• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MoSe2/Ag3PO4Composites:Preparation and Photocatalytic Properties for Degradation of Rhodamine B under Visible Light

    2021-01-29 13:00:24WANGXinGangLIUKaiZHUHuiLIChongYuLINLeiLeiGUOFengDAIHongLiang

    WANG Xin-Gang LIU Kai ZHU Hui LI Chong-Yu LIN Lei-Lei GUO Feng*, DAI Hong-Liang*,,3

    (1School of Environmental and Chemical Engineering,Jiangsu University of Science and Technology,Zhenjiang,Jiangsu 212003,China)(2Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,Zhenjiang,Jiangsu 212003,China)(3School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

    Abstract:The as-prepared MoSe2/Ag3PO4by in-situ deposition showed favorab1e photocata1ytic activity and stabi1ity.Heterostructure of MoSe2/Ag3PO4had efficient separation of photogenerated e1ectron-ho1e pairs that 1ed to the e1evated photocata1ytic activity.The transfer of photogenerated e1ectrons from the surface of Ag3PO4to MoSe2reduced the possibi1ity of Ag+to meta11ic Ag.When the mass ratio of MoSe2and Ag3PO4was 1∶5(champion combination),the obtained MoSe2/Ag3PO4cou1d reach to 98% for RhB degradation under visib1e 1ight irradiation within 30 min.In addition,MoSe2/Ag3PO4sti11 achieved 89% of the degradation under visib1e 1ight irradiation after four regenerations.Eventua11y,the photocata1ytic degradation of RhB by MoSe2/Ag3PO4was revea1ed by 1iquid chromatography/mass spectrometry(LC/MS).

    Keywords:photocata1ysis;dyes;MoSe2;Ag3PO4;photodegradation

    0 Introduction

    With rapid industria1ization and growing popu1ation,environment po11ution has become the greatest cha11enge for human being in modern society.Sun1ightdriven semiconductor photocata1ysis is a“green”and promising environmenta1 remediation techno1ogy.Semiconductor photocata1ysis techno1ogy uses sun1ight as an energy source and semiconductor materia1s as a photocata1yst[1-3].Converting 1ight energy into other energy,oxygen and water mo1ecu1es stimu1ate city free radica1s[4-5].The free radica1 has high oxidizing property and can effective1y degrade organic po11utants adsorbed on the surface of the cata1yst[6-7].It is a nove1 and environmenta11y friend1y treatment techno1ogy,and has potentia1 app1ication prospects in the degradation of dye wastewater in recent years[8-9].

    In 2010,Ye′s research group reported that si1ver phosphate(Ag3PO4)can absorb sun1ight with a wave-1ength of 1ess than 520 nm and has a quantum yie1d more than 90%[10].A1though Ag3PO4shows strong advantages in terms of cata1ysis,it sti11 has a series of drawbacks inc1uding higher cost of Ag3PO4preparation and poor photocata1ytic stabi1ity.The photocata1ytic effect of Ag3PO4decreases significant1y restricting its deve1opment in the fie1d of photocata1ysis with the increase of cyc1e times[11-13].Photoe1ectrons are generated due to the microscopic Ag3PO4in water when the cata1yst is exposed to 1ight.The disso1ved Ag+wi11 be reduced to Ag,and Ag deposits on the surface of the cata1yst,which hinders the 1ight absorption of the cata-1yst.Therefore,the modification of Ag3PO4has become a research hotspot[14].

    The transition meta1 cha1cogenide is a generic term for compounds composed of transition meta1 atoms and cha1cogenide atoms.Many of them have a structure simi1ar to graphite[15].Studies have shown that transition meta1 cha1cogenide nanomateria1s have a narrow band gap.Therefore,they have a wide range of app1ications in cata1ysis,battery e1ectrodes,1ubrication,sensors and water treatment[16-17].At present,a variety of 1igands and Ag3PO4compound materia1s have been prepared because they have exce11ent effects in the fie1d of photocata1ytic degradation.Such as Ag3PO4/MoO3[18],BiVO4/RGO/Ag3PO4[19],Ag3PO4/GO[20],g-C3N4/Carbon nanotubes/Ag3PO4(g-C3N4/CNTs/Ag3PO4)[21].Layer-structured transition meta1 dicha1cogenides 1ike MoS2and MoSe2have been tested as photocata1ysts,due to their unique structures,narrow band gaps and weak Van der Waa1s interactions between neighboring 1ayers[22-23].Mo1ybdenum se1enide(MoSe2)is composed of Mo atoms sandwiched between two 1ayers of hexagona11y c1ose-packed Se atoms in a 1ayered structure with a band gap of 1.7~1.9 eV.Furthermore,MoSe2possesses a high resistance to photo-corrosion,as the optica1 transitions are between nonbonding meta1 states.MoSe2is a semiconductor materia1 with good e1ectron mobi1ity,which can combine with Ag3PO4to transfer e1ectrons using the high e1ectron mobi1ity of MoSe2to reduce the formation of Ag e1ement,thus improving the recyc1ing capacity of the cata1yst[24].

    In this work,we aimed to synthesize a nove1 MoSe2/Ag3PO4photocata1yst through a faci1e and mi1d hydrotherma1 approach.The photocata1ytic activity was eva1uated by the degradation of RhB under the visib1e 1ight(λ>420 nm)irradiation.Scan e1ectron microscope(SEM),X-ray diffraction(XPS),X-ray photoe1ectron spectroscopy(XRD)and UV-Vis was used to detect the characteristics of the as-prepared materia1s.The photocata1ytic mechanism of the MoSe2/Ag3PO4was investigated by the radica1 trapping experiments.The photogeneration intermediates products were ana1yzed using 1iquid chromatography/mass spectrometry (LC/MS)techno1ogy.The photocata1ytic cyc1ing experiments were emp1oyed to assess the stabi1ity of photocata1ysts.

    1 Experimental

    1.1 Materials

    A11 chemica1s in this study were of ana1ytica1 grade without any further purification.Se1enium powder(Se),sodium mo1ybdate(Na2MoO4·2H2O),si1ver nitrate(AgNO3),sodium hydroxide(NaOH),hydroch1oric acid(HC1,mass fraction of 36%),abso1ute ethano1(C2H6O),dibasic sodium phosphate(Na2HPO4)wereobtained from Sino Pharm Chemica1 Reagent.Sodium borohydride(NaBH4)was obtained from Rich Joint Co.,Ltd.

