范向?qū)帯?柯 朱久育 王 磊 趙清娟 劉 剛 黃艷麗
[關(guān)鍵詞]炎癥;肥胖;肝臟;胰島素;胰島素抵抗;大鼠
[中圖分類號(hào)]R365.4? ? [文獻(xiàn)標(biāo)志碼]A? ? [文章編號(hào)]1008-6455(2021)12-0102-03
Effects of Inflammatory Factors on Insulin Signal Pathway in Liver Tissue
of Obese Rats
FAN Xiang-ning,LIU Ke,ZHU Jiu-yu,WANG Lei,ZHAO Qing-juan,LIU Gang,HUANG Yan-li
(Department of Stomatology,the Third Affiliated Hospital of Xinxiang Medical College,Xinxiang 453000,Henan,China)
Abstract: Objective? The aim of this study was to study the effect of obesity on IR associated with signal pathways in liver. Methods? Ten male SD rats were randomly divided in 2 groups: control group (Con) (fed with standard diet); high-fat diet group (HFD) (fed with high fat diet). The animal model was characterized in terms of body weight (BW) and Lee index. The mRNA levels of tumor necrosis factors ɑ (TNF-ɑ), interleukin-1beta (IL-1β), Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), insulin receptor, phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and glucose transporter type 4 (GLUT4) were measured by quantitative real-time polymerase chain reaction (RT-PCR). Results? Compared with the control group, the TNF-α gene level in the liver tissue of the experimental group was significantly increased, and the difference was statistically significant (P<0.05). At the same time, the mRNA levels of IL-1β and TLR4 were significantly decreased (P<0.05). Compared with the control group, the expression of IR, PI3K, AKT and GLUT4 genes in the liver tissue of the experimental group was significantly reduced (P<0.05). Conclusions? In obese rats, the insulin signal pathway was inhibited in liver tissue, which is associated with the onset or development of IR.
Key words: inflammation; obesity; liver; insulin; insulin resistance; rat
近年來(lái),肥胖及肥胖相關(guān)的內(nèi)分泌失調(diào)性疾病已經(jīng)成為全球性問(wèn)題[1]。肥胖可以導(dǎo)致免疫細(xì)胞浸入脂肪組織并分泌促炎因子,如腫瘤壞死因子-ɑ(Tumor necrosis factor-α,TNF-α)和白細(xì)胞介素(Interleukin,IL)[2]等,促進(jìn)慢性炎癥的發(fā)生發(fā)展。研究表明,TNF-ɑ可以損害胰島素信號(hào)通路,在脂肪細(xì)胞和外周組織中誘導(dǎo)胰島素抵抗,從而導(dǎo)致2型糖尿病的發(fā)生[3]。Toll樣受體(Toll-like receptors,TLRs)是檢測(cè)微生物成分和激活免疫反應(yīng)的模式識(shí)別受體。Toll樣受體2(Toll-like receptor2,TLR2)和Toll樣受體4(Toll-like receptor4,TLR4)位于細(xì)胞膜表面,在免疫炎癥和代謝性疾病的相互作用中發(fā)揮重要作用[4]。TLRs在炎癥和胰島素抵抗的發(fā)展中發(fā)揮重要作用[5]。本研究是探究炎癥因子對(duì)肥胖大鼠肝臟組織的胰島素信號(hào)通路的影響研究。
1? 資料和方法
1.1 實(shí)驗(yàn)動(dòng)物來(lái)源:PF級(jí)SD大鼠,雄性,8周齡,購(gòu)自河南省動(dòng)物實(shí)驗(yàn)中心(SCXK2007-0001),常規(guī)飼養(yǎng)于新鄉(xiāng)醫(yī)學(xué)院動(dòng)物房,自由飲水和進(jìn)食,飼養(yǎng)溫度為20℃~24℃,晝夜節(jié)律同自然。
1.2 實(shí)驗(yàn)分組:適應(yīng)性喂養(yǎng)1周后,將實(shí)驗(yàn)動(dòng)物隨機(jī)分為兩組,對(duì)照組喂養(yǎng)標(biāo)準(zhǔn)飼料,實(shí)驗(yàn)組喂養(yǎng)高脂飼料,一共喂養(yǎng)9周,然后進(jìn)行各相關(guān)指標(biāo)檢測(cè)。需要注意的是,每周都需要對(duì)大鼠進(jìn)行體重(Body weight,BW)、體長(zhǎng)(naso-anal length,NAL)測(cè)量。利用公式計(jì)算出Lee指數(shù)[6]。
