彭海燕,康志新,李小珍,周莉,龍雁
球磨時(shí)間對(duì)NbMoTaWVCr難熔高熵合金組織與性能的影響
彭海燕1, 2,康志新2, 3,李小珍2,周莉1,龍雁2, 3
(1. 廣東技術(shù)師范大學(xué) 機(jī)電學(xué)院,廣州 510635;2. 華南理工大學(xué) 廣東省金屬新材料制備與成形重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3. 華南理工大學(xué) 機(jī)械與汽車工程學(xué)院,廣州 510640)
以Nb、Mo、Ta、W、V、Cr等金屬粉末為原料,采用機(jī)械合金化與放電等離子燒結(jié)相結(jié)合的方法制備難熔NbMoTaWVCr高熵合金,研究球磨時(shí)間對(duì)合金的物相組成、顯微組織與壓縮性能的影響。結(jié)果表明,經(jīng)過40 h球磨即可實(shí)現(xiàn)機(jī)械合金化,得到單相體心立方(BCC)結(jié)構(gòu)的NbMoTaWVCr高熵合金粉末。隨球磨時(shí)間延長(zhǎng),粉末的晶粒細(xì)化,微觀應(yīng)變?cè)龃?。?jīng)1 500 ℃放電等離子燒結(jié)后的塊體合金由BCC基體和Laves相以及氧化物相組成,析出相含量隨球磨時(shí)間延長(zhǎng)而增加。隨球磨時(shí)間延長(zhǎng),NbMoTaWVCr難熔高熵合金的壓縮屈服強(qiáng)度先增加后減小,塑性逐漸減小,在球磨40 h下的NbMoTaWVCr高熵合金塊體材料具有最佳力學(xué)性能,壓縮屈服強(qiáng)度和塑性應(yīng)變分別為3 416 MPa和5.3%。
難熔高熵合金;機(jī)械合金化;放電等離子燒結(jié);球磨時(shí)間;顯微組織;屈服強(qiáng)度
隨著航空航天和化學(xué)工業(yè)的發(fā)展,對(duì)材料的使用溫度、高溫強(qiáng)度和耐腐蝕性能等提出了更高的要求。高熵合金(high entropy alloy, HEA)又稱為多主元合金,是由5種或者5種以上等原子比或接近等原子比的元素經(jīng)合金化而合成的,其中每種元素的摩爾分?jǐn)?shù)在5%~35%之間[1?4]。高熵合金具有比傳統(tǒng)合金更優(yōu)異的性能,如較高的強(qiáng)度、良好的耐磨、耐高溫和耐腐蝕等性能等[5?11]。SENKOV等[12?14]研究了一系列高熔點(diǎn)的高熵合金,發(fā)現(xiàn)在高溫下,具有BCC結(jié)構(gòu)的NbMoTaWV合金具有比傳統(tǒng)的超合金更好的力學(xué)性能,其他系列的難熔高熵合金如TaNbHfZrTi[14]、TiZrNbTaMo[15]和AlNbTiVZr[16]也得到研究和發(fā)展。目前制備高熵合金主要采用鑄造法,但難熔高熵合金的熔點(diǎn)高,采用鑄造法制備較困難,并且鑄造法制備的合金一般存在枝晶偏析以及晶粒粗大等問題,影響材料的性能。SENKOV等[13]采用鑄造法制備的NbMoTaWV難熔高熵合金,在室溫和高溫下都具有較高的屈服強(qiáng)度,特別是溫度達(dá)到900 ℃時(shí),屈服強(qiáng)度超過傳統(tǒng)的鎳基高溫合金,表現(xiàn)出顯著的抗高溫軟化能力,但室溫下的塑性應(yīng)變只有1.7%,合金的晶粒粗大(80 μm)。采用機(jī)械合金化(mechanical alloying, MA)與放電等離子燒結(jié)(spark plasma sintering, SPS)相結(jié)合的粉末冶金法制備難熔高熵合金可以消除成分偏析,并具有晶粒細(xì)小和組織均勻等優(yōu)點(diǎn)[17?20];并且由于制備過程中無(wú)需將溫度加熱到合金的熔點(diǎn)以上,對(duì)設(shè)備要求相對(duì)較低。本文以Nb、Mo、Ta、W、V和Cr等金屬粉末為原料,通過機(jī)械合金化與放電等離子燒結(jié)制備細(xì)晶NbMoTaWVCr高熵合金塊體材料,著重研究球磨時(shí)間對(duì)合金顯微組織和力學(xué)性能的影響。對(duì)于高性能NbMoTaWVCr難熔高熵合金的制備與應(yīng)用具有重要意義。
