• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical predictions of lattice parameters and mechanical properties of CL-20 under the temperature and pressure

    2021-01-28 03:21:04AN

    -, -, -, g, -, -, AN o-n, -

    (1.College of Science, East China University of Technology, Nanchang 330013, China;2.Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China;3. College of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China;4. College of Physics, Sichuan University, Chengdu 610064, China)

    Abstract: The molecular dynamics with condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field have been employed to study high energetic material CL-20. The lattice parameters and elastic constants in the pressure range of 0~10 GPa (for ε-CL-20) and 0~20 GPa (for α-, β-, and -CL-20) at room temperature, and in the temperature range of 100~500 K at room pressure are predicted. The good agreement of lattice parameters, pressure-volume relation and elastic constants of the greatest stability phase ε-CL-20 shows the accuracy of our simulations. The theoretical predictions of lattice parameters and mechanical properties of CL-20 under temperature and pressure may provide powerful guidelines for the engineering application and await further experimental confirmation.

    Keywords: Molecular dynamics; Energetic materials; Lattice parameter; Elastic constants

    1 Introduction

    2,4,6,8,10,12-hexanitro -2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) has the largest density in the current existing energetic materials, and it is superior to conventional high-energy propellants and explosives[1-2]. Thus, CL-20 is considered as the most potential and powerful high energy density materials. Its synthesis has been a breakthrough in the synthesis of high explosive investigations. CL-20 is a caged nitramine explosive with the formula C6H6N12O12, as shown in Fig. 1. The structure of CL-20 molecule consists of two five-member rings and a six-member ring. There exhibits four different crystal structures of CL-20, three pure crystallization phases, β,, and ε, and a hydrate phaseαat ambient conditions, as shown in Fig.2.

    Fig.1 Conformation and atomic numbering of C6H6N12O12 molecule in CL-20

    Fig.2 Unit cell of CL-20: (a) ε- CL-20, (b) - CL-20, (c) β- CL-20 and (d) α- CL-20

    At ambient conditions, the stabilities of these polymorphs are known to be ε>>α>β.ε-CL-20 has the largest density and best thermochemical stability among them, which makes it the popular phase for applications and investigation. Up to now, several experimental[3-4]and theoretical[5-7]studies have been reported for ε-CL-20. In experimental studies, Pinkerton has reported the pressure-volume relationship of this polymorph up to 2.5 GPa firstly[3]. Later, Gump and Peiris have measured the isothermal compression data of ε-CL-20 up to 5.6 GPa both at ambient temperature and 75 ℃[4]. The ambient-temperature isothermal bulk modulus of 13.6 GPa with a pressure derivative of 11.7 has also been reported according to the third-order Birch-Murnaghan equation of state (EOS)[4]. In theoretical studies, some efforts have been done to investigate the EOS of CL-20 through density functional theory (DFT)[5-6], Molecular dynamics (MD) simulation[7], and molecular packing (MP) method[7], respectively. Based on DFT, using GGA-PW91 method, the ultrasoft pseudopotentials (USP) with 396 and 545 eV planewave basis set have been employed to calculate the EOS of ε-CL-20, respectively[5]. Compared with the 396 eV predictions, the 545 eV predictions show larger deviations from the experiment, especially in the low range of pressure. It should be noted that the agreement of 396 eV results origin from the insufficiency of energy cutoff for the plane-wave basis set. Subsequently, Sorescu and Rice calculated the lattice parameters of CL-20 under pressure using DFT method with a plane-wave basis set of within the pseudopotential approximation[6]. The calculated pressure-volume relationship of CL-20 also has large deviations from the corresponding experimental data, as the similarity as of 545 eV results[6]. The large deviations in both the lattice parameters and EOS for energetic materials CL-20 are mainly due to a lacking reproduce of van der Waals (vdW) forces in current DFT. In addition, both of the MD within the rigid-molecule approximation and MP methods are employed to calculate the pressure-volume relation of CL-20[7]. The calculated zero pressure lattice parameters are accurate, but the deviations have been getting larger with increasing pressure for comparison with the experimental results. These results indicate that both of the two methods can not predict the accurate lattice parameters under high pressure[7]. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field could give the well description of the intermolecular interaction potential. As this theory could effectively improve the accuracy of the simulations for energetic materials, it has been employed for simulating the energetic materials, such as HMX[8]and RDX[9]. In this paper, we also employ the MD simulations with COMPASS force field to investigate the lattice dynamics of CL-20.