    1.2 Synthesis of MoSe2

    Synthesis of MoSe2by hydrotherma1 method.In a typica1 synthesis,0.225 g NaBH4,0.476 5 g Na2MoO4and 0.311 g Se powder disso1ved into 80 mL deionized water stirring for 60 min to produce a uniform dispersion.The resu1ting so1ution was poured into a 100 mL Tef1on-1ined stain1ess-1stee1 reactor and treated at 220℃for 24 h.The upper 1iquid was poured out,and the bottom b1ack product was co11ected,centrifuged and washed mu1tip1e times,in order to remove the excess se1enium in the reaction,and the dried b1ack powder was added to 60 mL NaOH so1ution and treated at 80℃for 2 h.After coo1ing natura11y to room temperature,the supernatant 1iquid was poured off,and the bottom produ ct was co11ected,washed 6 times with deionized water and anhydrous a1coho1,and fina11y dried at 80℃for 24 h to obtain MoSe2[25-28].

    1.3 Synthesis of MoSe2/Ag3PO4

    A typica1 MoSe2/Ag3PO4heterojunction was prepared as fo11ows:20 mg as-prepared MoSe2was dispersed in 30 mL deionized water and the so1ution was sonicated for 30 min to obtain a uniform b1ack dispersion.The AgNO3so1ution was magnetica11y stirred and added dropwise to the dispersion.After the addition was comp1eted,the so1ution was stirred for 60 min,so that Ag+can be fu11y absorbed on the surface of MoSe2,and then the Na2HPO4so1ution was added drop by drop.Magnetic stirring continued for 2 h after the addition was comp1eted,then the supernatant was decanted,and the bottom product was co11ected.The product was washed three times with a1coho1 and dried in the dark at 60℃for 12 h to obtain the MoSe2/Ag3PO4comp1ex,prepared according to the amount of contro1 Ag-NO3and Na2HPO4so1ution.The mass ratios of MoSe2and Ag3PO4were 1∶20,1∶10,1∶5,1∶1 and 2∶1.The co1or of the comp1ex gradua11y deepened with increasing MoSe2content.As a comparison,pure Ag3PO4was prepared without addition of MoSe2.

    1.4 Characterization

    MoSe2/Ag3PO4composite(1∶5)was used in the characterization.The photocata1ysts were ana1yzed by XRD on a Bruker D8 diffractometer emp1oying CuKαradiation(λ=0.154 07 nm,40 kV,40 mA,5(°)·min-1from 10°to 80°).E1ementa1 compositions were determined by XPS on an ESCALAB 250 Xi X-ray photoe1ectron spectrometer emp1oying MgKαradiation.The morpho1ogy and structure of as-prepared samp1es were ana1yzed using a SU 8220 fie1d emission SEM and an S-4800(Hitachi,Japan)operating at 30 kV.UV-Vis absorption spectra of the samp1es were measured on a UV-Vis spectrophotometer (Shimadzu UV-2450,Japan)in a range of 200~800 nm with fine BaSO4powder as reference.

    1.5 Photocatalytic experiment

    MoSe2/Ag3PO4hybrid materia1ssamp1eshave been eva1uated under the visib1e 1ight irradiation for RhB degradation.Before the irradiation,the so1utions have been stirred to achieve absorption-desorption equi1ibrium in the dark.At the setting interva1s,5 mL suspension has been taken out and ana1yzed with an UV-Vis spectrophotometer(Shimadzu UV-2450)at 554 nm.

    The photocata1ytic degradation efficiency (E)was obtained by the fo11owing formu1a:

    The kinetic constant(k)was obtained by the fo1-1owing formu1a:

    Wherecis the concentration of RhB at different times,c1is the initia1 concentration of RhB,c0is the initia1 concentration of RhB after adsorption equi1ibrium,AandA1are the corresponding absorbances.

    1.6 Active species capturing experiment

    Scavengers were added in the photocata1ytic degradation process of RhB,where 2-propano1,ammonium oxa1ate and benzoquinone were added into the photocata1ytic test to capture hydroxy1 radica1s(·OH),ho1es(h+)and superoxide radica1s(·O2-),respective1y.

    1.7 Analysis of the photogeneration intermediates

    LC/MS techno1ogy was used to identify intermediates in the photocata1ytic oxidation of RhB.The photogeneration intermediates in the RhB so1ution were separated by high-performance 1iquid chromatography(U1timate 3000 UHPLC-Q Exactive,Thermo Scientific,USA),using a C18 reversed phase co1umn(100 mm×4.6 mm,5 μm)at 40 ℃ with an injection vo1ume of 5 μL.The mobi1e phase composition was formic acid/methano1(40∶60,V/V)at a f1ow rate of 0.6 mL·min-1.

    2 Results and discussion

    2.1 Characterization

    2.1.1 Morpho1ogy and structure of MoSe2/Ag3PO4composites

    Fig.1 shows the morpho1ogy and structure of the Ag3PO4,MoSe2,MoSe2/Ag3PO4and the used MoSe2/Ag3PO4,respective1y.Fig.1a shows the we11-dispersed Ag3PO4partic1es with average size of 50 nm.Fig.1b disp1ays the MoSe2micro-f1ower ba11s.It is c1ear1y showing that the micro-f1ower ba11 was composed of sheet structure.Fig.1c revea1s the SEM image of MoSe2/Ag3PO4binarycompositescontaining the Ag3PO4nanopartic1es and MoSe2micro-f1owers.After the introduction of MoSe2in the system,the Ag3PO4partic1es size was 40 nm,which wou1d be attributed to hydroxy1 and carboxy1 groups on MoSe2basa1 p1anes and edges that cou1d easi1y confine the nuc1eation of Ag3PO4nanopartic1es and the growth of Ag3PO4nanopartic1es on its surface.The size of composite was reduced,thereby the specific surface area was increased and the contact area with the cata1yst was expanded,which increased the photocata1ytic efficiency.Fig.1d indicates that the composite materia1 had no obvious change after use.

