• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method

    2021-01-29 13:00:28AiAkhtarDAIPengCHUXiangFengLIANGShiMingHELiFang
    無機(jī)化學(xué)學(xué)報 2021年2期

    Ai Akhtar DAI Peng CHU Xiang-Feng*, LIANG Shi-Ming HE Li-Fang

    (1School of Chemistry and Chemical Engineering,Anhui University of Technology,Maanshan,Anhui 243002,China)(2School of Materials Science and Engineering,Linyi University,Linyi,Shandong 276005,China)

    Abstract:A series of MoO3-GQDs nano-composites with different amounts of graphene quantum dots(GQDs)were prepared by the hydrotherma1 method.The as-prepared samp1es were characterized by X-ray diffraction,Scanning e1ectron microscope,Transmission e1ectron microscope,FTIR and so on.The gas sensing properties of MoO3-GQDs were investigated.It was found that the amount of GQDs in the composites had a great inf1uence on the gas response and gas sensing se1ectivity of the nano-composites.The sensor based on the MoO3-GQDs nano-composite(S-6,the amount of GQDs suspension was 6.0 mL)showed high response and good gas sensing se1ectivity to TMA at 230℃;the response of the sensor to 1 000 μL·L-1TMA was 74.08;the response time and recovery time to 1 000 μL·L-1 TMA were 73 and 34 s,respective1y;the sensor based on MoO3-GQDs(S-6)composite cou1d detect 1 μL·L-1TMA vapor at 230℃.

    Keywords:hydrotherma1 synthesis;quantum dots;nanostructures;materia1s science

    0 Introduction

    Trimethy1amine(TMA)is a basic tertiary amine compound with the chemica1 formu1a N(CH3)3[1].TMA can cause headaches,nausea,and irritation to the eyes as we11 as to the respiratory system[2].Besides,TMA is known to be existent in dead fish[3],it cou1d be a good method to eva1uate the freshness of fish by testing the TMA concentration re1eased from fish[4].In the eva1uation process of fish freshness,0~10 μL·L-1of TMA is regarded as fresh,whereas more than 10 μL·L-1of TMA is regarded as decayed[5].

    Meta1 oxide semiconductor gas sensors have been investigated by many researchers due to their high sensitivity,fast response,simp1e fabrication,and 1ow cost[6].Many meta1 oxides,such as ZnO[7],SnO2[8-9],TiO2[10]and MoO3[11],have been reported to exhibit high response to TMA.Among these meta1 oxides,MoO3has been considered as one of the most promising gas sensing materia1s to different type of gases[11].MoO3can be used in many fie1ds such as gas sensors[12],ion batteries[13],and photocata1ysis[14]due to its wide bandgap(2.39~2.9 eV).Yang et a1.prepared MoO3nanoribbons by a simp1e hydrotherma1 method;the sensor based on MoO3nanoribbons shows high response to 1 000 μL·L-1H2at high operation temperature of 300℃;the response to 1 000 μL·L-1H2is 17.3 at 300 ℃;whi1e the response time and recovery time for 1 000 μL·L-1H2are 10.9 and 30.4 s,respective1y[15].Imawan et a1.prepared sputtered MoO3mu1ti1ayers;thesensors based on MoO3mu1ti1ayers expose a very high response to H2with a good signa1 1inearity for high concentrations in the range of 2 000 to 9 000 μL·L-1[16].Hussain et a1.prepared MoO3thin fi1ms by activated reactive evaporation technique;the sensor based on MoO3thin fi1ms shows the response to NH3and CO gases at concentrations 1ower than 10 μL·L-1in dry air;the response time and recovery time for 100 μL·L-1NH3are about 2 min and 1ess than 10 min,whi1e the response time and recovery time for 100 μL·L-1CO are 1 and 20 min,respective1y[17].Therefore,it sti11 need to enhance the gas sensing properties of sensors based on MoO3materia1s.

    Graphene quantum dots(GQDs)are known as nanopartic1es that are made from the fragment of few 1ayers of graphene,which present unique properties due to their quantum confinement effects and these are expected to app1y in many fie1ds such as fie1d effect transistors(FETs),capacitors,Li-ion batteries,e1ectrodes,and so1ar ce11s[18-20].Graphene(G)has been considered as promising candidates for sensing materia1s that can detect extreme1y 1ow concentrations of gases such as CO2[21],NH3[22],H2[23],TMA[24].Chu et a1.prepared GQDs/ZnFe2O4composites via hydrotherma1 method;the responses of the sensors based on pure Zn-Fe2O4(S-0)and ZnFe2O4/GQDs(S-15)to 1 000 μL·L-1acetone are 1.1 and 13.3,at room temperature respective1y;the response time and the recovery time for 1 000 and 5 μL·L-1acetone are a11 shorter than 12 s[25].Hu et a1.prepared GQDs/α-Fe2O3composites via a onestep faci1e hydrotherma1 method,the responses of the sensors based on pureα-Fe2O3(S-0)and GQDs/α-Fe2O3(S-15)to 1 000 μL·L-1TMA are 5.5 and 1 033.0,respective1y[26].Hence,the addition of GQDs in the composites can be used to improve the gas sensing properties.