實(shí)驗(yàn)采用純度(質(zhì)量分?jǐn)?shù))均大于99.9%的Nb、Mo、Ta、W、V、Cr等6種金屬粉末,所有金屬粉末均由中諾新材科技有限公司生產(chǎn),粉末粒度均≤45 μm。按照等摩爾分?jǐn)?shù)計(jì)算出各原料粉末的質(zhì)量。稱取原料粉末,裝入潔凈塑料瓶中,用V型混粉機(jī)混合均勻(混料時(shí)間為20 h)。將混合粉末置于球磨罐中進(jìn)行高能球磨,磨球和球磨罐的材質(zhì)均為不銹鋼,磨球平均直徑為10 mm,球料質(zhì)量比為12:1。采用Ar氣作為保護(hù)氣氛,球磨時(shí)間分別為20、40、50、60和70 h。球磨后取出適量粉末進(jìn)行分析和測(cè)試。將球磨40~70 h的粉末置于石墨模具中進(jìn)行放電等離子燒結(jié),所用設(shè)備為日本Sumitomo Coal Mining Co. Ltd.公司生產(chǎn)。燒結(jié)壓力為30 MPa,在1 500 ℃保溫10 min,然后隨爐冷卻至室溫,得到直徑為20 mm、高度為10 mm的圓柱形NbMoTaWVCr高熵合金樣品。
采用X射線衍射儀(XRD,Bruke D8 ADVANCE X-ray diffractometer)和美國(guó)FEI公司的TECNAL G2 F20 S-TWIN 透射電鏡(TEM)分析NbMoTaWVCr高熵合金粉末的顯微組織與形貌。通過X射線衍射分析和掃描電鏡(SEM,ZEISS merlin,德國(guó)),研究塊體合金的顯微組織。用線切割的方法從圓柱形塊體合金上切取3個(gè)直徑為3 mm、長(zhǎng)度6 mm的試樣,用萬(wàn)能試驗(yàn)機(jī)(AG-100 kNX,Schimadzu Corporation,Japan)進(jìn)行壓縮性能測(cè)試,應(yīng)變速率為10?3/s。
圖1所示為高能球磨不同時(shí)間后NbMoTaWVCr難熔高熵合金粉末的XRD譜。從圖中看出,球磨前,混合粉末中的V、Cr、Nb、Mo、Ta、W等6種粉末的衍射峰清晰可見。球磨20 h后,Cr與V的衍射峰消失,其他元素的衍射峰強(qiáng)度急劇降低。球磨時(shí)間延長(zhǎng)至40 h時(shí),僅在原有的W和Mo衍射峰附近觀察到新的衍射峰,為BCC相。元素的合金化順序和元素的熔點(diǎn)有很大關(guān)系,一般情況下,熔點(diǎn)越高的元素,越難實(shí)現(xiàn)合金化[21]。圖1所示結(jié)果表明球磨40 h時(shí)合金化過程已經(jīng)完成,形成單相BCC結(jié)構(gòu)的固溶體。從圖1還看到,完成合金化后,繼續(xù)延長(zhǎng)球磨時(shí)間,衍射峰位置和強(qiáng)度變化不大,半高寬略有增大。衍射峰的半高寬增大主要是由晶粒細(xì)化和微觀應(yīng)變引起[22?23],所以球磨40 h時(shí)合金化過程已經(jīng)完成,形成單相BCC固溶體;隨球磨時(shí)間延長(zhǎng),NbMoTaWVCr晶粒細(xì)化,微觀應(yīng)變?cè)黾?。根?jù)XRD譜,采用Wlliamson-Hall公式計(jì)算合金粉末的平均晶粒尺寸和晶格畸變,結(jié)果列于表1。從表1看出,隨球磨時(shí)間從40 h增加到70 h,合金的平均晶粒尺寸從9.7 nm減小至5.2 nm,微觀應(yīng)變從0.42%增加到0.55%。
