• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal–insulator phase transition and topology in a three-component system*

    2021-01-21 02:08:20ShujieCheng成書杰andXianlongGao高先龍
    Chinese Physics B 2021年1期
    關鍵詞:成書

    Shujie Cheng(成書杰) and Xianlong Gao(高先龍)

    Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    Keywords: band structures,high Chern numbers,bulk-edge correspondence

    1. Introduction

    Quantum Hall effect is discovered under the condition with a low temperature and strong magnetic fields.[1]Since this finding,enormous attention has been poured into the study on the topological properties of the quantum systems,[2–4]particularly on those quantum-engineered systems with quantum anomalous Hall effect(QAHE),[5–10]which are free from the extra magnetic fields.

    One class of insulators realizing the QAHE breaking the time reversal symmetry,[11]is Chern insulator in condensed matter physics. Their topological properties are directly characterized by the Hall conductance first proposed by Thouless–Kohmoto–Nightingale–den Nijs (TKNN) in a twoband system.[12]Through TKNN’s work, we know that the mathematical concept of Chern number (C) plays an important role in the topology of Bloch systems. That is,a separated Bloch band corresponds to a well-defined Chern number. In a multiple-band system,the associated Chern number is equal to the quantized Hall conductance in unit of e2/h for the lowest occupied band,which determines the topological phases of the system. For instance,the nonzero C is indicative of a nontrivial phase,whereas C=0 is of a topologically trivial phase,demonstrating that the system is a normal insulator.For multiple occupied bands,although the Chern number is not directly related to the Hall conductance, the summation of the Chern numbers corresponding to these bands finally share the same value of the observable quantized Hall conductance.[13]

    In the topological classification, Chern insulator belongs to the topological class A.[14]In general,it is possible to geometrically engineer a Chern insulator with arbitrary topological index C. In addition, higher Hall conductance is accompanied by larger C with reducing channel resistance in the field of interface transport, possessing more potential for applications. However,in materials,such as the magnetic topological insulators[15–21]and the magic-angle twisted bilayer graphene[22,23]which have been prepared with the QAHE,the observed Chern number is only C=1. Although it was studied that there were topological phases with C=2 in thin MnBi2Te4flakes[24]and in moir′e superlattice,[25]there were no well-defined landau levels, and an external magnetic field was required.

    Beyond the investigations of QAHE in synthetic materials, optical-lattice experiments have the advantage of being highly flexible and adjustable, offering a platform for manipulating trapped ultracold atoms to realize the topological non-trivial phases. Accordingly,some attention has been paid to the optical-lattice experiments in recent years.[5–9,26–36]With the benefits of quite a few efforts,[5–9,29,32,37–39]two quintessential models with rich topological phenomena, i.e.,Haldane model[33,40]and Haper–Hofstadter model[34,41]have been well implemented. These mature techniques have had a significant impact on subsequent researches[42–49]and will increase the feasibility to realize the higher Hall conductance or larger Chern number with QAHE.

    Recently, it was studied that there were topological nontrivial bands with C=-2 in a dice lattice model which is synthesized by Raman lasers.[50]Meanwhile,large Chern number phases with C =-3 were uncovered in a shaken dice optical lattice.[51]In this paper, we are motivated to study a noninteracting model on the three-component dice lattice[50–59]with real nearest neighbor and complex next-nearest neighbor hopping under Λ- or V-shaped sublattice potentials. We mainly focus on the 1/3 filling and 2/3 filling cases, corresponding to the lowest band occupied and lower two bands occupied, respectively. By analyzing the band structures, we find that the system will have two kinds of phases, metallic phase and bulk insulating phase, thus, experiencing a metal–insulator phase transition. The metal–insulator phase diagram is plotted in the Δ–φ parameter space, with Δ being the strength of the tunable on-site potentials and φ the phase of the next-nearest-neighbor hopping. Further, we investigate the topological properties in the bulk insulating phase.Results suggest that there exist non-trivial topological phases with Hall conductance equal to±1,±2,in units of e2/h. Furthermore,the quantization of the Hall conductance can be seen from the edge-state energy spectra and the large Chern numbers are self-consistently analyzed by the principle of bulkedge correspondence.[60]

    The paper proceeds as follows. Section 2 describes the model and its Hamiltonian in both the real and momentum space. Section 3 contains the analysis of the band structures,the topological phases, as well as the edge-state spectra and Chern numbers. Section 4 summarizes the results of these investigations.