    At present, CL-20 has not been fielded in military and civil applications yet because of its high sensitivity.Some efforts have been done to reduce the mechanical sensitivities of CL-20 based polymer bonded explosives such that the hazardous energetic material may be handled and even machined into desired shapes[10-13]. Whatever, it is fundamental and significant to know the mechanical properties of pure CL-20 from atomic and molecular scale. As is well known, the elastic constant is a key parameter to investigate the mechanism properties. Though the experimental approaches of elastic constants, such as Brillouin scattering, ultrasonic velocity measurements, and resonant ultrasound spectroscopy, are mature technology, it is still difficult to measure the elastic constants of energetic materials accurately. For example, HMX(C22,C33,C55,C66,C23)[14-16]and RDX(C11,C22,C44,C12)[17-19], the experimental data differ from each other and some deviations are very large. This is because that the samples of energetic materials are not perfect enough with some crystallographic defects. In literature, only one experimental study on the elastic constants of ε-CL-20 has been reported by Haycraft using Brillouin scattering spectroscopy at ambient conditions[20]. The theoretical investigation on the elastic properties of the other phase (α-, β-, and-CL-20) are lacking in literature, especially in high pressure and temperature range.

    The goal of this work is to predict the lattice parameters and mechanical properties under high temperature and pressure of four CL-20 crystal phases (α-, β-,-, and ε-CL-20). This work is respected to give a comparative and complementary theoretical support for experiments.

    2 Computational details

    2.1 Molecular dynamics calculations

    The MD simulations with COMPASS[21]force field are employed for four polymorphs (α-, β-,-, and ε-CL-20). The initial lattice parameters and internal atomic coordinates are taken from experimental data. ε- and-CL-20 belong to the monoclinic symmetry, while α- and β-CL-20 belong to the orthorhombic symmetry. The conformation and atomic numbering of C6H6N12O12molecule are shown in Fig. 1, together with the unit cell of four pure polymorphs, which are plotted in Fig. 2. The molecular dynamics simulations are performed with the Discover code. A computational supercell size of 2×2×2 unit cells are done. The MD simulations are carried out in the isothermal-isobaric NPT ensemble with the Andersen thermostat method[22]and Berendsen barostat method[23]to control the system pressures and temperatures respectively. The long-range non-bond Coulombic and vdW interactions are managed using the Ewald simulation method[24].The calculated system is relaxed for 1×105time steps with the time step of 1 fs in the equilibration run at each target of temperature and pressure.

    2.2 Elastic constants

    The elastic stiffness tensorcijklcan be expressed as

    (1)

    whereεklis the strain,cijklis the elastic constant (matrix) andσijis the stress. There are thirteen independent components of the elastic stiffness tensor for monoclinic crystal, and nine independent components for orthorhombic crystal.

    For monoclinic phase[25]

    BV=(1/9)[C11+C22+C33+2(C12+C13+

    C23)]

    (2)

    GV=(1/15)[C11+C22+C33+3(C44+C55+

    C66)]-(C12+C13+C23),

    (3)

    BR=h[a(C11+C22-2C12)+b(2C12-2C11-

    C23)+c(C15-2C25)+c(C15-2C25)+

    d(2C12+2C23-C13-2C22)+2e(C25-

    C15)+f]-1

    (4)

    GR=15{4[a(C11+C22+C12)+b(C11-C12-

    C23)+c(C15+C25)+d(C22-C12-C23-

    C13)+e(C15-C25)+f]/h+3[g/h+

    (5)

    b=C23C55-C25C35

    c=C13C35-C15C33

    d=C13C55-C15C35

    e=C13C25-C15C23

    C15C25)+C15(C12C25-C15C22)+

    C25(C23C35-C25C33)

    2C12C13C23

    h=2[C15C25(C33C12-C13C23)+

    C15C35(C22C13-C12C23)+

    C25C35(C11C23-C12C13)]-

    For orthorhombic phase[26]