圖2所示為球磨40 h的NbMoTaWVCr高熵合金粉末的透射電鏡明場(chǎng)像和選區(qū)衍射圖。從圖2(a)看出,合金粉末的平均晶粒尺寸為10 nm左右,與利用XRD譜計(jì)算的平均晶粒尺寸9.7 nm基本一致。圖2(b)的選區(qū)衍射環(huán)為典型的BCC晶體結(jié)構(gòu),與XRD譜一致。
圖1 不同球磨時(shí)間的NbMoTaWVCr高熵合金粉末XRD譜
表1 球磨時(shí)間對(duì)NbMoTaWVCr高熵合金粉末晶粒尺寸和微觀應(yīng)變的影響
2.2.1 物相組成
圖3所示為塊體NbMoTaWVCr高熵合金的XRD譜。由圖可見,球磨40 h下的NbMoTaWVCr高熵合金中含有BCC相、四方結(jié)構(gòu)的Ta2VO6相以及對(duì)應(yīng)于Cr2Ta的Laves相。延長(zhǎng)球磨時(shí)間對(duì)合金的物相種類沒有影響,但Ta2VO6和Cr2Ta這2種析出相的衍射峰強(qiáng)度逐漸增強(qiáng),表明合金中析出相的含量增加。根據(jù)圖1可知,球磨后的NbMoTaWVCr高熵合金粉末為單相BCC固溶體粉末,但經(jīng)過SPS后生成了新相,這意味著在燒結(jié)過程中從過飽和固溶體中析出氧化物相和Laves相。機(jī)械合金化是一種非平衡過程,可以促進(jìn)亞穩(wěn)態(tài)過飽和固溶體的形成,而在燒結(jié)過程中隨溫度升高,過飽和固溶體逐漸分解,析出新相。
圖2 球磨40 h后的NbMoTaWVCr高熵合金粉末的TEM圖
(a) Bright field image; (b) Corresponding SEAD pattern
圖3 不同球磨時(shí)間下的塊體NbMoTaWVCr高熵合金XRD譜
2.2.2 顯微組織
圖4所示為不同球磨時(shí)間下的NbMoTaWVCr高熵合金SEM背散射形貌。從圖中看出,合金組織均由白色的BCC基體、晶界處的灰色Laves相及黑色的Ta2VO6氧化物組成。在圖4中對(duì)3種不同顏色的區(qū)域進(jìn)行EDS能譜分析,結(jié)果列于表2。可以看出白色基體中6種元素的含量較接近名義成分,故確定白色相為無(wú)序BCC基體相;灰色相中含較多的Cr、Nb、Ta和少量的V,幾乎不含Mo和W,為Cr2Ta中固溶Nb和V所形成的復(fù)雜金屬間化合物,該相對(duì)應(yīng)于在XRD譜中的Laves相;而黑色相則為Ta2VO6氧化物相。從圖4看出,隨球磨時(shí)間延長(zhǎng),合金的晶粒尺寸逐漸減小,析出相含量逐漸增加。球磨時(shí)間為70 h的合金中,部分析出相開始在晶界聚集,并互相聯(lián)接。這一方面是因?yàn)樵跈C(jī)械合金化過程中,隨球磨時(shí)間延長(zhǎng),晶粒明顯細(xì)化,晶格畸變?cè)黾樱勰┲形诲e(cuò)、空位、亞晶界、層錯(cuò)等缺陷增加。在SPS升溫過程中,晶體缺陷的存在可有效縮短原子間的擴(kuò)散距離[24],并使得原子擴(kuò)散速度增大,促進(jìn)Laves相及氧化物相從過飽和固溶體中析出;另一方面,雖然在球磨前對(duì)磨罐內(nèi)抽真空并充氬氣保護(hù),但仍殘留少量空氣,從而導(dǎo)致合金粉末中摻入少量的氧[22, 25]。隨球磨時(shí)間延長(zhǎng),粉末中摻雜的氧增加,以原子態(tài)固溶在合金粉末中的氧在燒結(jié)過程中傾向于與Ta、V形成氧化物在晶界析出,有人采用粉末冶金法制備高熵合金時(shí),也發(fā)現(xiàn)氧化物或者碳化物的存在[26?30]。因此,延長(zhǎng)球磨時(shí)間會(huì)導(dǎo)致燒結(jié)過程中析出相增加。
圖4 不同球磨時(shí)間下的NbMoTaWVCr高熵合金SEM背散射圖