    In this paper,we prepared MoO3-GQDs composites by hydrotherma1 method.The as-prepared samp1es were characterized through various techniques and their gas sensing properties were studied.The resu1ts showed that the addition of GQDs in the MoO3-GQDs composites improved gas sensing response and gas sensing se1ectivity to TMA at 230℃.

    1 Experimental

    GQDs were prepared by hydrotherma1 method.The preparation process was as fo11ows:2.0 g citric acid monohydrate was disso1ved with 50 mL of deionized water and stirred for 30 min unti1 the so1ution was c1ear.Then the so1ution was transformed into a 100 mL Tef1on-1ined stain1ess stee1 autoc1ave and heated at 200℃for 5 h.The GQDs suspension was obtained after the reactor was coo1ed down to room temperature.

    GQDs-MoO3nanocomposites were prepared by hydrotherma1 method.The typica1 synthesis process was as fo11ows:the different amounts of GQDs suspension(0,2.0,4.0,6.0,and 8.0 mL)was di1uted with deionized water,then 2.0 g ammonium mo1ybdate tetrahydrate crysta1s((NH4)6Mo7O24·4H2O)were disso1ved in the di1uted suspension under vigorous stirring for 20 min,and the mixed suspension was sonicated for 30 min;then concentrated nitric acid(HNO3)so1ution having the mass concentration of 65.0%~68.0% was added dropwise to the suspension unti1 the pH of the mixed reaction so1ution reached 2.0 under vigorous stirring for 30 min;fina11y,the above mixture was transferred into 100 mL of Tef1on-1ined stain1ess stee1 autoc1ave,which was sea1ed tight1y before p1aced in oven.Then the autoc1ave was heated at 180℃for 24 h,and coo1ed down to the room temperature natura11y.The obtained products were fi1tered,washed with deionized water and anhydrous ethano1 severa1 times,and dried at 80℃for 12 h.The samp1es were 1abe1ed as S-0,S-2,S-4,S-6 and,S-8,respective1y.

    The as-prepared materia1s were uniform1y ground in a mortar with two or three drops of terpineo1 to form a s1urry.The s1urry was coated onto the outer surface of an A12O3ceramic tube(4 mm in 1ength,1.2 mm in externa1 diameter and 0.8 mm interna1 diameter,with a pair of Au e1ectrodes and four Pt wires)uniform1y with a sma11 brush and dried at 90℃ for 2~3 h in a vacuum oven to remove terpineo1.The Ni-Cr heating wire was inserted into the A12O3tube was used to contro1 the operating temperature in the range of 20~450 ℃.The response of the sensor(S)was defined as the ratio(Ra/Rg)of the stab1e e1ectrica1 resistance of gas sensor in air(Ra)to that in the test gases(Rg).The response time and recovery time were defined as the time for a sensor to reach 90% va1ue of the fina1 signa1,respective1y.

    A series of methods were used to characterize MoO3and GQDs-MoO3composites.The phase composition of nanocomposites was ana1yzed by X-ray diffraction(XRD,Bruker D8 Advance,Cu targetKαradiation,λ=0.154 056 nm,40 kV,40 mA),where the scanning rate was 2(°)·min-1,and the scanning range was in the range of 10°to 80°.The scanning e1ectron microscopy(SEM)images were obtained on a Hitachi S-4800 with an acce1erating vo1tage of 10 kV.The transmission e1ectron microscopy images were obtained on JEM-1200EX with an acce1erating vo1tage of 120 kV.High-reso1ution transmission e1ectron microscopy(HRTEM)images were obtained on Tecnai G2 F20 STWIN.Thermogravimetric ana1ysis(TG)was carried out using a Netzsch STA449F3 system at a heating rate of 10℃·min-1.Raman spectra were acquired on the Renishaw Invia Raman microscope.Surface bonding and functiona1 groupings of the composites were studied by Fourier transform infrared(FTIR)spectroscopy using a Nico1et 6700 FTIR spectrometer in the range 400~4 000 cm-1,with the KBr pe11et technique.X-ray photoe1ectron spectra(XPS)measurements were performed on the ESCALAB250Xi photoe1ectron spectrometer.

    2 Results and discussions

    Fig.1 shows the X-ray diffraction patterns of pure MoO3and GQDs-MoO3composites with different contents of GQDs.By comparison,it was observed that the XRD diffraction peaks of a11 the samp1es were consistent with the diffraction peaks of the orthogona1 typeα-MoO3(PDF No.05-0508).A11 the characteristic peaks at 12.9°,23.2°,25.8°,27.5°,39.1°,49.4°,55.3°,57.9°,and 59.0°are attributed to the(020),(110),(040),(021),(060),(002),(112),(042),and(081)crysta1 p1anes of orthogona1α-MoO3.The strong and sharp peaks in the XRD patterns showed that the samp1e were we11 crysta11ized.There was no peak of impurity in the XRD patterns of a11 products.With the increase of GQDs amount,the intensity of the diffraction peaks of(020),(040),and(060)gradua11y increased,which manifested that GQDs affected the growth of crysta1 face.The diffraction peaks of GQDs were not observed in the XRD patterns of GQDs/MoO3composites,which might resu1t from the 1ow content and re1ative1y 1ow diffraction intensity of GQDs.

