• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Dwell-fatigue of Titanium Alloy Ti-6AL-4V for Offshore Structures

    2018-10-12 06:28:00
    船舶力學(xué) 2018年9期

    (School of Naval Architecture and Ocean Eng,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:The fatigue peak holding load has an obvious influence on the crack growth rate of titanium alloy Ti-6Al-4V at room temperature.Therefore,the fatigue and dwell-fatigue test of titanium alloy Ti-6Al-4V under room temperature are studied in this paper,and based on the prediction model of dwell-fatigue crack growth rate,the fatigue and dwell-fatigue crack growth rate of this material are predicted as well.The results show that the stress peak holding load for 60s significantly accelerated the fatigue crack growth rate of titanium alloy Ti-6Al-4V,which is consistent with other research results of materials at home and abroad;The difference between the dwell-fatigue crack growth rate and the fatigue crack growth rate increases with the increase of stress intensity factor range.That is to say,the effect of holding load on crack growth rate increases under high stress intensity factor.The fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V are predicted based on the prediction model that research group put forward,the predicted results are in good agreement with the experimental results.

    Key words:titanium alloy;fatigue;crack growth rate;holding time

    0 Introduction

    The results of application and basic research at home and abroad show that Titanium alloys not only have high specific strength,local and uniform corrosion resistance in seawater,high fatigue performance and corrosion fatigue limit,but also have high fracture toughness and resistance to seawater stress corrosion cracking.It is an excellent marine material[-2].The research of α+ β titanium alloy Ti-6Al-4V is relatively mature,its dosage is more than half of all titanium alloys,ultra-low interstitial alloy Ti-6Al-4V has attracted wide attention.The U-nited States applies the Ti-6Al-4V to the horizontal tail shaft of the F-16 fighter.Titanium alloy Ti-6Al-4V is also used in the structure of pressure-resistant shell of deep-sea submersible.Japan’s ‘Deepwater 6 500’ uses the Titanium alloy Ti-6Al-4V,its depth of diving is 6 500 m.The Ti-6Al-4V titanium alloy is also used in the pressure resistant shell structure of‘Jiaolong’ in China,Its depth of diving is 7 062 m[3].The failure of these submersibles during service is mainly fatigue failure.In the course of actual work,the pressure-resistant shell structure bears in addition to floating and submerged load,the structure also bears the load of the working process under sea.That is,the fatigue problem of the pressure-resistant shell structure is actually a dwell-fatigue problem.

    Many studies have shown that dwell-fatigue at room temperature has a certain effect on fatigue crack growth behavior of titanium alloy.The general fatigue crack growth rate increases with the increase of maximum stress level and holding time of load,therefore,the life of dwellfatigue structure is obviously lower than that of fatigue life.Researchers at home and abroad have given many explanations for the causes of these phenomena,for example,peak stress,holding time,microstructure,temperature and hydrogen content can affect the sensitivity of titanium alloy to dwell-fatigue.This is still an inconclusive research hotspot.Therefore,it is of great engineering significance to carry out the dwell-fatigue test of titanium alloy materials.

    1 Study on prediction method of fatigue crack growth behavior

    Domestic and foreign researchers have done a lot of research on fatigue life prediction of offshore structures using fatigue crack propagation theory.Many prediction models of fatigue crack growth rate are proposed.Based on the exponential power law of fatigue crack growth rate(Paris formula)put forward by Paris in 1963,some new crack growth theories are put forward in combination with experiments by McEvily.Aiming at the limitation of Paris formula,McEvily formula is proposed,which can explain more fatigue phenomena,as Eq.(1):

    where ΔKeffthis the effective range of the stress intensity factor at the threshold level,ΔKeffis the effective range of the stress intensity factor,MPa

    On the basis of a large number of related experiments,the McEvily crack growth prediction model based on fatigue crack growth theory can not only predict the fatigue growth behavior of long cracks,but also be applicable to the fatigue small crack propagation behavior,as Eqs.(2)-(4):

    where da/dN is fatigue crack growth rate,m/cycle;KCis the plane stress fracture toughness of the material,σmaxis the maximum stress,MPa;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,R is the stress ratio;Kopmaxis the maximum stress intensity factor of macroscopic long crack at crack opening level,k is the parameters of crack closure level varying with crack length;reis the material inherent defect size;σYis the yield strength of materials;Y(a)is the geometric correction coefficients related to the shape and position of cracks.