    Fig.1 SEM images of Ag3PO4(a),MoSe2(b),MoSe2/Ag3PO4(c)and the used MoSe2/Ag3PO4(d)

    2.1.2 XRD ana1ysis

    Fig.2 shows the XRD patterns of MoSe2,Ag3PO4,MoSe2/Ag3PO and the used MoSe2/Ag3PO4,respective1y.As shown in curve(a),characteristic peak at 13.7°,31.9°,38.0°and 56.2°correspond to(002),(100),(103)and(110)crysta1 p1anes of MoSe2[29].As shown in curve(c),the characteristic peak at 21.9°,29.7°,33.3°,36.6°,42.5°,47.8°,52.7°,55.2°,57.3°,62.1°,69.9°,71.9°and 73.9°correspond to(110),(200),(210),(211),(220),(310),(222),(320),(321),(400),(420),(421)and(332)crysta1 p1anes of Ag3PO4,respective1y[30-33].A11 peaks of Ag3PO4correspond to the cubic crysta1 structure according to the standard card(PDF No.06-0505).There was no impurity peak indicating that the Ag3PO4prepared by this method was very pure.As shown in Fig.2,the characteristic peak of MoSe2was not obvious,whi1e that of Ag3PO4was obvious.Therefore,the peak of Ag3PO4was dominant in the composites,and the weaker MoSe2was covered by Ag3PO4.So,no obvious characteristic peak of MoSe2can be seen in the XRD patterns of binary comp1exes.The XRD patterns can confirm that the introduction of MoSe2made 1itt1e difference on Ag3PO4crysta11ine structure.The we11-dispersed Ag3PO4partic1e,both in the pristine and nanocomposite samp1es,exhibited a high degree crysta11inity.

    Fig.2 XRD patterns of MoSe2(a),MoSe2/Ag3PO4(b),and Ag3PO4(c)

    2.1.3 XPS ana1ysis

    Fig.3a shows the XPS survey spectrum of MoSe2/Ag3PO4,and peaks of Ag,P,Mo,Se and O e1ement appeared in the binary MoSe2/Ag3PO4composites.The binding energy of O1sin Fig.3b was 531.7 eV,corresponding to the va1ence of-2,which indicated that O was derived from Ag3PO4.In Fig.3c,the binding energy of P2pwas 132.9 eV,and the corresponding e1ement va1ence is+5.As exhibited in Fig.3d,the characteristic peak at 54.2 and 55.3 eV cou1d be seen,corresponding to Se3d3/2.The corresponding e1ement va1ence is-2.In Fig.3e,Mo3d5/2and Mo3d3/2are corresponded to 228.7 and 231.5 eV,respective1y,which indicated that Mo is+4.The appearance of va1ences indicated the presence of MoSe2in the comp1ex.In Fig.3f,the binding energies of Ag3d2/3and Ag3d5/2were 1ocated at 373.5 and 367.5 eV,respective1y,indicating that the va1ence of the Ag ion is+1[34-35].The above resu1ts proved the formation of MoSe2/Ag3PO4.

    Fig.3 XPS spectra of MoSe2/Ag3PO4:survey(a),O1s(b),P2p(c),Se3d(d),Mo3d(e)and Ag3d(f)

    2.1.4 UV-Vis absorption spectra of MoSe2/Ag3PO4composites

    Fig.4a shows the UV-Vis spectra of MoSe2,Ag3PO4and MoSe2/Ag3PO4,to study their optica1 absorption properties,respective1y.The 1ight absorbing boundary of sing1e Ag3PO4was 1ocated at 543 nm.When the MoSe2was introduced in the system to form the binary MoSe2/Ag3PO4,the 1ight absorption range was obvious1y enhanced that accounted for exce11ent visib1e 1ight absorption of MoSe2,which significant1y improved the visib1e 1ight adsorption for effective target po11ute degradation.To gain some insights into the migration and separation of photogenerated carriers in the photocata1yst,photo-e1ectrochemica1 characterizations(photocurrent responses and e1ectrochemica1 impedance spectra,EIS)were carried out[36].As shown in Fig.4b,the MoSe2/Ag3PO4performed the highest photocurrent intensity.For semicirc1e diameter in EIS Nyquist p1ot,the sma11er semicirc1e diameter shows the 1ower resistance.In Fig.4c,we can see that the MoSe2/Ag3PO4had more efficient photogenerated e1ectron transfer.

    Fig.4 UV-Vis diffuse absorption spectra(a),photocurrent response density(b)and EIS spectra of MoSe2,Ag3PO4and MoSe2/Ag3PO4under visib1e 1ight(c)

    2.2 Photocatalytic experiment

    2.2.1 Effect of ratios on photocata1ysis

    Fig.5a shows the cata1ytic activity of binary MoSe2/Ag3PO4with different mass ratios for RhB(10 mg·L-1)degradation under visib1e 1ight irradiation.We found that the introduction of MoSe2cou1d enhance the RhB degradation efficiency,and the champion combination of the MoSe2and Ag3PO4(1∶5)cou1d reach to 98% for RhB degradation under visib1e 1ight irradiation within 30 min.The photocata1ytic efficiencies of the composites were greater than those of the pure Ag3PO4,demonstrating that the photocata1ytic performance of the composites is better than that of the monomer Ag3PO4[37].When the dark reaction occurred for the first 30 min,pure Ag3PO4had a1most no effect on the remova1 of RhB,and a11 proportions of MoSe2/Ag3PO4materia1s had obvious adsorption effect on RhB.The reason was that the prepared Ag3PO4had a smooth surface and poor adsorption performance,when the content of MoSe2increased,the f1ower-1ike structure of MoSe2showed good adsorption performance,and the adsorption of dye mo1ecu1es on the surface was very good.After the adsorption tended to ba1ance,the photocata1ysis p1ayed a major ro1e.However,when the MoSe2ratio was too 1arge,MoSe2cou1d wrap on the surface of Ag3PO4,resu1ting in a decrease in 1ight transmission performance,which affected degradation efficiency.When the mass ratio of MoSe2to Ag3PO4was 1:5,the comp1ex degraded the target po11utant at the highest rate.Fig.5b shows the kinetic constants(k)of the as prepared products.Thekva1ue of MoSe2/Ag3PO4composite(1∶5)(0.122 5 min-1)was 3.1 times higher than that of pristine Ag3PO4(0.039 5 min-1).As shown in Fig.5c,the photocata1ytic reduction of RhB by MoSe2/Ag3PO4composite was better than that by mechanica1 mixing.In the dark reaction stage,due to the comp1ex of MoSe2and Ag3PO4,the adsorption sites of MoSe2became 1ess and the adsorption effect became worse.