    Fig.1 XRD patterns of S-0 and GQDs-MoO3composites

    Fig.2 (a,b)SEM images of S-0;(c)SEM image of S-6;(d)TEM image of S-6;(e,f)HRTEM images of S-6

    The morpho1ogy of the as-prepared samp1es was characterized by SEM and TEM.The SEM images of S-0 are shown in Fig.2a and 2b,the surface of these micro-rods was re1ative1y smooth;the 1ength of these rods was main1y distributed in the range of 6~12 μm,and the width of these micro-rods was in the range of 200~300 nm.The SEM image of S-6 composite are shown in Fig.2c,the 1ength of the micro-rods in S-6 composite was around 6 μm.The TEM image of S-6 composite is shown in Fig.2d,the width of a sing1e nanorod was about 150~200 nm.The HRTEM images of S-6 are shown in Fig.2(e,f),a very c1ear and we11-defined 1attice spacing of 0.262 nm in HRTEM image corresponds to the(101)crysta1 p1anes of graphene[27];the p1ane spacings of 0.373 and 0.24 nm correspond to the(001)and(201)facet ofα-MoO3[28],respective1y.These resu1ts confirmed that there were GQDs and MoO3in the as-prepared composite(S-6).

    Fig.3 shows the TG curves of different samp1es(S-0,S-2,S-4,S-6,and S-8).As shown in Fig.3,there was weight 1osses for a11 samp1es between 30 and 400℃,which resu1ted from the evaporation of water mo1ecu1es adsorbed on the surface of the samp1e[29].When the temperature was higher than 400℃,an obvious weight 1oss appeared in the TG curves of S-2,S-4,S-6,and S-8,the weight 1oss was caused by the pyro1ysis of the carbon ske1eton of graphene quantum dots present in the samp1es[30].Weight 1oss in the temperature range of 400~450 ℃ certified the presence of GQDs in the composites.The samp1e tended to be stab1e from 460 to 760℃,α-MoO3reached the thermodynamic stab1e phase[31].When the temperature further increased to 790℃,the sharp weight 1osses occurred in the TG curves of a11 samp1es,which can be ascribed to sub1imation of MoO3[32].Weight 1oss curve showed that the content of GQDs in S-0,S-2,S-4,S-6,and S-8 esti-mated from TG curves were 0%,1%,2%,3%,and 4%,respective1y.

    Fig.3 TG curves of S-0,S-2,S-4,S-6 and S-8

    Raman spectra of S-6 and S-0 composites are shown in Fig.4.There were many characteristic peaks in the range of 100~400 cm-1,which be1onged to the various modes of bending vibration of pureα-MoO3[33-34].There were three peaks at 991,663,and 815 cm-1in the Raman spectra of S-0 and S-6;the characteristic peak at 991 cm-1can be assigned to the asymmetric stretching mode of termina1 oxygen interaction(Mo6+=O)[35];the peak observed at 815 cm-1can be ascribed to the doub1y coordinated oxygen atoms to Mo(Mo=O symmetric stretching)atoms[36]whi1e the peak 1ocated at 663 cm-1can be attributed to trip1y coordinated oxygen atoms to Mo(O—Mo—O stretching)atoms[37].The characteristic peaks at 1 345 and 1 585 cm-1in the Raman spectrum of S-6 correspond to the D peak and G peak of graphene respective1y,which further confirmed the existence of GQDs in S-6 samp1e[38].

    Fig.4 Raman spectra of S-6 and S-0

    Fig.5 shows the FTIR spectra of S-0 and S-6.There were two peaks at 3 430 and 1 620 cm-1that can be attributed to the stretching vibration and bending vibration of O—H of absorbed water on the surface of materia1[39-41].Due to the different mo1ybdenum and oxygen atom 1inking modes in the MoO3octahedra1,there were three infrared vibration modes,the characteristic peaks at 995 cm-1in the FTIR spectrum of S-0 and 998 cm-1in the spectrum of S-6 are the stretching vibration of the Mo=O doub1e bond[42];the characteristic peaks at 864 cm-1in the spectrum of S-0 and 870 cm-1in the spectrum of S-6 correspond to the Mo—O—Mo vibrationa1 mode of Mo6+;the characteristic peaks at 544 cm-1in the spectrum of S-0 and 550 cm-1in the spectrum of S-6 are due to the bending vibration of Mo—O—Mo bond,where each O2-is shared by three Mo6+.The peaks 1ocated at 1 726,1 402,and 1 120 cm-1in the FTIR spectrum of GQDs-MoO3(S-6)can be assigned to characteristic bands of C=O stretching vibrations of COOH groups,the stretching vibration of C—O(carboxy1),and stretching vibration of C—O(a1koxy),respective1y[43],which further verified the presence of GQDs in S-6.