(a) 40 h; (b) 50 h; (c) 60 h; (d) 70 h
表2 NbMoTaWVCr高熵合金的名義成分和圖4(a)中不同物相的成分
2.2.3 力學(xué)性能
圖5所示為不同球磨時(shí)間下的NbMoTaWVCr高熵合金的壓縮應(yīng)力?應(yīng)變曲線,屈服強(qiáng)度0.2和塑性應(yīng)變p列于表3。表4所列為近年來(lái)國(guó)內(nèi)外文獻(xiàn)報(bào)道的難熔高熵合金性能。由圖5、表3和表4可見,本研究的所有NbMoTaWVCr高熵合金的屈服強(qiáng)度都較高,均在3 400 MPa以上。球磨40 h下的NbMoTaWVCr高熵合金具有較好的綜合力學(xué)性能,0.2和p分別為3 416 MPa和5.3%,相對(duì)于SENKOV等[3]采用鑄造法制備的NbMoTaWV高熵合金[13](0.2和p分別為1 246 MPa和1.7%),該合金的0.2和p分別提高174.1%和211.8 %,并且在保持一定塑性的情況下,其屈服強(qiáng)度還明顯優(yōu)于其他一些文獻(xiàn)報(bào)道的難熔高熵合金強(qiáng)度[31?34]。當(dāng)球磨時(shí)間延長(zhǎng)至50 h時(shí),合金的強(qiáng)度有所增加,但塑性明顯降低。球磨時(shí)間進(jìn)一步延長(zhǎng)時(shí),材料早期發(fā)生脆性斷裂,反而導(dǎo)致強(qiáng)度下降。從圖4可知,隨球磨時(shí)間延長(zhǎng),NbMoTaWVCr高熵合金晶界處的析出相顯著增多,在變形過程中裂紋容易沿第二相粒子處擴(kuò)展,加劇了第二相對(duì)基體的割裂作用,使得塑性應(yīng)變降低。
圖5 不同球磨時(shí)間下的NbMoTaWVCr高熵合金壓縮應(yīng)力?應(yīng)變曲線
表3 球磨時(shí)間對(duì)NbMoTaWVCr高熵合金壓縮性能的影響
圖6所示為NbMoTaWVCr高熵合金的壓縮斷口形貌。由圖可見,球磨40 h 下的合金有2種不同的斷裂特征區(qū)域,即較粗糙的沿晶斷裂區(qū)域和較平滑的穿晶斷裂區(qū)域。在平滑斷裂區(qū)還看到由于剪切斷裂所留下的摩擦痕跡。隨高能球磨時(shí)間延長(zhǎng),NbMoTaWVCr高熵合金的斷裂面呈冰糖狀形貌,具有典型的脆性斷裂特征。
圖6 不同球磨時(shí)間下的NbMoTaWVCr高熵合金壓縮斷口SEM形貌
(a) 40 h; (b) 50 h; (c) 60 h; (d) 70 h
1) 對(duì)Nb、Mo、Ta、W、V、Cr等金屬粉末進(jìn)行混合高能球磨,球磨40 h即完成機(jī)械合金化,得到單相BCC結(jié)構(gòu)的NbMoTaWVCr固溶體。隨球磨時(shí)間從40 h延長(zhǎng)至70 h,粉末的平均晶粒尺寸從9.7 nm減小至5.2 nm,微觀應(yīng)變由0.42%增加至0.55%。
2) NbMoTaWVCr高熵合金粉末在1 500 ℃放電等離子燒結(jié)后,所得塊體合金由BCC基體相、少量的Laves相與Ta2VO6氧化物析出相組成。隨球磨時(shí)間延長(zhǎng),析出相含量增加。
3) 隨球磨時(shí)間延長(zhǎng),NbMoTaWVCr高熵合金的屈服強(qiáng)度先升高后減小,塑性逐漸減小。球磨40 h下的合金具有最佳力學(xué)性能,壓縮屈服強(qiáng)度和塑性應(yīng)變分別為3 416 MPa和5.3%。
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high- entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299?303.