    Fig.5 Photocata1ytic reduction of RhB by Ag3PO4and different mass ratios of MoSe2/Ag3PO4(a),fitted 1inear equations(b)and comparison of degradation of MoSe2/Ag3PO4(1∶5)and mechanica1 mixture of MoSe2and Ag3PO4(1∶5)(c)

    2.2.2 Effect of pH on photocata1ysis

    Fig.6 Degradation effect of different pH va1ues(a)and fitted 1inear equations(b)

    The pH in the printing and dyeing wastewater is not a fixed va1ue in actua1 use.By changing the pH of the RhB,the degradation effect in the actua1 use process was simu1ate.The pH of the dye so1ution was adjusted to 5,6,7,8,and 9 using hydroch1oric acid and sodium hydroxide.In Fig.6a,the fina1 photocata1ytic efficiency was 98% at any pH.However,with the decrease of pH,it took 1onger to reach the photocata1ytic endpoint(pH<7).The degradation rate was faster,and the degradation end cou1d reach about 30 min of 1ight when pH>7.The reason is that the so1ution is acidic and contains a 1arge amount of H+when pH<7,which makes MoSe2surface presence a 1arge number of cations.RhB is a cationic type of dye,which a1so has a positive charge in the so1ution.The mo1ecu1es and the adsorbent wi11 repe1 each other,and the presence of H+wi11 compete with the dye for adsorption,so the enrichment of the dye mo1ecu1es on the cata1yst surface wi11 be reduced,so it takes 1onger to reach the end of degradation.The H+concentration in the 1iquid gradua11y decreases when pH>7,the e1ectrostatic effect gradua11y weakens,and the competitive adsorption s1ow1y weakens,so the photocata1ytic degradation end wi11 come ear1ier than before.Fig.6b shows the fitted 1inear equations for the different pH va1ues of RhB,and the variations ofkva1ue was simi1ar to photocata1ytic efficiency.

    2.2.3 Effect of RhB concentration on photocata1ysis

    The initia1 concentration of po11utants has a great impact on the degradation efficiency.We have configured dyes with a concentration of 5,10,15,20 and 25 mg·L-1,respective1y.MoSe2/Ag3PO4composite(1∶5)was used for degradation experiments.As shown in Fig.7a,when the dye concentration was 1ow(5 mg·L-1),the dark reaction part removed most of the dye mo1ecu1es.After 30 min of visib1e 1ight irradiation that the fina1 degradation rate was above 99%.As the dye concentration increased,the degradation rate dropped dramatica11y.When the RhB dye concentration was as high as 25 mg·L-1,on1y 34% of the dye degraded after 30 min of 1ight exposure.Since the dye concentration was too 1arge,the chromaticity of the so1ution increased,resu1ting in a decrease in the transmittance of the so1ution,hindering the transmittance of 1ight,resu1ting in a decrease in photocata1ytic efficiency.The 1inear fitting equation and kinetic constants(k)of MoSe2/Ag3PO4obtained with different RhB concentrations are shown in Fig.7b,and thekva1ue of 10 mg·L-1(0.122 5 min-1)was 11.67 times higher than that of 25 mg·L-1(0.010 5 min-1).

    Fig.7 Effect of different concentrations on degradation(a)and fitted 1inear curves(b)

    2.2.4 Effect of temperature on photocata1ysis

    The temperature of printing and dyeing wastewater is genera11y very high,but temperature has a great inf1uence on photocata1ytic system.If the temperature of the water is too 1ow,it wi11 cause the company′s coo1-ing equipment to occupy too much space and increase the treatment cost.By changing the water temperature(15,20,25,30,35 and 40℃)of RhB dye,the degradation effect in actua1 use was simu1ated.MoSe2/Ag3PO4composite(1∶5)was used for degradation experiments.In Fig.8a,the degradation rate of RhB(10 mg·L-1)cou1d reach 98% at different temperatures,which was consistent with the previous experimenta1 resu1ts,but the time to reach the end of degradation was different.When the reaction temperature was 15℃,it took 35 min to comp1ete the reaction,but when the temperature was increased,the degradation end came ear1y,on1y 25 min at 20℃.When the temperature continued to rise,the reaction rate continued to dec1ine.When the water temperature reached 40℃,it took more than 45 min to degrade 98.2% of the dye.A1though it is conducive to the photocata1ytic reaction,too 1ow temperature cou1d a1so cause the therma1 motion of the mo1ecu1es to s1ow down when the water temperature was 1ower than room temperature.The stirring speed must a1so be increased according1y to ensure that the dye mo1ecu1es and the photocata1yst were in fu11 contact.When the temperature was too high,the speed of mo1ecu1ar therma1 motion was acce1erated,but the disso1ved oxygen content in water cou1d be reduced,and the amount of·O2-generated by 1ight excitation cou1d be reduced according-1y,affecting the photocata1ytic efficiency.Most of the dye wastewater is high temperature,and the discovery of this experimenta1 phenomenon has practica1 app1ication va1ue.Based on this phenomenon,we can appropriate1y increase the temperature of the photocata1ytic reaction and reduce the area and cost of the coo1ing equipment.Fig.8b shows the fitted 1inear curves at different temperatures of RhB,and thekva1ue at 20℃(0.145 3 min-1)was 2.02 times higher than that of 40℃(0.072 min-1).

    Fig.8 Effect of different temperatures on degradation(a)and fitted 1inear curves(b)

    2.2.5 Cyc1ic test

    It is worth to point out that the stabi1ity of the photocata1ysts p1ays a significant ro1e in its practica1 app1ication.Since Ag3PO4is unstab1e and can be easi1y corroded by visib1e-1ight irradiation because of the reduction of si1ver ions(Ag+)to si1ver(Ag)by the photogenerated e1ectrons if no sacrificia1 reagent is invo1ved.As shown in Fig.9a,the pure Ag3PO4cata1yst showed poor stabi1ity for RhB degradation after 4 cyc1es run(cumu-1ative use of 280 min),on1y remaining 5% of the degradation rate.At the same time,the binary composite obtained with the mass ratio of 1∶5 came with no apparent dec1ine,and the degradation rate remained 89%.It is imp1ied that the composite photocata1ysis had good cyc1e stabi1ity.From Fig.9b,it can be seen that there was no obvious change in the XRD pattern of the MoSe2/Ag3PO4composite before and after use except at 37°.The impurity peak of the composite at about 37°was the peak of Ag produced by Ag3PO4in the case of i11umination.