    Although the McEvily crack propagation rate model can explain many phenomena in fatigue tests,it can be used not only for macroscopic long cracks but also for physical small cracks.But the model can only be used in the near threshold region and ideal elastic-plastic materials.It can not reflect the phenomenon of crack instability and can not predict the loadpreserving fatigue process.The results of dwell-fatigue tests[4-5]at home and abroad show that the dwell-fatigue life of titanium alloy decreases significantly compared with the fatigue life of titanium alloy when the peak stress is introduced for a period of time.The cause of this effect is still a hot research topic,but it is generally agreed that stress and loading time have great influence on crack growth behavior of titanium alloy at room temperature according to the domestic and foreign research results.Therefore,it is no longer suitable to predict the life of titanium alloy material for pressure-resistant shell of submersible only by traditional method.In order to ensure the safety of the pressure resistant structure of the submersible,it is necessary to predict the fatigue crack propagation behavior of titanium alloy at room temperature more accurately[13].In 1980,Munz innovatively divided the load-preserving and fatigue processes into load preservation processes with peak stress peaks and pure fatigue load processes with load holding time.Therefore,there are two terms in its load-preserving fatigue crack growth rate model,one is fatigue term related to cyclic load,the other is load protection term related to peak loading time and load,as Eq.(5):

    Based on the above mentioned series of prediction methods for crack propagation behavior,in order to predict the life of the hull structure of the submersible vehicle more accurately,a prediction model of loading and fatigue crack growth rate considering small crack effect is proposed[7].The prediction model divides the fatigue crack propagation process into fatigue loading process and peak load retention process,that is,the prediction model is divided into two parts:fatigue term associated with cyclic load and time-dependent load protection term.The loading time is introduced into the model,so that the influence of different loading time on the load-keeping fatigue crack growth rate can be considered.as Eqs.(6)-(8):

    where A1is a material and environmentally sensitive constant of dimensions,is the modified crack length,m;m1is a constant representing the slope of the corresponding fatigue crack propagation rate curve;n1is the parameters affecting capacity of fatigue cycle part Kmax/Kmin;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,Kminis the minimum stress intensity factor under cyclic fatigue loading,KCis the plane stress fracture toughness of the material,F is the crack tip elastoplastic correction factor;A2is the material and environmental constants related to the load-preserving part,MPa-mm1-m/2;m2is a constant of slope of crack growth rate curve related to load-preserving part;n2is a parameters that affect the capacity of the dwell-fatigue part Kmax/Kmin;tholdis the holding time under maximum stress.

    2 Experimental study on fatigue crack growth rate

    2.1 Test materials

    Due to the strength,plasticity,corrosion resistance and biocompatibility of titanium alloy Ti-6Al-4V are good,Ti-6Al-4V becomes the ace alloy in the titanium alloy industry.Many other types of titanium alloys can be considered as modification of titanium alloy Ti-6Al-4V.In recent years,the development of titanium alloys in China has become more and more rapid,and a set of titanium alloy system which is more suitable for the application and development of titanium alloys in China has been gradually formed.According to national standards GB/T 3620.1-2007,the standard chemical constituents of titanium alloy Ti-6Al-4V in China are listed in Tab.1.

