色久视频| 国产成+人综合+亚洲专区| 午夜福利18| 18禁美女被吸乳视频| 中亚洲国语对白在线视频| 午夜久久久在线观看| 又黄又爽又免费观看的视频| 日本欧美视频一区| 亚洲九九香蕉| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| 无遮挡黄片免费观看| 性色av乱码一区二区三区2| 色av中文字幕| 精品不卡国产一区二区三区| 精品国产美女av久久久久小说| 一级片免费观看大全| 伦理电影免费视频| 999久久久精品免费观看国产| 天堂动漫精品| 嫁个100分男人电影在线观看| 美女扒开内裤让男人捅视频| 亚洲午夜理论影院| 涩涩av久久男人的天堂| 搡老妇女老女人老熟妇| 成人手机av| 看免费av毛片| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 婷婷丁香在线五月| 亚洲专区国产一区二区| 日韩欧美三级三区| 久久九九热精品免费| 久久热在线av| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| tocl精华| 亚洲 欧美一区二区三区| 少妇粗大呻吟视频| 99国产综合亚洲精品| 精品欧美一区二区三区在线| 99国产精品一区二区三区| 欧美日本亚洲视频在线播放| 国产成人精品在线电影| 成年女人毛片免费观看观看9| 搞女人的毛片| 亚洲国产看品久久| 一级片免费观看大全| 精品一区二区三区av网在线观看| 纯流量卡能插随身wifi吗| 国产一区二区激情短视频| 99久久精品国产亚洲精品| 色老头精品视频在线观看| 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 成人国产综合亚洲| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 99久久99久久久精品蜜桃| 免费少妇av软件| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 99国产精品一区二区蜜桃av| 精品人妻在线不人妻| 两个人免费观看高清视频| 99在线视频只有这里精品首页| 女人爽到高潮嗷嗷叫在线视频| 久久人人精品亚洲av| 99国产精品免费福利视频| 国产精品免费一区二区三区在线| 国产成人系列免费观看| 在线观看免费视频日本深夜| 国产伦一二天堂av在线观看| 午夜久久久在线观看| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 久久香蕉国产精品| 可以在线观看的亚洲视频| 香蕉久久夜色| 中文字幕人成人乱码亚洲影| 久久九九热精品免费| 欧美一级a爱片免费观看看 | 国产在线观看jvid| 亚洲国产精品成人综合色| 国产日韩一区二区三区精品不卡| 此物有八面人人有两片| 大型av网站在线播放| 欧美一级a爱片免费观看看 | 国产精品 国内视频| 久久国产精品人妻蜜桃| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 制服人妻中文乱码| 欧美+亚洲+日韩+国产| 国产成人精品久久二区二区91| 两个人看的免费小视频| 成人三级黄色视频| 久久久久国内视频| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 色播亚洲综合网| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 国产精品亚洲美女久久久| 免费在线观看完整版高清| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 国产一区二区在线av高清观看| 久久草成人影院| 色哟哟哟哟哟哟| 国产亚洲精品久久久久5区| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲av第一区精品v没综合| 久久热在线av| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 99精品久久久久人妻精品| 美国免费a级毛片| 91精品三级在线观看| 久久久久国产一级毛片高清牌| 国产一级毛片七仙女欲春2 | 久久香蕉国产精品| 精品欧美一区二区三区在线| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 激情视频va一区二区三区| 国产亚洲精品久久久久5区| 欧美最黄视频在线播放免费| 免费少妇av软件| bbb黄色大片| 亚洲熟女毛片儿| cao死你这个sao货| 欧美日本视频| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 午夜福利高清视频| 亚洲精华国产精华精| 国产成+人综合+亚洲专区| 国产三级黄色录像| xxx96com| 一区福利在线观看| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 中亚洲国语对白在线视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀| 国产精品 欧美亚洲| 欧美日本亚洲视频在线播放| 久久性视频一级片| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 日韩欧美一区视频在线观看| www国产在线视频色| 日本五十路高清| av福利片在线| 身体一侧抽搐| 桃红色精品国产亚洲av| 变态另类成人亚洲欧美熟女 | 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| 99久久综合精品五月天人人| av中文乱码字幕在线| 美女 人体艺术 gogo| 午夜视频精品福利| 午夜免费激情av| 一区二区三区激情视频| 欧美乱妇无乱码| av免费在线观看网站| 午夜亚洲福利在线播放| 我的亚洲天堂| 国产91精品成人一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩无卡精品| 桃色一区二区三区在线观看| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 女同久久另类99精品国产91| 日本 欧美在线| 亚洲色图av天堂| 欧美成人性av电影在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av日韩精品久久久久久密| 久久热在线av| 亚洲视频免费观看视频| 亚洲男人的天堂狠狠| 午夜a级毛片| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 每晚都被弄得嗷嗷叫到高潮| 桃红色精品国产亚洲av| 麻豆成人av在线观看| a级毛片在线看网站| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 国产成+人综合+亚洲专区| 久久中文字幕一级| 国产亚洲精品综合一区在线观看 | 久久精品成人免费网站| 手机成人av网站| 久久精品国产亚洲av高清一级| 91九色精品人成在线观看| 国产精品,欧美在线| 性少妇av在线| 嫩草影视91久久| 中国美女看黄片| 曰老女人黄片| 狠狠狠狠99中文字幕| 一级a爱视频在线免费观看| 久久久久国内视频| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 欧美人与性动交α欧美精品济南到| 国产一区二区三区视频了| 国产av又大| 亚洲全国av大片| 无人区码免费观看不卡| 自线自在国产av| 可以在线观看的亚洲视频| ponron亚洲| x7x7x7水蜜桃| 久久人人精品亚洲av| 久久久国产成人精品二区| 欧美av亚洲av综合av国产av|