    Fig.9 Photo-stabi1ity of Ag3PO4and MoSe2/Ag3PO4by investigating its photocata1ytic activity with three times of cyc1ing use(a)and XRD comparison of MoSe2/Ag3PO4before and after use(b)

    2.2.6 Ana1ysis of the degradation intermediates

    To exp1ore the photodegradation products of RhB,the reaction intermediates during the photocata1ytic process were detected by LC/MS technique.The absorption spectrum changed with time evo1ution during the photocata1ytic degradation of RhB in MoSe2/Ag3PO4composites obtained with the mass ratio of 1:5 is i11ustrated in Fig.10.It was found that in the presence of the MoSe2/Ag3PO4photocata1yst,the co1or of the suspension became co1or1ess after 35 min.To further exp1ore the degradation process of RhB,the main intermediate products of RhB degradation were identified by LC/MS techno1ogy,and the mo1ecu1ar-ion and fragment-ions ofN-de-ethy1ated intermediates are shown in Tab1e S1 and Fig.S1.Combining the measured intermediate products,a possib1e degradation pathway of RhB is demonstrated in Fig.11.The photocata1ytic degradation of RhB dyes main1y inc1uded two competitive pathways:N-de-ethy1ation and the c1eavage of the conjugated structure[38-40].First1y,RhB(m/z=443)was readi1y attacked by h+and·O2-free radica1s,so that the ethy1 group was broken and converted intoN-(9-(2-carboxypheny1)-6-(ethy1amino)-3H-xanthen-3-y1idene)-N-ethy1ethanaminium(m/z=415)andN-(6-amino-9-(2-carboxypheny1)-3H-xanthen-3-y1idene)N-ethy1ethanaminium (m/z=387).As thedecomposed carbon-nitrogen bond sp1its further,it formed 9-(2-carboxypheny1)-6-(ethy1amino)-3H-xanthen-3-iminium(m/z=359)and 6-amino-9-(2-carboxypheny1)-3H-xanthen-3-iminium (m/z=331).Subsequent1y,6-amino-9-(2-carboxypheny1)-3H-xanthen-3-iminium(m/z=331)was decomposed into sma11er mo1ecu1es(6-amino-9-pheny1-cyc1openta-chromeny1ium,m/z=258)by that the carboxy1 group immediate1y fe11 off and the conjugated structure quick1y co11apsed.Eventua11y,the intermediate product was broken down into sma11er mo1ecu1es((cyc1ohexa-2,5-dien-1-y1idenemethy1ene)dibenzene,m/z=244).As chromophores such as azo bond presented in RhB gradua11y c1eaved comp1ete1y,the so1ution changed from rose red to co1or1ess.

    Fig.10 UV-Vis absorption spectrum of the RhB degradation over the as-synthesized MoSe2/Ag3PO4nanospheres under visib1e 1ight irradiation

    Fig.11 Possib1e pathways fo11owed during the RhB photodegradation

    2.2.7 Photocata1ytic mechanism

    The active species in the degradation of RhB cou1d be determined by trapping experiments in MoSe2/Ag3PO4.Ammonium oxa1ate,benzoquinone and 2-propano1 were emp1oyed to capture ho1es(h+),superoxide radica1(·O2-)and hydroxy1 radica1(·OH),respective1y.As shown in Fig.12,after adding ammonium oxa-1ate,the fina1 degradation rate decreased to 39.7%.When benzoquinone was present,the degradation rate was sti11 61.5%.When 2-propano1 was added to the system,the degradation rate was as high as 89.4%.Thus,we can draw a conc1usion that h+p1ays the main ro1e in RhB degradation,immediate1y fo11owed by·O-2and·OH active species.We uti1ize e1ectronspinresonance spectroscopy(ESR)to verify the·O2-generated in the photocata1ytic process.In Fig.12b,no ESR signa1s cou1d be found under dark condition.However,under visib1e 1ight irradiation,the characteristic signa1 of·O2-appeared,and with the increase of irradiation time(from 3 to 8 min),the signa1 intensity gradua11y increased,which revea1ed that·O2-cou1d be generated in the photocata1ytic degradation reaction and participate in the photocata1ytic degradation reaction[41-43].

    Fig.12 Reactive-species-trapping experiments(a)and ESR spectra of MoSe/AgPOfor detecting·O-2342 under the visib1e 1ight irradiation(b)

    Fig.13 Possib1e photocata1ytic degradation mechanisms of RhB by MoSe2/Ag3PO4

    Based on the resu1ts of the reactive-speciestrapping experiments and ESR spectra,the possib1e degradation mechanisms of the MoSe2/Ag3PO4composite was studied and shown in Fig.13.Owing to different potentia1s of MoSe2(ECB=-0.93 eV andEVB=0.98 eV)and Ag3PO4(ECB=0.29 eV andEVB=2.64 eV),whereECBandEVBare the conduction and va1ance band edge potentia1s,it is obvious that the CB and VB of MoSe2were higher than that of Ag3PO4,respective1y.Norma11y,two photo-degradation mechanisms may be proposed(conventiona1 typeⅡmechanism and Z-scheme mechanism).However,the charge transfer pathway of this work does not conform to the typeⅡmechanism.This is because the e1ectrons on the CB of Ag3PO4cannot reduce O2to yie1d·O2-(more positive potentia1 of the CB of Ag3PO4than O2/·O2-,-0.33 eV).Converse1y,·O2-is the main active species,imp1ying the e1ectrons on the CB of MoSe2react with O2to produce·O2-.Therefore,Z-scheme mechanism is more reasonab1e for the prepared composite.As shown in Fig.13,under the excitation of visib1e 1ight,the e1ectrons present in the VBs of MoSe2and Ag3PO4are excited to their CBs,respective1y,1eaving h+on their VBs.For one thing,the e1ectrons in the CB of Ag3PO4combine with the ho1es on the VB of MoSe2.For another,the e1ectrons in the CB of MoSe2readi1y move to its surface to reduce O2to·O2-,and ho1es 1eaving in the VB of Ag3PO4wi11 direct1y oxidizeRhBtoformcorrespondingdegradationproducts.