[2] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448?511.
[3] GAO M C, YEH J W, LIAW P K, et al. High-Entropy Alloys[M]. New York: Springer Science & Business Media, 2016.
[4] 王江, 黃維剛. CrMoVNbFe高熵合金微觀組織結(jié)構(gòu)與力學(xué)性能[J]. 材料研究學(xué)報(bào), 2016, 30(8): 609?613. WANG Jiang, HUANG Weigang. Microstructure andproperties of CrMoVNbFehigh entropy alloys[J]. Chineses Journal of Materials Research, 2016, 30(8): 609?613.
[5] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153?1158.
[6] CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Moin aqueous environments[J]. Corrosion Science, 2010, 52(8): 2571?2581.
[7] CHEN Y Y, DUVAL T, HUNG U D, et al. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel[J]. Corrosion Science, 2005, 47(9): 2257?2279.
[8] CHUANG M, TSAI M, WANG W, et al. Microstructure and wear behavior of AlCo1.5CrFeNi1.5Tihigh-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308?6317.
[9] GORR B, AZIM M, CHRIST H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2015, 624: 270?278.
[10] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1?93.
[11] YEH J W, CHEN S K, GAN J Y, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2533?2536.
[12] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758?1765.
[13] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25and V20Nb20Mo20Ta20W20refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698?706.
[14] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20): 6043?6048.
[15] WANG S, XU J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties[J]. Materials Science and Engineering C, 2017, 73: 80?89.
[16] YURCHENKO N Y, STEPANOV N D, ZHEREBTSOV S V, et al. Structure and mechanical properties of B2ordered refractory AlNbTiVZr(=0~1.5) high-entropy alloys[J]. Materials Science and Engineering A, 2017, 704: 82?90.
[17] CHEN W, FU Z, FANG S, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7high entropy alloy[J]. Materials & Design, 2013, 51: 854?860.
[18] FU Z, CHEN W, CHEN Z, et al. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy[J]. Materials Science and Engineering A, 2014, 619: 137?145.
[19] WANG P, CAI H, ZHOU S, et al. Processing, microstructure and properties of Ni1.5CoCuFeCr0.5?xVhigh entropy alloys with carbon introduced from process control agent[J]. Journal of Alloys and Compounds, 2017, 695: 462?475.
[20] SATHIYAMOORTHI P, BASU J, KASHYAP S, et al. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite[J]. Materials & Design, 2017, 134: 426?433.
[21] CHEN Y, HU Y, HSIEH C, et al. Competition between elements during mechanical alloying in an octonary multi-principal- element alloy system[J]. Journal of Alloys and Compounds, 2009, 481(1/2): 768?775.
[22] SURYANARAYANA C. Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1/2): 1?184.
[23] WU B, CHEN W, JIANG Z, et al. Influence of Ti additionon microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy[J]. Materials Science & Engineering A, 2016, 676: 492?500.