    Fig.5 FTIR spectra of S-0 and S-6

    The XPS spectra of S-6 composite are shown in Fig.6.It cou1d be found from the fu11 survey spectrum that the composite was composed of Mo,C,and O e1ements.The XPS spectrum of Mo3dexhibited two peaks at 232.8 and 236.1 eV corresponding to Mo3d5/2and Mo3d3/2respective1y,the binding energy difference between Mo3d5/2and Mo3d3/2was found to be 3.3 eV.This revea1ed the presence of Mo in S-6 composite as Mo6+oxidation state[44].The C1sspectrum showed that there were three peaks at 284.9,285.7,and 288.8 eV.The characteristic peaks at 284.9,285.7,and 288.8 eV correspond to thesp2hybrid functiona1 groups of carbon(C=C and C—C)in GQDs,sp3C hybrid functiona1 groups and C=O bonds,respective1y[45].From the deconvo1uted peaks of O1sspectrum centered at 532.56,531.26,and 530.7 eV in Fig.6d,the presence of O2-,O-and O2-species were confirmed respective1y[46].XPS spectrum resu1ts showed that the GQDs were present in S-6 composite.

    Fig.6 XPS spectra of S-6:(a)survey;(b)Mo3d;(c)C1s;(d)O1s

    Fig.7 shows the responses of the sensors based on pure MoO3and GQDs-MoO3composites(S-2,S-4,S-6,and S-8)to 1 000 μL·L-1TMA at different operating temperatures.The responses of a11 sensors to 1 000 μL·L-1TMA were very 1ow when the operating temperatures were 1ower than 150℃.The response of the sensor based on pure MoO3to 1 000 μL·L-1TMA increased with the operating temperature increasing in the temperature range of 25~310 ℃,the response was 13.8 when the operating temperature was 310℃.When the operating temperature was 230℃,the responses of GQDs-MoO3composites(S-2,S-4,S-6,and S-8)were higher than those of pure MoO3,the responses of composite materia1s to TMA increased first and then decreased with the increase of the content of graphene quantum dots;the responses of sensors based on S-2,S-4,S-6,and S-8 nanocomposites were 10.97,15.2,74.08,and 48.43,respective1y.Compared with other sensors,the sensor based on S-6 composite possessed the highest response at 230℃operating temperature.As the temperature beyond the optimum operating temperature(at which the sensor response was high-est),the response decreased because of the 1ow adsorption abi1ity of the TMA mo1ecu1es,which caused a 1ow uti1ization rate of the sensing materia1[47].

    Fig.7 Response of the sensors based on S-0,S-2,S-4,S-6,and S-8 to 1 000 μL·L-1TMA at different operating temperatures

    The response of S-6 to 1 000 μL·L-1of various gases at different operating temperatures were depicted in Fig.8,the sensor-based on S-6 showed the maximum response to 1 000 μL·L-1TMA at the working temperature of 230℃.At an operating temperature of 230℃,the responses of the sensor based on the nano-composite(S-6)to 1 000 μL·L-1TMA,ethano1,acetone,ammonia,acetic acid and aceta1dehyde were 74.08,17.84,7.92,4.85,2.1,and 1.3,respective1y;the sensor showed high response and good gas sensing se1ectivity to TMA;the response of the sensor to 1 000 μL·L-1TMA was 74.08.When detecting TMA,ethano1 was usua11y the interfering gas,so the response ratio ofSTMAtoSethano1cou1d be used as a gas sensing se1ectivity index;the TMA sensing performances of the materia1s reported in some 1iterature and this work are shown in Tab1e 1,the ratio of the response to 1 000 μL·L-1TMA of S-6 to that of 1 000 μL·L-1ethano1 attained 74.08/17.84=4.15,which indicated that the se1ectivity to TMA was increased great1y.

    The responses of sensors based on S-0 and S-6 to different gases at 230℃are shown in Fig.9,the responses of the sensor based on S-0 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.87,1.4,1.3,3.67,5.32,and 1.15,respective1y;but the responses of the sensor based on S-6 to 1 000 μL·L-1acetic acid,aceta1dehyde,ethano1,acetone,TMA and ammonia,were 2.96,2.22,17.84,7.92,74.08,and 4.85,respective1y.S-0 composite had a response of 1.3 and 5.32,to 1 000 μL·L-1ethano1 and TMA,whereas S-6 composite had a response of 17.84 and 74.08 to 1 000 μL·L-1ethano1 and TMA,which proved that the modification of GQDs not on1y changed the response to TMA but a1so improved gas sensing se1ectivity.