    BV=(1/9)[C11+C12+C33+2(C12+C13+

    C23)

    (6)

    GV=(1/15)[C11+C22+C33+3(C44+C55+

    C66)-(C12+C13+C23)

    (7)

    BR=Δ[C11(C22+C33-2C23)+C22(C33-

    2C13)-2C33C12]+C12(2C23-C12)+

    C13(2C12-C13)+C23(2C13-C23)]-1

    (8)

    GR=15{4[C11(C22+C33+C23)+C22(C33+

    C13)+C33C12}-C12(2C23+C12)-

    C13(2C12+C13)-C23(C13+C23)]/Δ+

    3[(1/C44)+(1/C55)+(1/C66)]}-1

    (9)

    Δ=C13(C12C23-C13C22)+C23(C12C13-

    The arithmetic average of the Voigt and Reuss bounds is named the Voigt-Reuss-Hill (VRH) average and employed to estimate the elastic moduli of polycrystals[27-29]:

    BV+BR=2BH,GV+GR=2GH

    (10)

    Young’s modulusEcan be calculated by

    E=9BG/(3B+G)

    (11)

    Possion’s ratioνare obtained by the following formula

    ν=(3B-2G)/[2(3B+G)]

    (12)

    3 Results and discussion

    3.1 Lattice parameters

    The calculated lattice constants and unit cell volume at ambient conditions from our NPT-MD optimizations are shown in Tab. 1, together with the available experimental[30-31]and other theoretical data[6-7]. With regard to experiments, the deviation of our calculated unit cell volume are -0.46% (ε-CL-20), -3.48% (-CL-20), 2.02% (α-CL-20), and -1.61% (β-CL-20). Our calculated results agree with the experimental and theoretical results.

    Tab.1 Calculated equilibrium lattice parameters at ambient conditions in comparison to the theoretical and experimental values

    (Tab.1 Continued)

    3.2 Equation of state

    The EOS is important for mitigation of hazardous materials like CL-20 in preparation, transportation, storage, and handing process. We plot the variation of lattice parameters under pressure or temperature in Fig.3.

    Fig.3 Variation of cell volume and lattice constants of ε-CL-20 (a~d), -CL-20 (e~h), α-CL-20 (i~l), β-CL-20 (m~p) with pressure at 298 K, or with temperature at room pressure

    As shown in Fig. 3(a), for the ε-CL-20, the zero pressure theoretical crystal volume with DFT method overshoot the experimental results[3-4]and then the discrepancy gets smaller with increasing pressure. Due to the poor description of vdW force, which plays an important role in CL-20 molecular crystal, the DFT calculation overestimates the cell volume[7]. While the dispersion-corrected simulations using a semi-empirical correction term proportional added to Kohn-Sham energy functional improve the accuracy[7]. The zero pressure theoretical crystal volumes from the MP and NPT-MD method agree well with the experimental results, while the discrepancy increases with increasing pressure. These results suggest that the intermolecular potential used in the MP and NPT-MD methods can not predict lattice parameters accurately under high pressure[14]. Our calculated results of NPT-MD method with CMPASS force field agree well with experimental data[3-4]. Similarly, our theoretical predictions of lattice parameters consist well with the experiments in the temperature range of 100 to 298 K[30]. Though the experimental data for comparison is insufficient, our theoretical predictions of lattice parameters should be accurate in the higher pressure or temperature range. In addition, we predict the lattice parameters of α-CL-20, β-CL-20, and-CL-20 in the pressure range of 0 to 20 GPa or in the temperature range of 100 to 500 K, as is shown in Fig. 3(e) ~ 3(p).