    2. Model and Hamiltonian

    In this paper,we consider a non-interacting model based on the dice lattice,as shown in Fig.1,with three interpenetrating triangle sublattices[denoted by R(red dots),B(blue dots),and G (green dots)]. The single-particle Hamiltonian of the model consists of three terms

    where t is the hopping amplitude between adjacent R sites and B sites, t1is the real hopping amplitude between adjacent R(or B) and G sites, ?cRi,?cBj, and ?cG?are the corresponding fermionic annihilation operators defined on the relevant sites Ri,Bj,and G?of sublattices R,B,and G,respectively. 〈···〉means the nearest-neighbor hopping.

    Fig.1. (a)The schematic diagram of the three-band Λ-or V-type dice model.The red,blue,and green dots denote the R,B,G sublattice sites,respectively.The vectors an (n=1,2,3) connect the nearest neighbors which belong to different sublattices. The vectors bn (n=1,2,3)connect the nearest neighbors which belong to the same R and B sublattice sites. The circle arrows show the direction of hopping with a phase factor φ in eiφ. (b) The first Brillouin zone. Γ,K,and M are high-symmetry points which are connected by three red dashed arrows. The distance between adjacent sites has been set as unit length.

    3. Results and discussion

    3.1. Band structures

    Fig.2. Δ–φ phase diagram for the case of 1/3 filling(a)and 2/3 filling(b).The metallic phase (M) is separated from the bulk insulating phase (I). In each case, we choose four typical parameter points a, b, c, and d discussed in details in the main text. For 1/3 filling,system is in the metallic phase at the a point,while it is in the bulk insulating phase at the b and d points. The opposite is obtained for the ones at 2/3 filling. For the c(d)point,the system is always in the metallic(insulating)phase,no matter what the filling is.

    In order to comprehend these two phases intuitively, we plot the dispersion relations of the three bands at the four chosen parameter points (φa, Δa), (φb, Δb), (φc, Δc), and(φd, Δd),as shown in Figs.3(a),3(b),3(c),and 3(d),respectively. In each diagram,we select two Fermi energies for reference,corresponding to the case of 1/3 filling(magenta dotdashed line) and 2/3 filling (green dashed line), respectively.The red, blue, and black solid lines represent the dispersions of the bands ranging from the bottom to the top,respectively.In Fig.3(a),when the Efis chosen at 1/3 filling,the fully occupied bottom band and a partially occupied middle band lead to a metallic phase,although the middle and the bottom band avoid touching each other. When the Efis tuned up to 2/3 filling,there is a significant band gap between the top and the middle band,leading to a completely empty conduction and a fully occupied valence band. Therefore, the system is in the bulk insulating phase for 2/3 filling. With the same reasons,it is not difficult to interpret that the system is in the bulk insulating phase at 1/3 filling, and in the metallic phase at 2/3 filling for the case shown in Fig. 3(b). Moreover, the system is always in the metallic phase shown in Fig. 3(c) and in the bulk insulating phase shown in Fig.3(d),respectively,no matter what the filling is. All these are manifested in the metal–insulator phase diagrams in Fig. 2. In the following, we will further investigate the topological properties in the Δ–φ phase diagram.

    Fig. 3. Dispersion relations of the three bands along the high-symmetry kpoints along the path Γ–K–M–Γ. The red,blue,and black lines correspond to the dispersion relations of the three bands from the bottom to the top,respectively. (a) φa =0.25, Δa =1; (b) φb =-0.25, Δb =-0.5; (c) φc =0,Δc=-0.25;(d)φd =π/2,Δd =0.5. The lower Fermi energy(magenta dotdashed line)and higher Fermi energy(green dashed line)correspond to the case of 1/3 and 2/3 filling,respectively.