    Tab.1 Chemical constituents of Ti-6Al-4V

    The density of titanium alloy Ti-6Al-4V is generally 4.5 g/cm3,60%of steel only;The standard yield strength of titanium alloy after Ti-6Al-4V annealing is also higher,which is 930 MPa,the ratio of fracture strength to density is about 210.Therefore,titanium alloy Ti-6Al-4V has the advantages of light material and high strength.In this paper,titanium alloy Ti-6Al-4V(TC4)forgings are used for dwell-fatigue crack growth rate test,and the chemical composition is shown in Tab.2.

    Tab.2 Chemical constituents of Ti-6Al-4V(TC4)(mass fraction,%)

    2.2 Fracture toughness test

    In fracture mechanics,the criterion of stress intensity factor K is widely used.The socalled K criterion is that when the stress intensity factor K of the crack reaches the fracture toughness KC,the crack will be unstable and propagate.Because the fracture toughness KCis difficult to be measured,the plane strain fracture toughness KICof the material is generally replaced.

    In the process of preparing and testing the plane strain fracture toughness KIC,it is necessary to preform the crack on the standard test piece first,and then to gradually increase the load during the loading process until the specimen breaks.The curve(P-V)between the load and the opening displacement of the crack nozzle should be recorded during the test.The standard specifies that the PQand KQare defined by using the intersection of the cut line and the curve that deviates from the curve tangent 5%(Conditional fracture toughness).The theoretical basis of the experiment is linear elastic fracture mechanics(LEFM).Therefore,the size and results of the specimen should meet the applicable range of LEFM.

    Fig.1 Tensile specimen standard

    Standard compact tensile specimen(CT test sample)were machined according to the GB/T 4161-2007 Plane Strain Fracture Toughness Test Method of Metallic Materials.The specific dimensions are shown in Fig.1.W=50 mm,B=12.5 mm,H=60 mm,S=62.5 mm,force hole diameter D=12.6 mm.

    The fracture toughness test samples of titanium alloy Ti-6Al-4V are 4 and the effective samples are 3.Marked A-1,A-2,A-3,respectively.Therefore,the fracture toughness of titanium alloy Ti-6Al-4V is calculated as the average of three.That is KIC≈76.5

    2.3 Fatigue/dwell-fatigue crack growth rate test

    The testing of crack growth rate is generally divided into two categories:one is crack propagation in elastic range;the other is crack propagation in plastic range.The zero member with high cycle and low load belongs to the former category,while the zero member with low cycle and high load belongs to the latter class.This paper focuses on a test of fatigue and dwell-fatigue crack growth rate in elastic range.A compact tensile specimen with severe stress concentration was used in the test(CT test sample).The sample has the advantages of small volume,light weight and long crack propagation distance.Empirical formula of stress intensity factor at crack tip of CT specimenas Eqs.(9)~(10):

    Before carrying out fatigue and load fatigue tests,the test specimens are uniformly prefabricated and tested.The IST 8802 type high and low temperature fatigue testing machine is adopted in the test.According to the requirements of relevant codes,the constant K method is adopted in the test.On the basis of 3-5 group pre-tests,K value is determined to be 18.6 in order to ensure the loading cycle number of precast crack is about 20 000,the best prefabrication effect can be achieved.The initial crack length is 22.5 mm,and the prefabricated crack length is 2 mm.The crack length of finished sample is 24.5 mm.

    Fig.2 Loading diagram

    Fig.3 Connection diagram between test machine and CT specimen

    IST 8802 high and low temperature fatigue testing machine is used in the fatigue crack growth rate test system.The dynamic and static load capacity of the testing machine is equal to that of the sampling rate of 10 kHz.Creep fatigue testing system is used for dwell-fatigue crack growth rate.The test process was carried out according to GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials[15].The load spectrum used in fatigue and dwellfatigue tests[8]is shown in Fig.2.The maximum load is set at 8 kN and the stress ratio R is 0.03.Means of connection between test equipment and CT specimens and fixtures are shown in Fig.3.The precision of testing machine and extensometer are all up to the national standard GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials and American standard ASTME647 Standard Test Method for Measurement of Fatigue Crack Growth Rates.