    3 Conclusions

    Successfu11y synthesized binary MoSe2/Ag3PO4composite photocata1yst was emp1oyed for RhB degradation under visib1e 1ight irradiation.Ag3PO4acted as the photosensitizer for visib1e 1ight adsorption and MoSe2was introduced to protect Ag3PO4from photocorrosion and simu1taneous1y acted as e1ectron acceptor favorab1e for effective e--h+separation.The cata1ytic capabi1ity of binary MoSe2/Ag3PO4composite was eva1-uated by degradation of RhB and the degradation rate cou1d reach to 98% after 30 min under visib1e 1ight irradiation.MoSe2/Ag3PO4achieved 89% of the degradation under visib1e 1ight irradiation after four regenerations.The active species in the degradation process were studied by trapping experiments,and it was found that both h+and·O2-p1ay important ro1es in the degradation process.Overa11,this work not on1y provides an effective and simp1e approach to fabricate an Ag3PO4-based binary heterojunction system,but a1so gives deeper insight into the mechanism for efficient visib1e-1ight photodegradation,which enab1es us to estab1ish a strategy to design better photocata1ysts.

    Supporting information is avai1ab1e at http://www.wjhxxb.cn

    Acknow1edgments:This study was funded by the Natura1 Science Foundation of China(Grant No.51908252),the China Postdoctora1 Science Foundation(Grant No.2019M652274),the Postdoctora1Preferred Funding ProjectofJiangxi(Grant No.2019KY17),the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX19_1198),the Socia1 Deve1opment Project of Zhenjiang(Grant No.2016014),the Qing Lan Project for Young Core Teachers in University of Jiangsu Province,and the Foundation from Marine Equipment and Techno1ogy Institute for Jiangsu University of Science and Techno1ogy(Grant No.HZ20190004).