    3.2. Topological phases

    Motivated by the Haldane model[40]and the dice models,[50,51]we try to understand whether there are any topological properties in the bulk insulating phase or not. For the three-band system considered, when Efis within a band gap,the Hall conductance[12]can be defined as

    where Cnis Chern number of the n-th fully occupied band and is expressed as

    where n ∈{1,2,3}is the band index and its ascending order corresponds to three energy bands from bottom to top; ?BZ is the boundary of the first Brillouin zone; Anis the Berry connection with An=-i〈ψn(k)|?k|ψn(k)〉 and |ψn(k)〉 is the corresponding eigenvector. Without loss of generality,we use two quantities,C1/3and C2/3,to character the topological properties under 1/3 and 2/3 filling, respectively. The relationship between the topological number of the filling (C1/3,C2/3) and band Chern numbers (C1and C2) is that C1/3=C1and C2/3=C1+C2.

    The topological Δ–φ phase diagram is obtained as shown in Figs.4(a)and 4(b)by calculating the C1/3and C2/3,corresponding to the topological numbers for the 1/3 and 2/3 filling of the system, respectively. In Fig. 4, there are several phase boundary lines shown in red and black dashed lines in the bulk insulating phase, accompanied by energy band closing.[40,65]In fact, the band crossing lines also appear in the metallic phase without changing the intrinsic properties being a metal.Particularly,in each diagram,the topological non-trivial phase is separated from the topological trivial one by the red dashed lines,whereas the topological non-trivial phases are separated from the different nonzero Chern numbers by the black dashed lines.

    Fig. 4. The topological Δ–φ phase diagram for the (a) 1/3 filling and (b)2/3 filling, respectively. The Chern numbers have been marked in these two diagrams. Except for the metallic phase (M) surrounded by the blue dashed lines intersected with the coordinate axes,the bulk insulating phase is divided into several regions by red dashed lines which distinguish the topological non-trivial phase from the topological trivial one, and by black dashed lines which separate the topological non-trivial phases with different Chern numbers.

    From the phase diagrams,we can see intuitively that there are abundant quantum phases in the system. In Fig.4(a), besides the metallic phase regions, there are topological nontrivial phases with C1/3=±1 and C1/3=±2, as well as the topological trivial phase with C1/3=0. Moreover, when we tune the parameters continuously, the system goes through rich different phases. For instance, when Δ =-0.25, as φ increases,the system will circularly undergo six phases:

    where M is short for the metallic phase.When Δ=0.5,system will cycle through five phase regions by increasing the φ:

    Similarly,for fixing φ,the system experiences with rich phases when we change the tunable parameter Δ of the potential.

    3.3. Edge states and Chern numbers

    According to the research in Ref.[13],we know that the quantization of the Hall conductance or the total Chern number can be readily seen from the edge-state spectrum in static systems,known as the bulk-edge correspondence. In this subsection, we study the bulk-edge correspondence by considering a cylindrical geometry with a periodic boundary condition in the x direction and an open boundary condition in the y direction. Two types of lattice geometries with zigzag and armchair edge are studied, shown in Figs. 5(a) and 5(b), respectively, surrounded by the dashed boxes representing the periodic repeating units, each of them containing Nzigzagand Narmchairlattice sites. The Hamiltonian ?H(kx) used for calculating the energy spectrum Ekxcan be treated as a function of the good quantum number kx.

    Fig.5. The two schematic diagrams of the system with a periodic boundary condition in the x direction and an open boundary condition in the y direction. The two types of boundaries are studied: (a) the zigzag edge and (b)the armchair egde. The lattice structures surrounded by the black dotted lines represent the periodic repeating units which contain Nzigzag and Narmchair lattice sites,respectively.

    By choosing Nzigzag=299 and Narmchair=243, two associated edge-state spectra at the parameter point(φd, Δd)=(π/2, 0.5)are calculated,as shown in Figs.6(a)and 6(b),respectively. Intuitively, there is a pair of edge modes at 1/3 filling corresponding to a topological non-trivial phase with C1/3=1, and two pairs of edge modes at 2/3 filling corresponding to a topological non-trivial phase with C2/3=-2 with no dependence on the edge of the system.