    3 Results and analysis

    Based on the theoretical knowledge of compliance method,the length of crack propagation a is measured,and the corresponding cycle number N is determined,that is the a-N curve is obtained.By using the seven point incremental polynomial method to process the experimental data,the double logarithmic da/dN curves of fatigue and dwellfatigue crack growth rate of titanium alloy Ti-6Al-4V were made according to the treated data.The curves are shown in Figs.4-6.

    Fig.4 Experimental results of fatigue crack growth rate of titanium alloy Ti-6Al-4V

    The curve of Ti-6Al-4V fatigue crack growth rate test for titanium alloy is shown in Fig.4.It can be seen from the figure that the fatigue crack growth rate test has two sets of valid data,marked as 1#,2#,respectively.The coincidence between the two groups of test data is high.From the point of view of test,it can be considered that the test data of fatigue crack growth rate is more reliable.With the increase of the range of stress intensity factor,the growth rate of fatigue crack in both groups shows an increasing trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5.

    Fig.5 is the test data of dwell-fatigue test for 30 s and 60 s.There are two valid groups of data for each group,marked as 1#,2#,respectively.It can be seen from the diagram that the two groups of data have good coincidence and strong reliability.From the da/dN-ΔK logarithmic curves in the diagram,it is shown that the crack growth rate da/dN increases with the increase of the stress intensity ΔK factor range.For the crack growth rate after the loading time is introduced,the crack growth is stable in the range of stress intensity factor ΔK<45and the rate is increasing slowly.When the range of stress intensity factor ΔK reaches 76.5it is in the stage of instability and propagation,and the crack growth rate accelerates obviously in this stage.

    Fig.5 Experimental results of Ti-6Al-4V dwell-fatigue crack growth rate for titanium alloys

    Fig.6 Summary of fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V

    In order to compare and analyze the effect of different holding time on fatigue crack growth rate of titanium alloy Ti-6Al-4V,the double logarithmic curves da/dN-ΔK of Ti-6Al-4V fatigue and dwell-fatigue crack growth rate of titanium alloy under holding time of 30 s and 60 s are given in Fig.6.It is found from Fig.6 that the holding time has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V.The dwell-fatigue crack growth rate at 30 s and 60 s is higher than that of fatigue crack propagation.When holding time is introduced,with the increasing of holding time,the dwell-fatigue crack growth rate increases linearly in the same stress intensity factor range.With the increase of the range of stress intensity factor,the difference between fatigue and dwell-fatigue crack growth rate under holding time increases gradually.It is found that the material has lower resistance to dwell-fatigue crack propagation.That is,under the same stress intensity factor ΔK,the fatigue crack growth rate of the holding time 30 s and 60 s is higher than that of the fatigue crack growth rate.In the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.Therefore,this experiment can reflect the effect of dwell-fatigue on fatigue crack growth rate.

    4 Reliability verification of prediction model for dwell-fatigue crack growth behavior

    The fatigue crack growth rate test of titanium alloy Ti-6Al-4V under different holding time is predicted by using the dwell-fatigue crack growth rate prediction model mentioned above,and the predicted crack growth rate is compared with the experimental results.The corresponding prediction model parameters[16]are shown in Tab.3.The double logarithmic curves da/dN-ΔK of forecast result and test result based on forecast model,as shown in Fig.7.

    Tab.3 Model parameters

    Fig.7 Comparison of fatigue and dwell-fatigue crack growth rates of titanium alloy Ti-6Al-4V under different holding times

    It can be seen from Fig.7 that the prediction results of Ti-6AL-4V dwell-fatigue of titanium alloy by using the dwell-fatigue crack growth rate prediction model are in good agreement with the corresponding experimental results,and the experimental values are all distributed in the predicted values.With the increase of the stress intensity factor range,the fatigue crack growth rate also increases.When the range of stress intensity factor exceeds 50the prediction results of fatigue crack growth rate are in good agreement with the experimental results.When the stress intensity factor is larger than 50the experimental results are slightly different from the predicted ones.The reason may be that the crack growth rate is in the stage of unstable growth in the middle and late stage of the experiment,and the crack growth rate fluctuates slightly,which leads to a slight deviation from the predicted results.