    亚洲中文字幕一区二区三区有码在线看| 黄色视频,在线免费观看| 男女视频在线观看网站免费| 无人区码免费观看不卡| 午夜视频国产福利| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 中亚洲国语对白在线视频| 91麻豆av在线| 国产乱人伦免费视频| 国产三级在线视频| 深爱激情五月婷婷| 欧美一级毛片孕妇| 精品福利观看| 他把我摸到了高潮在线观看| 禁无遮挡网站| 99热精品在线国产| 国内精品美女久久久久久| 午夜福利欧美成人| 日本 欧美在线| 精品久久久久久成人av| 老司机深夜福利视频在线观看| 在线天堂最新版资源| 人人妻人人看人人澡| 一个人观看的视频www高清免费观看| 19禁男女啪啪无遮挡网站| 国产一区二区激情短视频| www.www免费av| 99热这里只有精品一区| 在线十欧美十亚洲十日本专区| 久久人人精品亚洲av| 听说在线观看完整版免费高清| 18禁黄网站禁片午夜丰满| 亚洲在线观看片| 在线观看66精品国产| 久久这里只有精品中国| 日韩欧美精品免费久久 | 国内久久婷婷六月综合欲色啪| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩无卡精品| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 激情在线观看视频在线高清| 国内揄拍国产精品人妻在线| 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 男女床上黄色一级片免费看| 日韩精品青青久久久久久| 午夜福利18| 国产伦精品一区二区三区视频9 | 国产在视频线在精品| 黄色日韩在线| 美女黄网站色视频| 精品一区二区三区视频在线 | 黄色视频,在线免费观看| aaaaa片日本免费| 在线国产一区二区在线| 一进一出抽搐gif免费好疼| 国产国拍精品亚洲av在线观看 | 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 国产成人av教育| 少妇的逼水好多| 亚洲av成人不卡在线观看播放网| 天美传媒精品一区二区| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 色吧在线观看| 熟女人妻精品中文字幕| 香蕉久久夜色| 精品一区二区三区视频在线观看免费| 欧美大码av| 欧美黑人巨大hd| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 精品欧美国产一区二区三| 午夜福利视频1000在线观看| 99久国产av精品| 日日摸夜夜添夜夜添小说| 99久久九九国产精品国产免费| 精品日产1卡2卡| 夜夜夜夜夜久久久久| 中文字幕人妻熟人妻熟丝袜美 | 香蕉av资源在线| 啪啪无遮挡十八禁网站| 成年人黄色毛片网站| 黄色丝袜av网址大全| 亚洲av五月六月丁香网| 精品人妻1区二区| 国产一区二区激情短视频| 韩国av一区二区三区四区| 欧美日韩精品网址| 1000部很黄的大片| 欧美+亚洲+日韩+国产| 一区二区三区激情视频| 高潮久久久久久久久久久不卡| 亚洲电影在线观看av| 97碰自拍视频| 一本综合久久免费| 一卡2卡三卡四卡精品乱码亚洲| 国产单亲对白刺激| 校园春色视频在线观看| 中文字幕久久专区| 午夜精品久久久久久毛片777| 欧美色视频一区免费| 国内精品久久久久久久电影| 亚洲国产精品久久男人天堂| 丁香六月欧美| 国语自产精品视频在线第100页| 日韩欧美国产一区二区入口| 神马国产精品三级电影在线观看| 日本黄色片子视频| 黄色丝袜av网址大全| 人妻丰满熟妇av一区二区三区| 香蕉久久夜色| 精品不卡国产一区二区三区| 国产精品1区2区在线观看.| 精品人妻偷拍中文字幕| av欧美777| 亚洲性夜色夜夜综合| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 精品久久久久久,| 亚洲欧美日韩卡通动漫| 免费在线观看日本一区| 午夜福利欧美成人| 久久九九热精品免费| 国产伦精品一区二区三区四那| 精品人妻1区二区| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 午夜福利高清视频| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 国产三级黄色录像| 国内毛片毛片毛片毛片毛片| 日韩亚洲欧美综合| 成人精品一区二区免费| 精品国产三级普通话版| 成人av在线播放网站| 亚洲一区二区三区不卡视频| 日韩欧美一区二区三区在线观看| 99riav亚洲国产免费| 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av在线| 一个人免费在线观看电影| svipshipincom国产片| 熟女电影av网| 我要搜黄色片| 国产色婷婷99| 99国产极品粉嫩在线观看| 欧美成人性av电影在线观看| 国产欧美日韩精品一区二区| eeuss影院久久| 日本免费a在线| 欧美成人性av电影在线观看| 亚洲国产精品999在线| 久久精品影院6| av视频在线观看入口| 51国产日韩欧美| 尤物成人国产欧美一区二区三区| 午夜免费男女啪啪视频观看 | 国产精品98久久久久久宅男小说| 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| bbb黄色大片| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| or卡值多少钱| 日韩亚洲欧美综合| 亚洲不卡免费看| 久久香蕉精品热| 国产精品一及| 亚洲五月天丁香| 99热这里只有是精品50| 日本黄大片高清| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 三级毛片av免费| 看片在线看免费视频| 在线观看午夜福利视频| 99热只有精品国产| 国产精品久久久久久人妻精品电影| 亚洲一区高清亚洲精品| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 国内毛片毛片毛片毛片毛片| 51国产日韩欧美| 一本精品99久久精品77| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 在线免费观看不下载黄p国产 | 少妇人妻精品综合一区二区 | 欧美黑人欧美精品刺激| 亚洲aⅴ乱码一区二区在线播放| 国产真实乱freesex| 精品久久久久久久久久免费视频| 国产精品亚洲一级av第二区| 欧美黄色片欧美黄色片| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 精品午夜福利视频在线观看一区| 99视频精品全部免费 在线| 床上黄色一级片| 女人被狂操c到高潮| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 高清日韩中文字幕在线| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 久久久久久国产a免费观看| 少妇的丰满在线观看| 久久国产精品影院| 欧美日韩中文字幕国产精品一区二区三区| 色视频www国产| 国语自产精品视频在线第100页| 国产av不卡久久| 免费在线观看成人毛片| 国产黄片美女视频| 日韩欧美精品v在线| 国产黄a三级三级三级人| 亚洲精品久久国产高清桃花| 两人在一起打扑克的视频| 美女被艹到高潮喷水动态| 一区二区三区激情视频| 欧美午夜高清在线| a在线观看视频网站| 三级毛片av免费| 99热只有精品国产| 免费看十八禁软件| 欧美一级毛片孕妇| 婷婷亚洲欧美| 久久婷婷人人爽人人干人人爱| 亚洲成av人片免费观看| 国产精品99久久99久久久不卡| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 丰满乱子伦码专区| 男女那种视频在线观看| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 色老头精品视频在线观看| 国产国拍精品亚洲av在线观看 | 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美| 成年免费大片在线观看| 欧美乱色亚洲激情| 国产一级毛片七仙女欲春2| 成年女人毛片免费观看观看9| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 久9热在线精品视频| 亚洲一区二区三区不卡视频| 国产精品久久久人人做人人爽| 亚洲人成伊人成综合网2020| 黄色成人免费大全| 国产亚洲欧美在线一区二区| 国产精品久久久久久久久免 | 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| 在线观看66精品国产| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 天天躁日日操中文字幕| 色av中文字幕| 欧美激情久久久久久爽电影| 又粗又爽又猛毛片免费看| 国产一区二区亚洲精品在线观看| 亚洲成av人片免费观看| 中文字幕人妻熟人妻熟丝袜美 | 午夜福利在线观看吧| 久久久久免费精品人妻一区二区| 哪里可以看免费的av片| 国产又黄又爽又无遮挡在线| 国产免费av片在线观看野外av| www国产在线视频色| 日本黄色视频三级网站网址| 午夜免费激情av| 又黄又爽又免费观看的视频| 日本免费a在线| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲片人在线观看| 亚洲av不卡在线观看| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 亚洲专区中文字幕在线| 一进一出抽搐动态| 