    Fig.6. Two edge-state spectra of the system with a periodic boundary condition in the x direction and an open boundary condition in the y direction at the parameter point(φd,Δd)=(π/2, 0.5). Magenta dot-dashed and green dashed lines denote the chosen Ef for 1/3 filling and 2/3 filling,respectively.(a)Edge-state spectra for the zigzag-edge case. Q5 and Q6 are a pair of edge mode at Ef=1.80 for 1/3 filling;Q1 and Q4,Q2 and Q3 are two pairs of edge modes at Ef=3.60 for 2/3 filling.(b)Edge-state spectra for the armchair-edge case.P5 and P6 are a pair of chiral edge modes at Ef=1.535 for 1/3 filling;P1 and P4,P2 and P3 are two pairs of edge modes at Ef=3.578 for 2/3 filling. The results indicates that,no matter what kind of edge the system has,there is a pair of edge modes at 1/3 filling corresponding to C1/3=1,and two pairs of edge modes at 2/3 filling corresponding to C2/3=-2.

    As the principle of the bulk-edge correspondence tells,[60]Chern number is closely related with the chiral edge modes.To be concrete, the Chern number of a band is equal to the sum of the Chern numbers of the edge modes above the band minus that of edge modes below the band. Particulary, these chosen edge modes should be located at the same edge. By choosing the same parameters used for edge-state spectra,we plot the spatial density distributions of the edge modes of Q1–Q6 in the zigzag-edge case and the edge modes of P1–P6 in the armchair one, in Fig. 7. We first analyze the zigzag-edge case. As the distributions show(up panels in Fig.7), Q5 and Q6 are a pair of chiral edge modes at Ef=1.80 for 1/3 filling;Q1 and Q4,Q2 and Q3 are two pairs of chiral edge modes at Ef=3.60 for 2/3 filling. In particular,the spatial density distributions of the edge modes with positive group velocity are shown in red, while black for those with the negative group velocity. We analyze the Chern number by means of the edge modes localized at the site of j=Nzigzag. From the above calculation, C1/3=1, that is, the edge mode Q5 carries C=1.Naturally, we know that the edge modes Q3 and Q1 with the opposite group velocity both carry C=-1. Accordingly, we get C1=1 and C2=-1+(-1)-1=-3.

    For the armchair-edge case,there are also six edge modes marked as P1–P6,in which P5 and P6 are a pairs of chiral edge modes at Ef=1.535(magenta dot-dashed line),P1,P4 and P2,P3 are another two pairs of chiral edge modes at Ef=3.578(green dashed line). We notice that the edge mode P6 localized at the site of j=Narmchairthe armchair case has the same sign of the group velocity as the edge mode Q5 of the zigzag case. Hence,P6 carries C=1,which leads to C1=1. Meanwhile,the edge modes P1 and P3 with positive group velocity both carry C=-1,thus C2=-1+(-1)-1=-3. All these analyses are self-consistent with the phase diagrams in Fig.4.

    Fig. 7. Spatial density distributions of the edge modes. Top panel: the zigzag-edge case. The result shows that, Q5 and Q6 are a pair of chiral edge modes at Ef =1.80 for 1/3 filling;Q1 and Q4,Q2 and Q3 are two pairs of chiral edge modes at Ef =3.60 for 2/3 filling. The label j is the site index of the periodic repeating unit as shown in Fig. 5(a), as an artificial chain with the order of B–R–G–···–B–R. Bottom panel: the armchair-edge case.Intuitively, P5 and P6 are a pair of chiral edge modes at Ef =1.535 for the 1/3 filling; P1 and P4, P2 and P3 are two pairs of chiral edge modes at Ef=3.578 for the 2/3 filling. The label j denotes the site index of the periodic repeating unit as shown in Fig.5(b),as an artificial chain with the order of R–B–G–R–G–B–···–R–G–B–R–B–G. Particularly,the distributions of the edge modes with positive group velocity are shown in red,whereas black for negative one.

    4. Conclusion

    In conclusion,we have studied the three-band dice model which is composed of three types of sublattices. Firstly, we investigated the dispersion relations of the energy bands, and found that the system has the metallic and bulk insulating phase. The metal–insulator phase diagrams were plotted in the Δ–φ parameter space. Further, we evaluated the Chern numbers through the energy band theory in the bulk insulating phase. Interestingly,high Hall plateau was uncovered with C1/3=±2 (C2/3=±2). The quantizations of the Hall conductance were readily seen in the edge-state spectra. Finally,we verified the Chern numbers through the spatial density distributions of the edge modes according to the principle of the bulk-edge correspondence.