    There are several different formulations of EOS. Here, we fit theP-Vdata of CL-20 to Murnaghan EOS[32]and Birch-Murnaghan EOS[33]respectively. The third-order Birch-Murnaghan EOS can be written as follows,

    (13)

    (14)

    Tab. 2 The calculated bulk modulus B0 and its first pressure derivative of CL-20 compared with experimental and theoretical values

    3.3 Elastic and mechanical properties

    Though the experimental approaches of elastic constants, such as Brillouin scattering, ultrasonic velocity measurements, and resonant ultrasound spectroscopy (RUS), are mature technology, it is still difficult to measure the elastic constants of energetic materials accurately. Several experimental efforts have been done on the conventional explosives, RDX and HMX. The experimental data differ from each other and some deviations are large, such as HMX (C22, C33, C55, C66, C23)[14-16]and RDX (C11, C22, C44, C12)[17-19]. Due to the poor description of vdW force, which plays an important role in CL-20 molecular crystal, the DFT calculation can not predict the elastic constants of CL-20 accurately. The good predictions of lattice parameters and EOS above indicate that the molecular dynamics simulations with COMPASS force field can give accurate description of interatomic binding forces and intermolecular interaction in CL-20 crystal. The elastic constants of four polymorphs at ambient conditions (α-, β-,-CL-20, and ε-CL-20) are listed in Tab.3. The good agreement of experimental and theoretical elastic constants for ε-CL-20 proves the validity and accuracy of the calculation for CL-20. The elastic modulus of CL-20 under temperature at room pressure or under pressure at 298 K are calculated and listed in Tab. 4. The temperature and pressure are the influencing factors in preparation, transportation, storage, and handing process. The predicted elasticity under temperature and pressure can provide powerful guidelines for the engineering application and further experimental investigations.

    We plot the variation of bulk modulusB, shear modulusG, Young’s modulusE, and Possion’s ratioνas a function of the pressure as shown in Fig. 4. The mechanical moduli of α-, β-,-, and ε-CL-20 are found to increase with increasing pressure. On account of the greatest stability of ε phase among the four polymorphs, we also calculate the temperature dependence of bulk modulusB, shear modulusG, Young’s modulusE, and Possion’s ratioνfor ε-CL-20, as listed in Tab.5. Though there are no experimental mechanical moduli at different temperature for comparison, the good agreement of bulk modulusBHand shear modulusGHat ambient conditions

    shows the accuracy of our simulations[20]. The mechanical moduli under temperature can be fitted to a third order polynomial,i.e.,

    Tab.3 The calculated Cij of CL-20 at ambient conditions and the experimental data for ε-CL-20

    Tab.4 The calculated elastic modulus Cij of CL-20 under temperature at room pressure or under pressure at 298 K

    (Tab.4 Continued)

    Fig.4 The calculated pressure dependence of bulk modulus BH (squares), shear modulus GH(circles), Young’s modulus E(triangles), and Possion’s ratio ν (stars) for CL-20

    Tab.5 The calculated temperature dependence of bulk modulus B, shear modulus G, Young’s modulus E, and Possion’s ratio ν for ε-CL-20

    aThe data in Ref. [20] is calculated on the basis of the ambient experimental elastic constants by the Voigt-Reuss-Hill approximation.

    BH(T)=13.411-0.011T+3.823×

    10-6T2-1.502×10-8T3

    (15)

    GH(T)=7.682-0.006T+6.633×

    10-6T2-1.338×10-8T3

    (16)

    E(T)=19.320-0.015T+1.539×

    10-5T2-3.344×10-8T3

    (17)

    ν(T)=0.262-3.463×10-5T-3.632×

    10-8T2-8.412×10-11T3

    (18)

    4 Conclusions

    Molecular dynamics simulations have been employed to study the lattice parameters, EOS, elastic constants, and mechanical modulus under pressure and temperature. The good agreement between molecular dynamics results and experimental data prove that the molecular dynamics simulations with COMPASS force field can give good description of interatomic binding forces and intermolecular interaction in CL-20 crystal. From the above investigations, we have the following conclusions:

    (1) The calculated equilibrium lattice parameters of four polymorphs (α-, β-,-, and ε-CL-20) at ambient conditions are in good agreement with the experiments. We predict the lattice parameters of CL-20 under pressure and temperature. The bulk modulusB0and its pressure derivativeB0′are obtained by fitting the pressure-volume points to Birch-Murnaghan EOS and Murnaghan EOS respectively.

    (2) The elastic constants of four polymorphs (α-, β-,-, and ε-CL-20) under pressure and temperature are predicted. Our molecular dynamics simulated results of elastic constants ofε-CL-20 at ambient conditions present good agreement with the experimental data. The predicted elastic constants of four polymorphs under pressure and temperature should be accurate and provide powerful guidelines for further experimental measurements. In terms of the Voigt-Reuss-Hill approximation, the mechanical modulus are obtained.