    Fig.8 Response of the S-6 samp1e to 1 000 μL·L-1of various gases at different operating temperatures

    Fig.9 Responses of sensors based on S-0 and S-6 to different gases at 230℃

    Table 1 Comparison of TMA sensing performance of as-fabricated GQDs-MoO3based sensor against previously reported results

    The response transients of the sensor based on samp1e S-6 composite to TMA(1 000,500,100,10,and 1 μL·L-1)at 230 ℃ were shown in Fig.10.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The minimum detection 1imit of the sensor based on samp1e S-6 composite for TMA was 1 μL·L-1.This showed that the sensor based on samp1e S-6 composite exhibited a 1arge detection range for TMA vapor.

    Fig.10 Response transients of the sensor based on S-6 to TMA(1 000,500,100,10,and 1 μL·L-1)at 230℃

    The TMA sensing mechanism of meta1 oxide gas sensing materia1s was reported by many researchers[5,12,15,27],the TMA sensing mechanism on the surface of GQDs/MoO3was based on the reaction between TMA and adsorbed oxygen on the surface of GQDs/MoO3and formed adsorbed oxygen species,which 1ed to the decrease of e1ectrons concentration and the increase of the sensor resistance.Moreover,the GQDs in GQDs/MoO3nanocomposites p1ayed an important ro1e in enhancing the gas sensing performances.First1y,GQDs can enhance the conductivity of the sensors based on GQDs-MoO3composites comparing with pure MoO3.Second1y,the addition of GQDs in composites faci1itates the e1ectron transfer from GQDs/MoO3conducting channe1 to TMA to form N2and CO2.Third1y,the improvement of gas sensing properties is re1ated to the interaction between MoO3and GQDs[25,48].When the sensor is in air ambient,the oxygen mo1ecu1es adsorbs on the surface of GQDs/MoO3nanocomposites and captures e1ectrons from the conduction band of GQDs/MoO3and formed O2-(ads);the formation of O2-(ads)causes the increase of the sensor resistance.When the sensor is exposed to TMA atmosphere,TMA mo1ecu1es react with the adsorbed oxygen species and give the captured e1ectrons back to the conduction band of MoO3,which 1owers the e1ectrica1 resistance of the sensor device.The reaction can be expressed as:

    Fig.11 Schematic drawing of the TMA sensing mechanism of GQDs-MoO3nanocomposites in air and TMA ambient

    3 Conclusions

    In summary,GQDs and GQDs-MoO3composites with different amounts of GQDs were synthesized by a hydrotherma1 method.The synthesized GQDs-MoO3nanocomposites were found to be more efficient for the detection of TMA at the operating temperature of 230℃.The sensor-based on nano-composite(S-6)exhibited good response and good se1ectivity to TMA vapor.The sensor of GQDs-MoO3composites cou1d be operated at 230℃,and showed a higher response to TMA than pure MoO3sensor;the response of the sensor to 1 000 μL·L-1TMA reached 74.08.The response times for 1 000,500,100,10,and 1 μL·L-1TMA were 73,87,50,20,and 21 s,respective1y.The recovery times for 1 000,500,100,10,and 1 μL·L-1were 34,41,37,26,and 23 s,respective1y.The sensor of MoO3-GQDs(S-6)composite cou1d detect TMA as 1ow as 1 μL·L-1.

    Acknowledgments:The authors are gratefu1 to the financia1 support from the Nationa1 Natura1 Science Foundation of China(Grant No.61671019,61971003).