    Although the similar lattice structure has been studies in several electronic materials,[66–70]due to the high tunability of the parameters in the cold-atom experiments,it is now possible for experimentalists to research topological phases of neutral atoms which never appear in these aforementioned researches.Thus,we hope that the system with high Hall plateau proposed here can be realized in the near-future cold-atom experiment.

    猜你喜歡
    成書
    Mobility edges generated by the non-Hermitian flatband lattice
    Majorana zero modes,unconventional real–complex transition,and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
    Analyze differing interpretations of the articulation in Schubert’s Impromptu Op.90 No.1 and No.2
    姚最《續(xù)畫品》成書與流傳考略
    《百川書志》成書與流傳中的幾個問題
    《尸子》成書年代考
    浮生若夢,落眉成書
    火花(2015年7期)2015-02-27 07:43:10
    也談《夢粱錄》的作者及其成書時間
    天一閣文叢(2014年1期)2014-10-13 08:00:05
    《三國志演義》成書時間新探——兼論世代累積型作品成書時間的研究方法
    《世說新語注》成書時間新考
    古代文明(2014年1期)2014-02-23 02:35:38
    国产高清三级在线| 国产精品国产三级专区第一集| 国产精品秋霞免费鲁丝片| 男女国产视频网站| 久久久久国产精品人妻一区二区| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 久久久午夜欧美精品| 国产男女内射视频| 亚洲综合精品二区| tube8黄色片| .国产精品久久| 久久热精品热| 日韩强制内射视频| 国产精品一二三区在线看| 精品久久久噜噜| 欧美最新免费一区二区三区| 精品久久久久久电影网| 毛片一级片免费看久久久久| 国产深夜福利视频在线观看| 人体艺术视频欧美日本| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 免费人成在线观看视频色| 国产成人精品福利久久| 观看av在线不卡| 青青草视频在线视频观看| 丝袜脚勾引网站| 丝袜喷水一区| 亚洲av日韩在线播放| 日韩精品有码人妻一区| 国产av国产精品国产| 欧美3d第一页| 在线精品无人区一区二区三 | 麻豆乱淫一区二区| 18+在线观看网站| 日韩人妻高清精品专区| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 我的老师免费观看完整版| 一本—道久久a久久精品蜜桃钙片| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 色综合色国产| 我的女老师完整版在线观看| 国内精品宾馆在线| av视频免费观看在线观看| 在线观看av片永久免费下载| 舔av片在线| 免费黄色在线免费观看| 另类亚洲欧美激情| 黄片无遮挡物在线观看| 免费观看无遮挡的男女| 尤物成人国产欧美一区二区三区| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 久久精品夜色国产| 久久这里有精品视频免费| 男的添女的下面高潮视频| 九色成人免费人妻av| 亚洲国产色片| 尾随美女入室| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 亚洲经典国产精华液单| 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区国产| 欧美激情国产日韩精品一区| 亚洲熟女精品中文字幕| 性色avwww在线观看| videos熟女内射| 最近中文字幕2019免费版| 视频区图区小说| 超碰av人人做人人爽久久| 春色校园在线视频观看| 晚上一个人看的免费电影| 国产伦精品一区二区三区四那| 男女免费视频国产| 啦啦啦在线观看免费高清www| 午夜免费鲁丝| 免费在线观看成人毛片| 九草在线视频观看| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站 | 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 观看免费一级毛片| 日韩av在线免费看完整版不卡| 97在线视频观看| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 亚洲天堂av无毛| 亚洲aⅴ乱码一区二区在线播放| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 777米奇影视久久| 成年人午夜在线观看视频| 