    国产成人欧美在线观看| 午夜福利在线观看吧| 久99久视频精品免费| 欧美国产日韩亚洲一区| 亚洲无线观看免费| 神马国产精品三级电影在线观看| 色哟哟·www| 嫁个100分男人电影在线观看| 亚洲欧美精品综合久久99| 夜夜躁狠狠躁天天躁| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99热只有精品国产| 亚洲av电影在线进入| 亚洲精品成人久久久久久| 成人国产一区最新在线观看| 在线观看免费视频日本深夜| 免费观看精品视频网站| 国产成+人综合+亚洲专区| 日韩精品中文字幕看吧| 中文字幕久久专区| 两个人视频免费观看高清| 亚洲 国产 在线| 国产爱豆传媒在线观看| 99视频精品全部免费 在线| 亚洲人成网站高清观看| 别揉我奶头 嗯啊视频| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 内地一区二区视频在线| 日韩欧美在线乱码| 色在线成人网| 观看美女的网站| 久久久久性生活片| 少妇的逼水好多| 午夜福利高清视频| 变态另类丝袜制服| 精品人妻熟女av久视频| 精品久久久久久久久久免费视频| 色综合婷婷激情| 国产熟女xx| 最后的刺客免费高清国语| 国产精品精品国产色婷婷| 婷婷色综合大香蕉| 五月伊人婷婷丁香| 美女大奶头视频| 九九久久精品国产亚洲av麻豆| 嫩草影院新地址| 色视频www国产| 亚洲午夜理论影院| 精品久久久久久,| 综合色av麻豆| 97热精品久久久久久| 国产精品嫩草影院av在线观看 | 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 禁无遮挡网站| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 丰满人妻一区二区三区视频av| 高清毛片免费观看视频网站| 成人欧美大片| 91午夜精品亚洲一区二区三区 | 毛片一级片免费看久久久久 | 欧美色欧美亚洲另类二区| 亚洲真实伦在线观看| 色哟哟哟哟哟哟| 老熟妇乱子伦视频在线观看| 婷婷亚洲欧美| 国产精品久久久久久久电影| 国产免费一级a男人的天堂| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 久久人人精品亚洲av| 91麻豆精品激情在线观看国产| 99国产综合亚洲精品| 深爱激情五月婷婷| 日韩欧美 国产精品| 午夜两性在线视频| 少妇熟女aⅴ在线视频| 国产探花极品一区二区| 婷婷亚洲欧美| 欧美三级亚洲精品| 欧美日韩瑟瑟在线播放| 日本黄大片高清| 久久99热这里只有精品18| 久久午夜福利片| aaaaa片日本免费| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 亚洲狠狠婷婷综合久久图片| 国产美女午夜福利| 老司机午夜十八禁免费视频| 国产成人aa在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品98久久久久久宅男小说| 亚洲av五月六月丁香网| 免费无遮挡裸体视频| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 久久国产乱子伦精品免费另类| 性色av乱码一区二区三区2| 男人狂女人下面高潮的视频| 伦理电影大哥的女人| 99久久精品热视频| 午夜老司机福利剧场| 在线免费观看不下载黄p国产 | 免费看a级黄色片| 国产精品一区二区性色av| 亚洲一区二区三区色噜噜| 欧美午夜高清在线| 午夜福利欧美成人| www.色视频.com| 狠狠狠狠99中文字幕| 99久国产av精品| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 天堂av国产一区二区熟女人妻| 好男人电影高清在线观看| 乱人视频在线观看| 国产精品美女特级片免费视频播放器| 国产69精品久久久久777片| 国产成人欧美在线观看| 99国产综合亚洲精品| 亚洲av第一区精品v没综合| 日本免费a在线| 久久天躁狠狠躁夜夜2o2o| 嫩草影院入口| 免费观看的影片在线观看| 内地一区二区视频在线| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 亚洲欧美日韩东京热| avwww免费| 午夜免费激情av| 国产aⅴ精品一区二区三区波| 啦啦啦观看免费观看视频高清| 欧美高清成人免费视频www| 国产v大片淫在线免费观看| 久久伊人香网站| 国产欧美日韩一区二区精品| 亚洲五月婷婷丁香| 成人午夜高清在线视频| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 热99在线观看视频| 18禁黄网站禁片午夜丰满| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 日韩欧美精品免费久久 | 十八禁网站免费在线| 老鸭窝网址在线观看| 