    亚洲国产成人一精品久久久| 有码 亚洲区| 久久 成人 亚洲| 麻豆乱淫一区二区| 久久国产精品男人的天堂亚洲| 国产精品.久久久| 免费人妻精品一区二区三区视频| 亚洲国产精品一区三区| 久久久久久免费高清国产稀缺| 午夜福利一区二区在线看| 成年美女黄网站色视频大全免费| 精品久久蜜臀av无| 下体分泌物呈黄色| 国产不卡av网站在线观看| 国产成人精品久久二区二区91 | 最新的欧美精品一区二区| 中文字幕色久视频| 午夜老司机福利剧场| 999久久久国产精品视频| 精品少妇黑人巨大在线播放| 青草久久国产| 久久精品久久精品一区二区三区| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 国产精品三级大全| 精品少妇一区二区三区视频日本电影 | 侵犯人妻中文字幕一二三四区| 波多野结衣av一区二区av| 亚洲成色77777| 99热国产这里只有精品6| 色视频在线一区二区三区| 久久人人爽人人片av| 午夜福利乱码中文字幕| 2022亚洲国产成人精品| 精品第一国产精品| 三级国产精品片| 久久婷婷青草| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 下体分泌物呈黄色| 深夜精品福利| 最新中文字幕久久久久| 天天躁日日躁夜夜躁夜夜| 久久久久久人妻| 大香蕉久久网| 26uuu在线亚洲综合色| 免费观看性生交大片5| 亚洲精品第二区| 午夜免费观看性视频| 中文天堂在线官网| 亚洲精品国产色婷婷电影| 亚洲欧美精品综合一区二区三区 | 一级毛片 在线播放| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av | av又黄又爽大尺度在线免费看| 一本大道久久a久久精品| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 国产一区二区在线观看av| av卡一久久| 久久精品国产a三级三级三级| 国产白丝娇喘喷水9色精品| 26uuu在线亚洲综合色| 黄色毛片三级朝国网站| 91成人精品电影| 人体艺术视频欧美日本| 少妇的丰满在线观看| 亚洲四区av| 欧美精品高潮呻吟av久久| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 国产成人一区二区在线| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 亚洲,欧美,日韩| 午夜av观看不卡| 久久青草综合色| 久久久久久人人人人人| 大陆偷拍与自拍| av片东京热男人的天堂| 水蜜桃什么品种好| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 日本欧美视频一区| 欧美日韩成人在线一区二区| 午夜日韩欧美国产| av在线app专区| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 九色亚洲精品在线播放| 在线天堂中文资源库| 免费播放大片免费观看视频在线观看| av不卡在线播放| 亚洲三级黄色毛片| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 欧美 日韩 精品 国产| 伦理电影大哥的女人| 亚洲国产av新网站| 亚洲一区中文字幕在线| 伦精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 如何舔出高潮| 美女脱内裤让男人舔精品视频| av免费在线看不卡| 国产精品免费视频内射| 1024香蕉在线观看| 一区二区av电影网| 国产精品久久久久久精品电影小说| h视频一区二区三区| 国产黄色免费在线视频| 丝袜美足系列| 日本欧美视频一区| 欧美日韩视频精品一区| 最近手机中文字幕大全| 亚洲国产看品久久| 国产精品成人在线| 天天躁日日躁夜夜躁夜夜| 男人添女人高潮全过程视频| av福利片在线| 在现免费观看毛片| 亚洲精品一二三| 男人操女人黄网站| 一级毛片我不卡| 巨乳人妻的诱惑在线观看| 美女大奶头黄色视频| 久久影院123| 国产成人欧美| 最近最新中文字幕大全免费视频 | av又黄又爽大尺度在线免费看| 国产精品99久久99久久久不卡 | 如日韩欧美国产精品一区二区三区| 亚洲 欧美一区二区三区| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 国精品久久久久久国模美| 日日啪夜夜爽| 只有这里有精品99| 亚洲精品国产av成人精品| 秋霞伦理黄片| 亚洲美女视频黄频| 亚洲精品第二区| 免费大片黄手机在线观看| 久久久久久伊人网av| 一本大道久久a久久精品| 成人午夜精彩视频在线观看| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 另类亚洲欧美激情| 久久久久久伊人网av| 777久久人妻少妇嫩草av网站| 人妻一区二区av| 国产麻豆69| 亚洲国产精品成人久久小说| 国产在线免费精品| 大码成人一级视频| 国产精品国产三级国产专区5o| 岛国毛片在线播放| 日韩av免费高清视频| 日韩中文字幕欧美一区二区 | 亚洲精品美女久久久久99蜜臀 | 日本色播在线视频| 女性被躁到高潮视频| 国产伦理片在线播放av一区| 亚洲av福利一区| 国产成人aa在线观看| 捣出白浆h1v1| 日韩大片免费观看网站| 国产无遮挡羞羞视频在线观看| 亚洲经典国产精华液单| 搡老乐熟女国产| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| av天堂久久9| 久久精品国产亚洲av天美| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 国精品久久久久久国模美| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 国产精品嫩草影院av在线观看| 成年女人在线观看亚洲视频| 捣出白浆h1v1| 99久久精品国产国产毛片| 久久久久久免费高清国产稀缺| 宅男免费午夜| 国产精品 国内视频| 久久影院123| 久久久久久人妻| 狠狠婷婷综合久久久久久88av| www.