在线观看免费视频网站a站| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区三区| 男人狂女人下面高潮的视频| 三级经典国产精品| 亚洲av.av天堂| 日韩免费高清中文字幕av| 一级爰片在线观看| 黄片无遮挡物在线观看| 日韩免费高清中文字幕av| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片 | 多毛熟女@视频| 国产精品国产三级国产专区5o| 免费看光身美女| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 观看免费一级毛片| 国产精品偷伦视频观看了| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 久久久久久伊人网av| 美女cb高潮喷水在线观看| 久久这里有精品视频免费| 自拍偷自拍亚洲精品老妇| 精品少妇久久久久久888优播| 久久久久久人妻| 熟女电影av网| 成人影院久久| 又爽又黄a免费视频| 1000部很黄的大片| 99九九线精品视频在线观看视频| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 欧美xxxx黑人xx丫x性爽| 精品一区二区三卡| 免费观看a级毛片全部| 一区二区三区免费毛片| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 日韩欧美精品免费久久| av专区在线播放| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 午夜福利网站1000一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 少妇精品久久久久久久| 国产精品成人在线| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| 国产真实伦视频高清在线观看| 欧美xxxx黑人xx丫x性爽| 精品视频人人做人人爽| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| 在线免费观看不下载黄p国产| 99国产精品免费福利视频| 亚洲国产av新网站| 日本黄色片子视频| 欧美激情极品国产一区二区三区 | 中国美白少妇内射xxxbb| 成人国产麻豆网| 2021少妇久久久久久久久久久| 欧美高清成人免费视频www| 日本av免费视频播放| 丰满少妇做爰视频| 亚洲久久久国产精品| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 久久国产精品大桥未久av | 国产成人aa在线观看| 国产探花极品一区二区| 国国产精品蜜臀av免费| 涩涩av久久男人的天堂| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 国产亚洲最大av| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 久久久色成人| 亚洲中文av在线| 777米奇影视久久| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 激情 狠狠 欧美| 久久久久久久久久久丰满| 中文字幕av成人在线电影| 卡戴珊不雅视频在线播放| 欧美97在线视频| 亚洲精品日韩av片在线观看| 久久精品夜色国产| 全区人妻精品视频| 国产免费视频播放在线视频| 亚洲精品一二三| 久久久久久伊人网av| 一级黄片播放器| .国产精品久久| av一本久久久久| 久久久久久人妻| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 日韩一区二区视频免费看| 精品国产三级普通话版| 亚洲av综合色区一区| 欧美xxⅹ黑人| 嫩草影院入口| 国产探花极品一区二区| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 国产高潮美女av| 女人十人毛片免费观看3o分钟| 成年女人在线观看亚洲视频| 高清日韩中文字幕在线| 热re99久久精品国产66热6| av.在线天堂| 久久影院123| 新久久久久国产一级毛片| 久久99蜜桃精品久久| 国产精品久久久久成人av| 人人妻人人爽人人添夜夜欢视频 | 观看美女的网站| 日韩视频在线欧美| 亚洲av男天堂| 欧美日韩亚洲高清精品| 日韩av不卡免费在线播放| 精品久久久久久久末码| 国产一区二区三区综合在线观看 | 久久久久国产网址| 搡老乐熟女国产| 中文字幕人妻熟人妻熟丝袜美| freevideosex欧美| 女性被躁到高潮视频| 国产在线免费精品| 偷拍熟女少妇极品色| 国产色婷婷99| 亚洲av成人精品一二三区| 久久久久国产精品人妻一区二区| 人体艺术视频欧美日本| 嫩草影院入口| 国产在线免费精品| 日本av手机在线免费观看| 青春草视频在线免费观看| 成人国产麻豆网| 国产视频内射| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 国产在线免费精品| 亚洲精品久久午夜乱码| 国产伦在线观看视频一区| 国产男人的电影天堂91| videos熟女内射| av国产免费在线观看| 51国产日韩欧美| 色网站视频免费| 久久99热这里只频精品6学生| 成人午夜精彩视频在线观看| 日韩中文字幕视频在线看片 | 五月玫瑰六月丁香| 观看免费一级毛片| 亚洲综合色惰| 久久精品国产亚洲av天美| 国产精品偷伦视频观看了| 麻豆成人午夜福利视频| 国产av码专区亚洲av| 久久久久久久精品精品| 色5月婷婷丁香| 一级片'在线观看视频| 