禁无遮挡网站| 午夜激情欧美在线| 一边摸一边抽搐一进一小说| 琪琪午夜伦伦电影理论片6080| a级毛片免费高清观看在线播放| 舔av片在线| av在线天堂中文字幕| 成人午夜高清在线视频| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 国产欧美日韩精品亚洲av| 久久久久性生活片| 99视频精品全部免费 在线| 成年女人永久免费观看视频| 久久久久国内视频| 真人一进一出gif抽搐免费| 日本 欧美在线| 露出奶头的视频| 久久婷婷人人爽人人干人人爱| 国产蜜桃级精品一区二区三区| 最新中文字幕久久久久| 琪琪午夜伦伦电影理论片6080| 18美女黄网站色大片免费观看| 欧美日韩福利视频一区二区| 久久久色成人| 一区二区三区免费毛片| 久久久国产成人免费| 国产精品久久久久久人妻精品电影| 国产精品久久久久久人妻精品电影| 久久九九热精品免费| 日本在线视频免费播放| 国产又黄又爽又无遮挡在线| 欧美日本视频| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 91九色精品人成在线观看| 亚洲美女视频黄频| 18禁黄网站禁片午夜丰满| 成人高潮视频无遮挡免费网站| 宅男免费午夜| 国产淫片久久久久久久久 | 啦啦啦韩国在线观看视频| 亚洲久久久久久中文字幕| 午夜老司机福利剧场| 宅男免费午夜| 成人av一区二区三区在线看| 在线观看舔阴道视频| 高清在线国产一区| 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| 九色成人免费人妻av| 国模一区二区三区四区视频| 国产av一区在线观看免费| 免费看光身美女| 久久热精品热| 国产一区二区激情短视频| 国产成人影院久久av| 中文字幕免费在线视频6| 色5月婷婷丁香| 日韩免费av在线播放| 亚洲av美国av| 在现免费观看毛片| 午夜久久久久精精品| 婷婷精品国产亚洲av| 美女免费视频网站| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 成人国产综合亚洲| 亚洲av电影在线进入| 此物有八面人人有两片| 国产精品久久久久久人妻精品电影| 99久久精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 国产精品国产高清国产av| 久久人人爽人人爽人人片va | 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 特大巨黑吊av在线直播| 国产一区二区三区视频了| 日本免费a在线| 夜夜躁狠狠躁天天躁| 自拍偷自拍亚洲精品老妇| 夜夜爽天天搞| 欧美日韩国产亚洲二区| 亚洲激情在线av| 久久久久国内视频| 91麻豆av在线| 国产成人aa在线观看| 99在线视频只有这里精品首页| 俺也久久电影网| 精品熟女少妇八av免费久了| 国产久久久一区二区三区| 久久人妻av系列| 国产午夜精品论理片| 嫩草影视91久久| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 国内精品美女久久久久久| 亚洲狠狠婷婷综合久久图片| xxxwww97欧美| 国产精品嫩草影院av在线观看 | 国产精品综合久久久久久久免费| 久久精品国产亚洲av香蕉五月| 女生性感内裤真人,穿戴方法视频| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 国产伦在线观看视频一区| 美女黄网站色视频| 亚洲人成网站在线播| 国产三级中文精品| 日韩亚洲欧美综合| 国产老妇女一区| 搡老妇女老女人老熟妇| 亚洲人成网站高清观看| 黄色女人牲交| a在线观看视频网站| 99久久成人亚洲精品观看| 成人永久免费在线观看视频| 成人国产综合亚洲| 午夜福利高清视频| 中文字幕av成人在线电影| 久久中文看片网| 两个人视频免费观看高清| 午夜老司机福利剧场| 亚洲不卡免费看| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 欧美色欧美亚洲另类二区| 直男gayav资源| 国产av一区在线观看免费| 波多野结衣巨乳人妻| 特级一级黄色大片| 午夜福利在线观看免费完整高清在 | 成人亚洲精品av一区二区| 91午夜精品亚洲一区二区三区 | 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 真实男女啪啪啪动态图| netflix在线观看网站| 日韩国内少妇激情av| 欧美乱色亚洲激情| 91狼人影院| 久久久久久久久久成人| 色综合婷婷激情| 高潮久久久久久久久久久不卡| 99热这里只有精品一区| 一级黄片播放器| 老司机午夜福利在线观看视频| 99久久精品国产亚洲精品| 午夜福利视频1000在线观看| 亚洲欧美清纯卡通| 非洲黑人性xxxx精品又粗又长| 