1.3 ELISA檢測(cè):所有大鼠禁食過(guò)夜,4%水合氯醛腹腔注射使動(dòng)物全麻,通過(guò)心臟穿刺的方法收集血樣,使用鼠胰島素試劑盒量化空腹胰島素水平。血糖測(cè)量?jī)x檢測(cè)葡萄糖水平。用HOMA指數(shù)評(píng)價(jià)大鼠的胰島素敏感性。公式如下:[HOMA-IR]=空腹血清葡萄糖(mg/dl×空腹血清胰島素(μU/ml)/22.5。
1.4 相關(guān)基因的RT-PCR檢測(cè):Trizol提取組織總mRNA,參照First Strand cDNA Synthesis kit合成試劑盒說(shuō)明書(shū)反轉(zhuǎn)錄合成cDNA模板(Thermo Fisher Scientific,Waltham,MA,USA)。RT-PCR所用引物由上海生物工程有限公司設(shè)計(jì)合成,引物序列見(jiàn)表1。反應(yīng)條件:95℃5s,60℃30s,40個(gè)循環(huán);溶解曲線為95℃15s,60℃1min,95℃15s。
1.5 統(tǒng)計(jì)學(xué)分析:所有樣本的數(shù)量在3~5個(gè),數(shù)值為(xˉ±s),使用Graph Pad Primer 7.0軟件來(lái)進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)分析使用t檢驗(yàn)。當(dāng)P<0.05時(shí),認(rèn)為差異有統(tǒng)計(jì)學(xué)意義。
2? 結(jié)果
2.1 各組大鼠的體重及Lee指數(shù):飼料喂養(yǎng)9周后,與對(duì)照組大鼠相比,實(shí)驗(yàn)組大鼠的體重及Lee指數(shù)明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)表2。
2.2 空腹血糖、空腹胰島素水平及HOMA-IR:禁食過(guò)夜后,血清檢測(cè)結(jié)果顯示:實(shí)驗(yàn)組大鼠的空腹血糖水平與對(duì)照組大鼠比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);空腹胰島素水平和HOMA-IR在實(shí)驗(yàn)組大鼠中的表達(dá)較對(duì)照組大鼠的表達(dá)水平明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)表3。
2.3 肝臟組織中炎癥因子的表達(dá):為了檢測(cè)大鼠肝組織的炎癥反應(yīng),本實(shí)驗(yàn)檢測(cè)了TNF-ɑ、IL-1β、TLR2、TLR4的mRNA水平的表達(dá)。與對(duì)照組相比,實(shí)驗(yàn)組大鼠肝臟組織中TNF-ɑ的mRNA水平顯著升高(P=0.0047),差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。同時(shí),與對(duì)照組相比,IL-1β(P=0.0013)和TLR4(P=0.0161)的mRNA水平分別顯著降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)圖1。
2.4 肝臟組織中胰島素信號(hào)通路的表達(dá):胰島素信號(hào)通路先前已有描述[12]。胰島素可以通過(guò)胰島素受體(Insulin receptor,IR)依次激活胰島素受體底物(Insulin receptor substrate,IRS)、磷脂酰肌醇3激酶(Phosphatidyl inositol kinase 3,PI3K)、蛋白激酶B(AKT)和葡萄糖轉(zhuǎn)運(yùn)蛋白4(Glucose transporters 4,GLUT4),導(dǎo)致GLUT4定位于細(xì)胞膜。肝臟在維持血糖水平及身體功能方面起著重要作用。PCR結(jié)果顯示,與對(duì)照組相比,IR(P=0.0003)、PI3K(P=0.0061)、AKT(P=0.0004)和GLUT4(P=0.0033)基因表達(dá)分別顯著降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見(jiàn)圖2。
3? 討論
肥胖被不僅被認(rèn)為是脂肪肝的危險(xiǎn)因素,同時(shí)與2型糖尿病也具有一定相關(guān)性。脂肪的大量堆積可以引起脂肪組織和肝臟組織的代謝異常,從而引起脂肪和肝臟的胰島素抵抗[7]。本實(shí)驗(yàn)采用高脂飼料喂養(yǎng)的方法,來(lái)構(gòu)建肥胖并伴有胰島素抵抗的大鼠模型。高脂飼料喂養(yǎng)大鼠9周之后,根據(jù)實(shí)驗(yàn)所得Lee指數(shù)和禁食過(guò)夜后大鼠的空腹血糖、空腹胰島素及HOMA-IR水平的相關(guān)數(shù)據(jù)可知,本研究成功構(gòu)建了肥胖伴有胰島素抵抗大鼠模型。
TNF-α是一種由脂肪細(xì)胞和炎癥細(xì)胞分泌的細(xì)胞因子,與肥胖和2型糖尿病的發(fā)生相關(guān)。近期一項(xiàng)臨床研究表明,肥胖伴2型糖尿病患者的血清中TNF-α水平明顯升高[8]。本實(shí)驗(yàn)發(fā)現(xiàn),肥胖大鼠的肝臟組織中TNF-α的基因水平明顯升高。因此,我們推測(cè)肥胖可能通過(guò)上調(diào)肝臟組織中TNF-α分泌,從而影響肝臟代謝功能。
GLUT4是一種胰島素調(diào)節(jié)的葡萄糖轉(zhuǎn)運(yùn)蛋白,通常在低胰島素條件下發(fā)現(xiàn)于脂肪和肌肉細(xì)胞中。然而,高水平的胰島素可以誘導(dǎo)胞內(nèi)小泡的GLUT4向質(zhì)膜移位,增加細(xì)胞攝取更多葡萄糖[9]。PI3K在胰島素誘導(dǎo)的葡萄糖攝取中起重要作用。大量研究表明,PI3K/AKT信號(hào)通路是正常代謝所必需的,并且其不平衡導(dǎo)致肥胖和2型糖尿病的發(fā)生[10]。PI3K由IRS上調(diào),胰島素受體底物結(jié)合并激活其下游效應(yīng)因子AKT,導(dǎo)致GLUT4轉(zhuǎn)運(yùn)至細(xì)胞膜。GLUT4在胰島素誘導(dǎo)的肌肉和脂肪組織葡萄糖提取中起關(guān)鍵作用。在糖尿病前期和糖尿病中,GLUT4的表達(dá)/易位被檢測(cè)到減少,參與了損害血糖控制的機(jī)制[11]。