丝瓜视频免费看黄片| 欧美日韩在线观看h| 亚洲欧美中文字幕日韩二区| 永久网站在线| 我要看黄色一级片免费的| 女人久久www免费人成看片| 中国国产av一级| 黄色欧美视频在线观看| 国产精品人妻久久久影院| 午夜精品国产一区二区电影| 欧美精品一区二区免费开放| 狂野欧美激情性bbbbbb| 国产永久视频网站| 在现免费观看毛片| 寂寞人妻少妇视频99o| 99久久综合免费| 免费看光身美女| 国产高清国产精品国产三级 | 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 日韩中文字幕视频在线看片 | 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 十分钟在线观看高清视频www | 国产色婷婷99| 777米奇影视久久| 精品亚洲成a人片在线观看 | 国产成人午夜福利电影在线观看| 一级毛片电影观看| 国产午夜精品一二区理论片| 一级a做视频免费观看| 精品亚洲成国产av| 亚洲国产av新网站| 精品亚洲乱码少妇综合久久| 国产伦精品一区二区三区视频9| 美女高潮的动态| 亚洲av国产av综合av卡| 51国产日韩欧美| 永久免费av网站大全| 能在线免费看毛片的网站| 大香蕉久久网| 日本av手机在线免费观看| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 国产成人一区二区在线| 日本wwww免费看| 国内精品宾馆在线| 精品人妻一区二区三区麻豆| 97精品久久久久久久久久精品| 精品视频人人做人人爽| 日本午夜av视频| 麻豆成人午夜福利视频| 老司机影院毛片| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 免费高清在线观看视频在线观看| 国产精品久久久久久av不卡| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 午夜福利在线观看免费完整高清在| 91精品伊人久久大香线蕉| 亚洲久久久国产精品| 欧美少妇被猛烈插入视频| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频 | 国产欧美日韩精品一区二区| www.色视频.com| 亚洲av综合色区一区| 久久精品人妻少妇| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 夫妻午夜视频| tube8黄色片| 日本wwww免费看| 麻豆成人午夜福利视频| 久久国产精品大桥未久av | 卡戴珊不雅视频在线播放| 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看| 如何舔出高潮| 亚洲精品aⅴ在线观看| 91精品国产国语对白视频| 在线观看一区二区三区激情| 亚洲精品久久久久久婷婷小说| 六月丁香七月| 美女中出高潮动态图| 五月伊人婷婷丁香| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 亚洲综合色惰| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 久久99热这里只频精品6学生| 精品一区二区三卡| 久久精品国产自在天天线| 国产成人aa在线观看| 久久女婷五月综合色啪小说| 精品一区在线观看国产| 极品少妇高潮喷水抽搐| 自拍偷自拍亚洲精品老妇| 亚洲四区av| 成人高潮视频无遮挡免费网站| 国产亚洲欧美精品永久| 欧美高清性xxxxhd video| 亚洲av国产av综合av卡| 男人和女人高潮做爰伦理| 免费大片黄手机在线观看| 国产亚洲午夜精品一区二区久久| av在线app专区| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 中国三级夫妇交换| 久久婷婷青草| 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区 | 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 韩国av在线不卡| 国产精品成人在线| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 一边亲一边摸免费视频| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 亚洲经典国产精华液单| 大香蕉97超碰在线| 人体艺术视频欧美日本| 亚洲,一卡二卡三卡| 亚洲欧美成人精品一区二区| 国产欧美日韩精品一区二区| 成人黄色视频免费在线看| 国产 精品1| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 精品人妻熟女av久视频| 免费看光身美女| 男女国产视频网站| 精品一品国产午夜福利视频| 精品午夜福利在线看| 国产精品伦人一区二区| 黑丝袜美女国产一区| 亚洲精品国产成人久久av| 久久久久久人妻| 少妇人妻一区二区三区视频| 我要看黄色一级片免费的| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区二区性色av| 最后的刺客免费高清国语| 国产探花极品一区二区| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 欧美成人午夜免费资源| 日本色播在线视频| 久久久久国产精品人妻一区二区| 在线看a的网站| 成人无遮挡网站| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 丝瓜视频免费看黄片| 