18+在线观看网站| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 天堂影院成人在线观看| av在线蜜桃| www.www免费av| 欧美日韩瑟瑟在线播放| 精品午夜福利在线看| 亚洲欧美激情综合另类| 搡老熟女国产l中国老女人| 欧美一区二区精品小视频在线| 久久国产乱子免费精品| 国产一区二区在线av高清观看| 精品久久久久久久末码| 一级av片app| 99国产精品一区二区三区| 亚洲成人久久性| 久久久久久久久久黄片| 又爽又黄无遮挡网站| ponron亚洲| 久久性视频一级片| 国产极品精品免费视频能看的| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 最近中文字幕高清免费大全6 | 91九色精品人成在线观看| 精品久久国产蜜桃| 国产 一区 欧美 日韩| 神马国产精品三级电影在线观看| АⅤ资源中文在线天堂| 女人十人毛片免费观看3o分钟| 无人区码免费观看不卡| 小蜜桃在线观看免费完整版高清| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 18禁在线播放成人免费| 欧美在线黄色| 欧美成人a在线观看| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 毛片女人毛片| 国产一区二区三区视频了| 日韩高清综合在线| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 免费看光身美女| 在线观看美女被高潮喷水网站 | 长腿黑丝高跟| 免费人成在线观看视频色| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| 欧美高清成人免费视频www| h日本视频在线播放| 深夜a级毛片| 国产一区二区激情短视频| 午夜激情福利司机影院| 国产精品久久久久久久久免 | 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 日本撒尿小便嘘嘘汇集6| h日本视频在线播放| 久久人人爽人人爽人人片va | 国产主播在线观看一区二区| 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 久久6这里有精品| 尤物成人国产欧美一区二区三区| 激情在线观看视频在线高清| 搡女人真爽免费视频火全软件 | 精品久久久久久久久久免费视频| 午夜免费成人在线视频| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 女人十人毛片免费观看3o分钟| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 美女xxoo啪啪120秒动态图 | 波多野结衣高清无吗| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 午夜两性在线视频| 黄色女人牲交| 毛片一级片免费看久久久久 | 午夜福利免费观看在线| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 亚洲精品一区av在线观看| 日本 欧美在线| 欧美激情国产日韩精品一区| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 亚洲,欧美精品.| 亚洲天堂国产精品一区在线| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 色5月婷婷丁香| 黄色女人牲交| 给我免费播放毛片高清在线观看| 亚洲精品乱码久久久v下载方式| 女同久久另类99精品国产91| 深夜a级毛片| 69av精品久久久久久| 国产精品久久久久久久久免 | 亚洲电影在线观看av| 天堂√8在线中文| 欧美中文日本在线观看视频| 欧美bdsm另类| 国产主播在线观看一区二区| 欧美xxxx黑人xx丫x性爽| 成人美女网站在线观看视频| 国产乱人视频| 免费观看人在逋| 精品人妻一区二区三区麻豆 | 精品乱码久久久久久99久播| 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 亚洲av.av天堂| 日本黄色片子视频| 亚洲 欧美 日韩 在线 免费| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 国产亚洲精品久久久久久毛片| 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 免费看美女性在线毛片视频| 日本一本二区三区精品| 午夜福利在线在线| 啪啪无遮挡十八禁网站| 成人一区二区视频在线观看| 欧美bdsm另类| 中国美女看黄片| 麻豆一二三区av精品| 国产一区二区在线观看日韩| 免费观看的影片在线观看| 乱人视频在线观看| 国产麻豆成人av免费视频| 亚洲 国产 在线| 欧美成狂野欧美在线观看| 