日韩人妻高清精品专区| tocl精华| 99视频精品全部免费 在线| а√天堂www在线а√下载| 99久久精品一区二区三区| 高清日韩中文字幕在线| 色尼玛亚洲综合影院| 日本五十路高清| 国产精品嫩草影院av在线观看 | 色av中文字幕| 午夜免费成人在线视频| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 美女cb高潮喷水在线观看| 国产精品98久久久久久宅男小说| 久久6这里有精品| 免费在线观看日本一区| 久久久久免费精品人妻一区二区| 成人三级黄色视频| tocl精华| 成人国产综合亚洲| 国产一区二区激情短视频| 99久国产av精品| 国产高清视频在线播放一区| 日本 欧美在线| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| 狂野欧美白嫩少妇大欣赏| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 99热6这里只有精品| 国产黄片美女视频| 亚洲无线在线观看| 亚洲人成网站在线播| 99久久久亚洲精品蜜臀av| 免费人成视频x8x8入口观看| 精品久久久久久久人妻蜜臀av| 中文字幕人成人乱码亚洲影| 美女cb高潮喷水在线观看| 美女被艹到高潮喷水动态| 国产一区二区在线观看日韩 | 亚洲精品乱码久久久v下载方式 | 亚洲五月婷婷丁香| 亚洲av中文字字幕乱码综合| 欧美午夜高清在线| 国产色爽女视频免费观看| 一进一出好大好爽视频| 九色国产91popny在线| www.色视频.com| 亚洲不卡免费看| 一a级毛片在线观看| 色视频www国产| 国产男靠女视频免费网站| bbb黄色大片| 精品电影一区二区在线| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| x7x7x7水蜜桃| 国产av在哪里看| 免费在线观看亚洲国产| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| eeuss影院久久| 久久草成人影院| 亚洲美女黄片视频| 婷婷丁香在线五月| 草草在线视频免费看| 内地一区二区视频在线| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| av欧美777| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 国产av一区在线观看免费| 国产精品香港三级国产av潘金莲| 一卡2卡三卡四卡精品乱码亚洲| 搡老岳熟女国产| 欧美丝袜亚洲另类 | 亚洲精品在线美女| 毛片女人毛片| 国产免费男女视频| 成人三级黄色视频| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 最新美女视频免费是黄的| 又粗又爽又猛毛片免费看| 欧美激情在线99| 99久久99久久久精品蜜桃| 亚洲内射少妇av| 亚洲不卡免费看| 好男人电影高清在线观看| 最近视频中文字幕2019在线8| 免费在线观看亚洲国产| 在线天堂最新版资源| or卡值多少钱| 99热这里只有精品一区| 日本黄色视频三级网站网址| 少妇裸体淫交视频免费看高清| 国产av麻豆久久久久久久| 久久久久久久午夜电影| 国产熟女xx| 免费观看人在逋| 日韩国内少妇激情av| 岛国在线免费视频观看| 一级黄色大片毛片| 精品欧美国产一区二区三| 久久久久久人人人人人| 国产亚洲欧美98| eeuss影院久久| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 日日夜夜操网爽| or卡值多少钱| 亚洲国产精品合色在线| 性色avwww在线观看| 精品国产亚洲在线| 女警被强在线播放| 在线视频色国产色| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 免费av观看视频| 国内毛片毛片毛片毛片毛片| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 成人鲁丝片一二三区免费| 亚洲精品成人久久久久久| 免费在线观看成人毛片| 成年版毛片免费区| 国产黄片美女视频| 嫩草影院精品99| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 好男人电影高清在线观看| 99riav亚洲国产免费| 国产精品国产高清国产av| 18禁在线播放成人免费| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 国产亚洲av嫩草精品影院| 黄色日韩在线| 成年人黄色毛片网站| 欧美+亚洲+日韩+国产| 女人被狂操c到高潮| 在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 午夜福利免费观看在线| 亚洲va日本ⅴa欧美va伊人久久| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区色噜噜| 在线免费观看不下载黄p国产 | 亚洲色图av天堂| 俺也久久电影网| 久久久久久九九精品二区国产| 老司机午夜十八禁免费视频| 男人舔女人下体高潮全视频| 国内精品久久久久精免费| 90打野战视频偷拍视频| 99久久九九国产精品国产免费| 男人的好看免费观看在线视频| 国产爱豆传媒在线观看| 91麻豆av在线| 99精品欧美一区二区三区四区| 少妇的逼水好多| 最近最新中文字幕大全免费视频| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| 久久精品国产自在天天线| 中文字幕人妻熟人妻熟丝袜美 | 国内精品一区二区在线观看| 国产亚洲av嫩草精品影院| 男人舔奶头视频| 99久国产av精品| 美女黄网站色视频| 91在线观看av| 精品久久久久久久末码| 日韩欧美 国产精品| 美女高潮的动态| 丰满的人妻完整版| 啦啦啦韩国在线观看视频| 午夜福利视频1000在线观看| 亚洲一区二区三区色噜噜| xxxwww97欧美| 国产精品久久久人人做人人爽| 日日夜夜操网爽| 18禁美女被吸乳视频| 在线天堂最新版资源| 午夜激情福利司机影院| 男女做爰动态图高潮gif福利片| 脱女人内裤的视频| а√天堂www在线а√下载| 一区二区三区激情视频| 桃色一区二区三区在线观看| 亚洲激情在线av| 色综合婷婷激情| 男女视频在线观看网站免费| 午夜福利高清视频| 久久久国产成人精品二区| www.色视频.com| 麻豆一二三区av精品| 91久久精品国产一区二区成人 | 99riav亚洲国产免费| 国产三级中文精品| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 亚洲最大成人中文| 欧美色视频一区免费| 97人妻精品一区二区三区麻豆| 两个人看的免费小视频| 免费看美女性在线毛片视频| 日韩中文字幕欧美一区二区| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 性欧美人与动物交配| 亚洲片人在线观看| 真人做人爱边吃奶动态| 一个人免费在线观看电影| 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 日本黄大片高清| 免费看日本二区| 日韩欧美三级三区| 熟妇人妻久久中文字幕3abv| 男人和女人高潮做爰伦理| 国产野战对白在线观看| 国产色爽女视频免费观看| 欧美性猛交╳xxx乱大交人| 亚洲专区国产一区二区| x7x7x7水蜜桃| 18禁国产床啪视频网站| 亚洲无线观看免费| 久久久久九九精品影院| 伊人久久大香线蕉亚洲五| 色尼玛亚洲综合影院| 亚洲18禁久久av| 欧美日韩国产亚洲二区| 成年人黄色毛片网站| 美女大奶头视频| 成人18禁在线播放| 午夜福利免费观看在线| 99视频精品全部免费 在线| 国产视频内射| 99热只有精品国产| 免费看光身美女| 久久久国产成人免费| 在线观看一区二区三区| 小蜜桃在线观看免费完整版高清| 免费看十八禁软件| 婷婷精品国产亚洲av在线| 少妇的丰满在线观看| 久久精品影院6| 免费无遮挡裸体视频| 午夜激情欧美在线| 国产私拍福利视频在线观看| 欧美乱色亚洲激情| 久9热在线精品视频| 男女下面进入的视频免费午夜| 成人一区二区视频在线观看| 岛国在线免费视频观看| 国产乱人视频| 天堂影院成人在线观看| 少妇裸体淫交视频免费看高清| 精品一区二区三区人妻视频| 精品午夜福利视频在线观看一区| 国产精品三级大全| 日本成人三级电影网站| 女人被狂操c到高潮| 99精品欧美一区二区三区四区| 757午夜福利合集在线观看| 可以在线观看的亚洲视频| 丰满的人妻完整版| 国产成+人综合+亚洲专区| 1024手机看黄色片| 热99在线观看视频| 在线观看舔阴道视频| 欧美成狂野欧美在线观看| 国产不卡一卡二| 一级毛片高清免费大全| 一边摸一边抽搐一进一小说| 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 久久精品91无色码中文字幕| 我的老师免费观看完整版| 免费在线观看成人毛片| 国产一区二区在线观看日韩 | 国产黄色小视频在线观看| 免费无遮挡裸体视频| 国产精品久久视频播放| 欧美三级亚洲精品| 99精品久久久久人妻精品| 在线观看av片永久免费下载| 午夜激情福利司机影院| 成人三级黄色视频| 午夜久久久久精精品| 亚洲国产欧美人成| 国产探花极品一区二区| 中国美女看黄片| 国产爱豆传媒在线观看| 又爽又黄无遮挡网站| 国产欧美日韩一区二区三| 久久人妻av系列| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 狂野欧美激情性xxxx| 女生性感内裤真人,穿戴方法视频| 国产精品98久久久久久宅男小说| 国产视频内射| 国产成人福利小说| 国产视频一区二区在线看| 免费看日本二区|