日本与韩国留学比较| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 亚洲成人手机| 内射极品少妇av片p| 一边亲一边摸免费视频| 乱码一卡2卡4卡精品| av国产免费在线观看| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 热99国产精品久久久久久7| 最近中文字幕2019免费版| 亚洲欧美精品专区久久| 极品教师在线视频| 丰满人妻一区二区三区视频av| 久久久a久久爽久久v久久| 国产精品三级大全| 亚洲国产日韩一区二区| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 亚洲精品国产av蜜桃| 一级毛片 在线播放| 午夜免费观看性视频| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 精品人妻熟女av久视频| 欧美日韩精品成人综合77777| 国产日韩欧美亚洲二区| 激情五月婷婷亚洲| 成人免费观看视频高清| 国产精品嫩草影院av在线观看| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 爱豆传媒免费全集在线观看| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 成人高潮视频无遮挡免费网站| 在线观看免费高清a一片| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| 最黄视频免费看| 丝袜喷水一区| 成人漫画全彩无遮挡| 久久女婷五月综合色啪小说| 熟女人妻精品中文字幕| 最黄视频免费看| 日日啪夜夜爽| 国产亚洲午夜精品一区二区久久| 黄色配什么色好看| 国产老妇伦熟女老妇高清| av在线蜜桃| 99久久综合免费| 伊人久久国产一区二区| 三级经典国产精品| 久久久久久久精品精品| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 国产精品人妻久久久久久| 舔av片在线| 久久这里有精品视频免费| 一级毛片电影观看| 国产精品国产av在线观看| 国产精品免费大片| 联通29元200g的流量卡| 大码成人一级视频| tube8黄色片| 中国三级夫妇交换| 18禁动态无遮挡网站| 亚洲天堂av无毛| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 啦啦啦啦在线视频资源| av国产免费在线观看| 18禁裸乳无遮挡动漫免费视频| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 丰满少妇做爰视频| 亚洲经典国产精华液单| 午夜免费鲁丝| 国产成人一区二区在线| 国精品久久久久久国模美| 性高湖久久久久久久久免费观看| 一级毛片我不卡| 欧美日韩一区二区视频在线观看视频在线| 精品少妇久久久久久888优播| 网址你懂的国产日韩在线| 亚洲高清免费不卡视频| 欧美老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 色网站视频免费| 亚洲国产精品成人久久小说| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 亚洲精品视频女| 一级黄片播放器| 精品久久久久久久久亚洲| 高清在线视频一区二区三区| 一本色道久久久久久精品综合| 久久精品熟女亚洲av麻豆精品| 欧美国产精品一级二级三级 | 成人漫画全彩无遮挡| 97超碰精品成人国产| 天堂8中文在线网| 国产在线免费精品| 男女下面进入的视频免费午夜| 精品亚洲成a人片在线观看 | 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图 | 精品一区二区免费观看| 国产在线一区二区三区精| 各种免费的搞黄视频| h视频一区二区三区| 日韩成人av中文字幕在线观看| 亚洲色图av天堂| 最后的刺客免费高清国语| 亚洲精品aⅴ在线观看| 人妻系列 视频| 精品久久久久久久久亚洲| 老熟女久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲三级黄色毛片| 2018国产大陆天天弄谢| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 亚洲三级黄色毛片| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 国产精品秋霞免费鲁丝片| 老熟女久久久| 亚州av有码| av在线app专区| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看 | 少妇裸体淫交视频免费看高清| 黄色配什么色好看| 好男人视频免费观看在线| 天堂中文最新版在线下载| a 毛片基地| 久久精品人妻少妇| 国产精品伦人一区二区| 亚洲av成人精品一二三区| 精品亚洲成a人片在线观看 | 黄色欧美视频在线观看| a级毛片免费高清观看在线播放| 色5月婷婷丁香| 18禁在线无遮挡免费观看视频| 成人毛片a级毛片在线播放| 国产 精品1| 自拍偷自拍亚洲精品老妇| 国产久久久一区二区三区| 亚洲av福利一区| 中文资源天堂在线| 18禁在线无遮挡免费观看视频| 身体一侧抽搐| 久久久久性生活片| 九九久久精品国产亚洲av麻豆| 日韩电影二区| 国产男人的电影天堂91| 国产在视频线精品| 一个人看的www免费观看视频| 午夜激情久久久久久久| 国产毛片在线视频| 午夜老司机福利剧场| 亚洲精品视频女| 亚洲av不卡在线观看| 丰满人妻一区二区三区视频av|