身體各種組織中受損的PI3K/AKT信號(hào)通路可以導(dǎo)致肥胖和2型糖尿病,進(jìn)而引起胰島素抵抗;反之,胰島素抵抗可以抑制PI3K/AKT途徑,形成惡性循環(huán)[12]。PI3K/AKT信號(hào)通路與肝臟胰島素相關(guān),綠色巴西棕櫚提取物可以通過(guò)調(diào)節(jié)PI3K/AKT信號(hào)通路,進(jìn)而提高胰島素敏感度,改善肝臟胰島素抵抗[13]。本實(shí)驗(yàn)發(fā)現(xiàn),高脂喂養(yǎng)大鼠中肝臟組織中胰島素受體、PI3K、AKT和GLUT4基因表達(dá)顯著降低。因此,筆者推測(cè):高脂飲食喂養(yǎng),可以促進(jìn)肝臟組織中TNF-α的表達(dá),進(jìn)而抑制PI3K、AKT、GLUT4的表達(dá),從而引發(fā)胰島素抵抗。炎癥因子介導(dǎo)的PI3K/AKT信號(hào)通路在胰島素抵抗的發(fā)生發(fā)展中發(fā)揮重要作用,這為胰島素抵抗的治療提供了新的治療思路。
本實(shí)驗(yàn)結(jié)果顯示長(zhǎng)期高脂飲食可以通過(guò)抑制胰島素相關(guān)信號(hào)通路,降低肝臟組織對(duì)胰島素敏感度,從而誘發(fā)大鼠胰島素抵抗。但是關(guān)于肝臟組織在胰島素抵抗中發(fā)揮的作用還需要進(jìn)一步探究。
[參考文獻(xiàn)]
[1]Yang Y,Shields GS,Guo C,et al.Executive function performance in obesity and overweight individuals:a meta-analysis and review[J].Neurosci Biobehav Rev,2018,84:225.
[2]Hsieh CC,Wang YF,Lin PY,et al.Seed peptide lunasin ameliorates obesity-induced inflammation and regulates immune responses in C57BL/6J mice fed high-fat diet[J].Food Chem Toxicol,2021,147:111908.
[3]Akash MSH,Rehman K,Liaqat A.Tumor necrosis factor-alpha:role in development of insulin resistance and pathogenesis of Type 2 diabetes mellitus[J].J Cell Biochem.2018,119(1):105-110.
[4]Huang YL,Zeng J,Chen GQ,et al.Periodontitis contributes to adipose tissue inflammation through the NF-<kappa>B,JNK and ERK pathways to promote insulin resistance in a rat model[J].Microbes Infect,2016,18(2):804.
[5]Benomar Y,Taouis M.Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: pivotal role of resistin/TLR4 pathways [J].Front Endocrinol(Lausanne),2019,10(3):140.
[6]Huang YL,Guo WH,Zeng J,et al.Prediabetes enhances periodontal inflammation consistent with activation of TLR mediated NF-кB pathway in rats[J].J Periodontol,2016,87(5):e64.
[7]Yaz?c? D,Sezer H.Insulin resistance, obesity and lipotoxicity [J].Adv Exp Med Biol,2017,960(5):277-304.
[8]Alzamil H.Elevated serum TNF-α is related to obesity in Type 2 diabetes mellitus and is associated with glycemic control and insulin resistance[J].J Obes,2020,30(1):5076858.
[9]James DE,Brown R,Navarro J,et al.Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein[J].Nature,1988, 333(6169):183-185.
[10]Huang X,Liu G,Guo J,et al.The PI3K/AKT pathway in obesity and Type 2 diabetes[J].Int J Biol Sci,2018,14(11):1483-1496.
[11]Esteves JV,Enguita FJ,Machado UF.MicroRNAs-Mediated regulation of skeletal muscle GLUT4 expression and translocation in insulin resistance[J].J Diabetes Res,2017:7267910.
[12]Huang X,Liu G,Guo J,et al.The PI3K/AKT pathway in obesity and type 2 diabetes [J].Int J Biol Sci,2018,14(11):1483.
[13]Mazibuko-Mbeje SE,Dludla PV,Roux C,et al.Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways[J].Int J Mol Sci,2019,20(3):E633.
[收稿日期]2020-10-15
本文引用格式:范向?qū)帲瑒⒖?,朱久育,?炎癥因子對(duì)肥胖大鼠肝臟組織胰島素信號(hào)通路的影響研究[J].中國(guó)美容醫(yī)學(xué),2021,30(12):102-104.