[24] 魯世強(qiáng), 黃伯云, 賀躍輝. 機(jī)械合金化對(duì)Laves相Cr2Nb固相熱反應(yīng)合成的影響[J]. 航空學(xué)報(bào). 2003(6): 568?572. LU Shiqiang, HUANG Baiyun, HE Yuehui. The effect of mechanical alloying on synthesizing of Laves Cr2Nb by solid thermal reachion[J]. Acta Aeronautica & Astronautica Sinica, 2003(6): 568?572.
[25] MURTY B S, RANGANATHAN S. Novel materials synthesis by mechanical alloying/milling[J]. International Materials Reviews, 1998, 43(3): 101?141.
[26] PRAVEEN S, BASU J, KASHYAP S, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures[J]. Journal of Alloys and Compounds, 2016, 662: 361?367.
[27] PRAVEEN S, MURTY B S, KOTTADA R S. Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during sparkplasma sintering[J]. JOM, 2013, 65(12): 1797?1804.
[28] PRAVEEN S, MURTY B S, KOTTADA R S. Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(10): 8106?8109.
[29] LONG Y, SU K, ZHANG J F, et al. Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy [J]. Materials, 2018, 11(5): 669?676.
[30] FU Z Q, HOFFMAN A, MACDONALD B E, et al. Atom probe tomography study of an Fe25Ni25Co25Ti15Al10 high-entropy alloy fabricated by powder metallurgy[J]. Acta Materialia, 2019, 179: 372?382.
[31] SENKOV O N, JENSEN J K, PILCHAK A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design, 2018, 139: 498? 511.
[32] GE S F, FU H M, ZHANG L, et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science & Engineering A, 2020, 784: 139?275.
[33] SENKOV O N, ZHANG C, PILCHAK A L, et al. CAPLHAD- aided development of quaternary multi-principal element refractory alloys based on NbTiZr[J]. Journal of Alloys and Compounds, 2019, 783: 729?742.
[34] SENKOV O N, ISHEIM D, SEIDMAND N, et al. Development of a refractory high entropy superalloy[J]. Entropy, 2016, 18(102): 1?13.
[35] LIU Y, ZHANG Y, ZHANG H, et al. Microstructures and mechanical properties of refractory HfMo0.5NbTiV0.5Sihigh- entropy composites[J]. Journal of Alloys and Compounds. 2017, 694: 869?876.
Effects of ball milling time on microstructure and properties of NbMoTaWVCr refractory high entropy alloy
PENG Haiyan1, 2, KANG Zhixin2, 3, LI Xiaozhen2, ZHOU Li1, LONG Yan2, 3
(1. School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China; 2. Guangdong Key Laboratory for Advanced Metallic Materials, South China University of Technology, Guangzhou 510640, China; 3. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China)
Refractory NbMoTaWVCr high entropy alloy (HEA) was fabricated by combination of mechanically alloying (MA) and spark plasma sintering (SPS) using powders of Nb, Mo, Ta, W and V as raw materials. The effects of milling time on phase composition, microstructure evolution and mechanical properties were investigated. The results show that mechanical alloying can be achieved after 40 h ball milling, and the single-phase BCC NbMoTaWVCr high entropy alloy powder is obtained. With the increase of milling time, the grain size is refined and the micro strain increases.The bulk alloy sintered by SPS at 1 500 ℃ consists of BCC matrix, Laves phase and oxide phase. The content of precipitated phase increases with the increase of milling time. With the increase of milling time, the compressive yield strength increases first and then decreases and the plasticity decreases gradually. The NbMoTaWVCr refractory high entropy alloy sintered from powders milled for 40 h exhibits an excellent yield strength of 3416 MPa and plastic strain of 5.3%.
refractory high-entropy alloy; mechanical alloying; spark plasma sintering; milling time; microstructure; yield strength
TG146.4+1
A
1673-0224(2020)06-513-07
廣東省金屬新材料制備與成形重點(diǎn)實(shí)驗(yàn)室開放課題(GJ201606);廣東省普通高校新材料制備成形及加工工程技術(shù)研究中心資助項(xiàng)目(2017GCZX003)
2020?09?30;
2020?10?26
龍雁,教授,博士。電話:020-87113851;E-mail: ylong1@scut.edu.cn
(編輯 湯金芝)