    With the increase of holding time,the dwell-fatigue crack propagation rate of the material increases obviously.The test results and forecast results at 60 s are higher than those when holding time is 30 s.Compared with the results of two groups of dwell-fatigue prediction,the difference between the predicted values of 60 s and 30 s is about 1.5 to 2 times.Under the same stress intensity factor range,the difference between the experimental values of 60 s and 30 s of dwell-fatigue is about 1.7 to 2.5 times.In general,the prediction formula can be used to predict the dwell-fatigue crack growth rate of Ti-6Al-4V.

    5 Conclusions

    The fatigue problem of pressure-resistant shell structure is a hot topic in recent years.In this paper,the fatigue and dwell-fatigue crack propagation rate of titanium alloy Ti-6Al-4V has been studied experimentally and predicted.The fatigue of titanium alloy Ti-6Al-4V and the holding time of 30 s and 60 s were studied.The data are classified,calculated and analyzed after the test.And the forecasting model was put forward by our research group.The prediction value of the model is compared with the test value.The following conclusions are obtained:

    (1)The fatigue and dwell-fatigue of titanium alloy Ti-6Al-4V materials were studied.The holding time of dwell-fatigue was 30 s and 60 s,respectively.According to the experimental results,with the increase of the stress intensity factor range,the fatigue and dwell-fatigue crack growth rate increased in the same trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5;

    (2)The crack propagation rate curves of fatigue and dwell-fatigue were compared and analyzed.It is known that the dwell-fatigue crack growth rate is higher than the fatigue crack growth rate under the same stress intensity factor ΔK,in the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.With the increase of holding time,the crack growth rate increases obviously.The results show that the dwell has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V;

    (3)Based on the prediction model of dwell-fatigue crack propagation proposed by our group,the dwell-fatigue crack propagation behavior of titanium alloy Ti-6Al-4V was predicted and compared with the experimental results.It is found that with the increase of holding time,the Ti-6Al-4V dwell effect of titanium alloy is obvious.The predicted crack growth rate of titanium alloy Ti-6Al-4V is in good agreement with the experimental data,which indicates that the prediction model has a good ability to predict the dwell-fatigue crack growth behavior of titanium alloy Ti-6Al-4V.Therefore,the dwell-fatigue crack growth rate prediction model proposed in this paper,considering the dwell effect,has a strong ability to predict the crack growth rate of titanium alloy Ti-6Al-4V under dwell-fatigue condition.It provides a theoretical basis for studying the fatigue life prediction of marine structures under cyclic dwell-loading.