1000部很黄的大片| 亚洲人成伊人成综合网2020| 精品久久久久久久久亚洲 | 国产成+人综合+亚洲专区| 欧美成人性av电影在线观看| 久久香蕉精品热| 免费观看的影片在线观看| 中文字幕av成人在线电影| 99热这里只有是精品在线观看 | 久久国产精品影院| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 如何舔出高潮| 国产91精品成人一区二区三区| 日韩大尺度精品在线看网址| av在线天堂中文字幕| 国产毛片a区久久久久| 亚洲精品久久国产高清桃花| 老熟妇仑乱视频hdxx| 久久久国产成人精品二区| 久久国产乱子免费精品| 又爽又黄a免费视频| 精品久久国产蜜桃| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 日韩欧美 国产精品| aaaaa片日本免费| 国产不卡一卡二| 久久久久精品国产欧美久久久| 床上黄色一级片| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 男人狂女人下面高潮的视频| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 亚洲中文字幕一区二区三区有码在线看| 久久久久国内视频| 欧美日韩瑟瑟在线播放| 欧美性猛交╳xxx乱大交人| 脱女人内裤的视频| www日本黄色视频网| 久久久国产成人免费| 婷婷精品国产亚洲av| 天美传媒精品一区二区| 9191精品国产免费久久| a级毛片免费高清观看在线播放| 99精品在免费线老司机午夜| 97超视频在线观看视频| 色av中文字幕| 国内揄拍国产精品人妻在线| 久久久精品大字幕| 俄罗斯特黄特色一大片| 午夜两性在线视频| 一级黄片播放器| 国产伦精品一区二区三区视频9| 怎么达到女性高潮| 制服丝袜大香蕉在线| 国产精品久久久久久久电影| 午夜精品在线福利| 色哟哟哟哟哟哟| 最近在线观看免费完整版| 亚洲一区二区三区色噜噜| 中亚洲国语对白在线视频| 9191精品国产免费久久| 亚州av有码| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av在线| 亚洲成av人片免费观看| 九九在线视频观看精品| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 亚洲中文日韩欧美视频| 夜夜爽天天搞| 12—13女人毛片做爰片一| 91麻豆av在线| av欧美777| 国产精品永久免费网站| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 人人妻,人人澡人人爽秒播| 午夜免费激情av| 国产精品永久免费网站| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 在线播放无遮挡| 亚洲熟妇熟女久久| 日本一本二区三区精品| 亚州av有码| 亚洲中文日韩欧美视频| a级毛片免费高清观看在线播放| 亚洲中文日韩欧美视频| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 国产av一区在线观看免费| 18禁黄网站禁片免费观看直播| 99热这里只有是精品在线观看 | 亚洲熟妇熟女久久| 日韩欧美国产在线观看| 久久精品国产自在天天线| 欧美丝袜亚洲另类 | 婷婷精品国产亚洲av在线| www.熟女人妻精品国产| 丰满乱子伦码专区| 婷婷亚洲欧美| 熟女人妻精品中文字幕| 国产欧美日韩一区二区三| 在线国产一区二区在线| 午夜老司机福利剧场| 日韩欧美精品v在线| 成人美女网站在线观看视频| 69人妻影院| 国产乱人视频| 一级黄片播放器| 深夜a级毛片| 老司机午夜福利在线观看视频| av中文乱码字幕在线| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 久久99热6这里只有精品| 97人妻精品一区二区三区麻豆| 日本黄色片子视频| 色在线成人网| 最新在线观看一区二区三区| 色在线成人网| 欧美丝袜亚洲另类 | 国产一区二区三区视频了| 亚洲av免费高清在线观看| 12—13女人毛片做爰片一| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 美女高潮的动态| 日韩中字成人| 亚洲avbb在线观看| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 热99在线观看视频| 人妻久久中文字幕网| 热99在线观看视频| 99久久成人亚洲精品观看| 国产三级在线视频| 99久国产av精品| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 国产精品野战在线观看| 亚洲av日韩精品久久久久久密| 激情在线观看视频在线高清| 在线看三级毛片| 国产av不卡久久| 在线a可以看的网站| 亚洲人与动物交配视频|