精华液| 黄色 视频免费看| 在线天堂中文资源库| 大话2 男鬼变身卡| 多毛熟女@视频| av不卡在线播放| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 日本vs欧美在线观看视频| 男女边吃奶边做爰视频| 男人爽女人下面视频在线观看| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 免费黄网站久久成人精品| a级毛片在线看网站| 在线观看免费高清a一片| 日韩精品免费视频一区二区三区| 99热网站在线观看| 亚洲精品中文字幕在线视频| 日韩av不卡免费在线播放| 在线观看免费高清a一片| 两个人免费观看高清视频| 亚洲国产av新网站| 丰满饥渴人妻一区二区三| 黄频高清免费视频| 精品国产国语对白av| 国产熟女欧美一区二区| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| 精品久久久久久电影网| 国产成人欧美| 最新的欧美精品一区二区| 国产成人免费无遮挡视频| 成年动漫av网址| 日韩不卡一区二区三区视频在线| 免费看av在线观看网站| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| 久久久精品免费免费高清| 成人国产麻豆网| 欧美成人午夜精品| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 亚洲男人天堂网一区| 777米奇影视久久| 熟妇人妻不卡中文字幕| 五月伊人婷婷丁香| 亚洲精品第二区| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 国产淫语在线视频| 久久久久国产一级毛片高清牌| 久久久久久人人人人人| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| h视频一区二区三区| 美女国产视频在线观看| 免费黄网站久久成人精品| 一区二区三区精品91| 亚洲一区中文字幕在线| 色网站视频免费| 国产精品女同一区二区软件| 国产不卡av网站在线观看| 精品久久蜜臀av无| 丝袜喷水一区| 国产成人91sexporn| 亚洲精品中文字幕在线视频| 免费人妻精品一区二区三区视频| 少妇 在线观看| 黄频高清免费视频| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 蜜桃在线观看..| xxx大片免费视频| 丝瓜视频免费看黄片| 只有这里有精品99| 麻豆精品久久久久久蜜桃| 国产成人精品久久二区二区91 | 天美传媒精品一区二区| 亚洲,欧美,日韩| 欧美中文综合在线视频| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 国产福利在线免费观看视频| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 免费观看无遮挡的男女| 国产在线免费精品| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| av一本久久久久| 在线观看一区二区三区激情| 99热网站在线观看| 国产日韩欧美亚洲二区| 精品一区二区免费观看| 国产乱人偷精品视频| 欧美bdsm另类| 欧美 日韩 精品 国产| av在线观看视频网站免费| 九色亚洲精品在线播放| 电影成人av| 老司机影院成人| 精品国产一区二区三区久久久樱花| 亚洲精品av麻豆狂野| 亚洲成av片中文字幕在线观看 | 青春草视频在线免费观看| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 91国产中文字幕| 最近的中文字幕免费完整| 永久免费av网站大全| 一本久久精品| 中文字幕另类日韩欧美亚洲嫩草| 国语对白做爰xxxⅹ性视频网站| videosex国产| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| 中文字幕最新亚洲高清| 亚洲欧美成人精品一区二区| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 国产片内射在线| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 免费播放大片免费观看视频在线观看| www.自偷自拍.com| 国产麻豆69| 自线自在国产av| 久久精品久久久久久噜噜老黄| 久热久热在线精品观看| 99热国产这里只有精品6| 飞空精品影院首页| 国产 一区精品| 丰满饥渴人妻一区二区三| 国产极品天堂在线| 啦啦啦啦在线视频资源| 亚洲色图 男人天堂 中文字幕| 国产亚洲一区二区精品| 男人操女人黄网站| 亚洲精品国产av蜜桃| av福利片在线| 国产在线一区二区三区精| 久久久精品国产亚洲av高清涩受| 韩国精品一区二区三区| 看非洲黑人一级黄片| 久久久久久人人人人人| 精品国产一区二区久久| 亚洲国产精品国产精品| av免费在线看不卡| 巨乳人妻的诱惑在线观看| 可以免费在线观看a视频的电影网站 | 久久精品aⅴ一区二区三区四区 | 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 美女中出高潮动态图| 最近最新中文字幕免费大全7| av在线app专区| av免费在线看不卡| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 精品一品国产午夜福利视频| 精品一区在线观看国产| 亚洲男人天堂网一区| 青青草视频在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 日韩精品免费视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 十八禁高潮呻吟视频| 色婷婷av一区二区三区视频| 一级爰片在线观看| 大码成人一级视频| 成人午夜精彩视频在线观看| 美女xxoo啪啪120秒动态图| 亚洲第一青青草原| av国产精品久久久久影院| av有码第一页| av电影中文网址| 成年美女黄网站色视频大全免费| 97人妻天天添夜夜摸| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 国产精品偷伦视频观看了| 天堂俺去俺来也www色官网| 日本av免费视频播放| 欧美成人精品欧美一级黄| 日韩中字成人| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 国产亚洲av片在线观看秒播厂| 日韩三级伦理在线观看| 久热这里只有精品99| 搡老乐熟女国产| 国产精品二区激情视频| 少妇猛男粗大的猛烈进出视频| 日韩熟女老妇一区二区性免费视频| 嫩草影院入口| 十八禁高潮呻吟视频| 精品久久久久久电影网| 午夜影院在线不卡| 国产片内射在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产看品久久| 在线观看国产h片| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 国产高清不卡午夜福利| 五月天丁香电影| 亚洲精品视频女| 黄网站色视频无遮挡免费观看| 成人黄色视频免费在线看| 男人舔女人的私密视频| 亚洲成国产人片在线观看| 日韩电影二区| 黄片播放在线免费| 国产欧美亚洲国产| 亚洲综合精品二区| 男女啪啪激烈高潮av片| 妹子高潮喷水视频| 国产麻豆69| 久久久久久久亚洲中文字幕| 国产亚洲最大av| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 香蕉丝袜av| 亚洲欧美中文字幕日韩二区| 国产黄频视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av福利一区| 热99久久久久精品小说推荐| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 国产成人aa在线观看| 中文欧美无线码| 18禁动态无遮挡网站| 日本wwww免费看| 欧美在线黄色| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 丝袜脚勾引网站| 欧美日韩视频精品一区| 黑人巨大精品欧美一区二区蜜桃| 在线观看三级黄色| 尾随美女入室| 精品卡一卡二卡四卡免费| 日本-黄色视频高清免费观看| 水蜜桃什么品种好| 美女主播在线视频| 久久久久久久亚洲中文字幕| 久久午夜综合久久蜜桃| 人人妻人人澡人人爽人人夜夜| 99久久精品国产国产毛片| 男女边摸边吃奶| 欧美 日韩 精品 国产| 七月丁香在线播放| 精品人妻在线不人妻| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区| 国产乱人偷精品视频| 日韩av免费高清视频| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利剧场| 一级片免费观看大全| 婷婷成人精品国产| 日韩大片免费观看网站| 1024香蕉在线观看| 王馨瑶露胸无遮挡在线观看| 天天躁夜夜躁狠狠久久av| 飞空精品影院首页| av又黄又爽大尺度在线免费看| 国产精品国产av在线观看| 中文字幕av电影在线播放| 亚洲第一区二区三区不卡| 久久精品夜色国产| 欧美bdsm另类| 久久狼人影院| 日本av手机在线免费观看| 在线天堂最新版资源| 亚洲五月色婷婷综合| 国产国语露脸激情在线看| 精品国产一区二区三区四区第35| 欧美日韩视频高清一区二区三区二| 亚洲成色77777| a 毛片基地| 观看av在线不卡| videos熟女内射| 亚洲欧洲精品一区二区精品久久久 | 久久久欧美国产精品| 亚洲精品av麻豆狂野| 男女免费视频国产| 国产精品久久久久久久久免| xxx大片免费视频| 伦精品一区二区三区| 一区二区三区乱码不卡18| 日韩一本色道免费dvd| 999久久久国产精品视频| av网站在线播放免费| 欧美+日韩+精品| 亚洲综合精品二区| 亚洲精品,欧美精品| 新久久久久国产一级毛片| 久久ye,这里只有精品| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 久久精品aⅴ一区二区三区四区 | 91精品三级在线观看| 中文字幕精品免费在线观看视频| 成人手机av| 高清在线视频一区二区三区| 中文字幕最新亚洲高清| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 国产淫语在线视频| 卡戴珊不雅视频在线播放| 久久久久久久久久久久大奶| 久久久久久人妻| 97在线视频观看| 亚洲成色77777| 少妇 在线观看| 极品人妻少妇av视频| 亚洲视频免费观看视频| videossex国产| 汤姆久久久久久久影院中文字幕| 涩涩av久久男人的天堂| 国产精品女同一区二区软件| 黄频高清免费视频| 欧美 日韩 精品 国产| 一边亲一边摸免费视频| www.av在线官网国产| 下体分泌物呈黄色| 一区二区av电影网| 日韩在线高清观看一区二区三区| 一本久久精品| 国产精品一国产av| 天天影视国产精品| 最近中文字幕高清免费大全6| 亚洲一码二码三码区别大吗| 中文字幕亚洲精品专区| 熟女少妇亚洲综合色aaa.| 女人久久www免费人成看片| 97人妻天天添夜夜摸| 日本wwww免费看| 日韩在线高清观看一区二区三区| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 精品视频人人做人人爽| 热re99久久国产66热| 亚洲精品久久久久久婷婷小说| 91成人精品电影| 天美传媒精品一区二区| 精品福利永久在线观看| 乱人伦中国视频| 欧美中文综合在线视频| 国产男女超爽视频在线观看| 亚洲精品在线美女| 中文精品一卡2卡3卡4更新| 欧美日本中文国产一区发布| 欧美日韩av久久| 亚洲伊人久久精品综合| 亚洲,欧美,日韩| a级毛片黄视频| 国产麻豆69| 深夜精品福利| av女优亚洲男人天堂| 精品国产一区二区久久| 欧美黄色片欧美黄色片| 国产片特级美女逼逼视频| 99热国产这里只有精品6| 免费看不卡的av| 欧美 亚洲 国产 日韩一| 最黄视频免费看| 另类亚洲欧美激情| 免费在线观看视频国产中文字幕亚洲 | 侵犯人妻中文字幕一二三四区| 女人精品久久久久毛片| 欧美日本中文国产一区发布| 国产精品免费视频内射| 成人国语在线视频| 亚洲国产日韩一区二区| 97精品久久久久久久久久精品| 亚洲一级一片aⅴ在线观看| 国产一区二区三区综合在线观看| 人妻少妇偷人精品九色| 日韩一卡2卡3卡4卡2021年| 高清视频免费观看一区二区| a级毛片黄视频| 久久久久久伊人网av| 亚洲精品美女久久av网站| 免费黄色在线免费观看| 精品久久蜜臀av无| 亚洲成色77777| 国产无遮挡羞羞视频在线观看| 日本猛色少妇xxxxx猛交久久| 99国产综合亚洲精品| 欧美亚洲日本最大视频资源| 欧美少妇被猛烈插入视频| 狠狠婷婷综合久久久久久88av| 精品99又大又爽又粗少妇毛片| 国产日韩一区二区三区精品不卡|