    麻豆成人午夜福利视频| 在线播放无遮挡| 啦啦啦中文免费视频观看日本| 欧美日韩综合久久久久久| 少妇熟女欧美另类| 国产高清国产精品国产三级 | 青春草视频在线免费观看| 两个人视频免费观看高清| 麻豆久久精品国产亚洲av| 特大巨黑吊av在线直播| 毛片一级片免费看久久久久| 男人舔奶头视频| 中国美白少妇内射xxxbb| 午夜激情欧美在线| 99九九线精品视频在线观看视频| 免费看a级黄色片| 久久精品国产亚洲av涩爱| 高清毛片免费看| 好男人视频免费观看在线| 免费av毛片视频| 一个人看的www免费观看视频| 成人二区视频| 欧美激情在线99| 国产真实伦视频高清在线观看| 国产伦在线观看视频一区| 国产精品一二三区在线看| xxx大片免费视频| 国产免费一级a男人的天堂| 久久久精品免费免费高清| 99热6这里只有精品| 精品久久国产蜜桃| 国产精品国产三级专区第一集| 不卡视频在线观看欧美| 丝瓜视频免费看黄片| 大香蕉97超碰在线| 亚洲精品国产av成人精品| 亚洲欧洲日产国产| 日韩一本色道免费dvd| 国产精品99久久久久久久久| 国产美女午夜福利| 美女大奶头视频| 亚洲综合精品二区| 麻豆国产97在线/欧美| 午夜福利在线在线| av福利片在线观看| 国产伦理片在线播放av一区| 内地一区二区视频在线| 老司机影院成人| 久久6这里有精品| 久久久久久伊人网av| 神马国产精品三级电影在线观看| 国产成人freesex在线| 欧美日韩亚洲高清精品| 亚洲欧美清纯卡通| 亚洲精品色激情综合| 国产女主播在线喷水免费视频网站 | 国产精品嫩草影院av在线观看| 免费大片18禁| 精品国产三级普通话版| 国产女主播在线喷水免费视频网站 | 国产探花在线观看一区二区| 建设人人有责人人尽责人人享有的 | 久久久久网色| 国产一区二区三区av在线| 一个人看视频在线观看www免费| 蜜桃久久精品国产亚洲av| 亚洲国产精品成人久久小说| 97在线视频观看| 国产成人freesex在线| 久久99热这里只频精品6学生| 老司机影院毛片| 亚洲精品一区蜜桃| 亚洲欧美中文字幕日韩二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 噜噜噜噜噜久久久久久91| 国产熟女欧美一区二区| 男女那种视频在线观看| 国产麻豆成人av免费视频| 中国国产av一级| 黄片wwwwww| 寂寞人妻少妇视频99o| 熟妇人妻久久中文字幕3abv| 尤物成人国产欧美一区二区三区| 能在线免费观看的黄片| 国产一区二区亚洲精品在线观看| 一区二区三区高清视频在线| 大香蕉久久网| 中文字幕av在线有码专区| 伊人久久国产一区二区| 国产麻豆成人av免费视频| 少妇猛男粗大的猛烈进出视频 | 亚洲激情五月婷婷啪啪| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久人妻蜜臀av| 老女人水多毛片| 狠狠精品人妻久久久久久综合| 少妇熟女欧美另类| 2021少妇久久久久久久久久久| 久久6这里有精品| 亚洲国产欧美人成| 亚洲国产精品sss在线观看| 22中文网久久字幕| 精品熟女少妇av免费看| 精品国产露脸久久av麻豆 | 美女大奶头视频| 亚洲精品乱码久久久久久按摩| 国产一级毛片七仙女欲春2| 亚洲精品久久久久久婷婷小说| 久久99精品国语久久久| 成人毛片60女人毛片免费| 天堂中文最新版在线下载 | 少妇人妻精品综合一区二区| 久久久色成人| 国语对白做爰xxxⅹ性视频网站| 视频中文字幕在线观看| 欧美性猛交╳xxx乱大交人| 国产欧美另类精品又又久久亚洲欧美| 少妇丰满av| 中文欧美无线码| 日韩一本色道免费dvd| 永久免费av网站大全| 成年女人看的毛片在线观看| 国产精品一区二区三区四区免费观看| 欧美高清成人免费视频www| 真实男女啪啪啪动态图| 国产黄片视频在线免费观看| 婷婷色麻豆天堂久久| 直男gayav资源| 一级二级三级毛片免费看| 日韩电影二区| 国产免费一级a男人的天堂| 欧美激情久久久久久爽电影| 舔av片在线| 美女脱内裤让男人舔精品视频| 美女内射精品一级片tv| 美女主播在线视频| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9| 欧美97在线视频| 中文字幕久久专区| 久久久a久久爽久久v久久| 国产 一区 欧美 日韩| 日本三级黄在线观看| 狠狠精品人妻久久久久久综合| 欧美成人午夜免费资源| 亚洲av在线观看美女高潮| 欧美成人精品欧美一级黄| 亚洲av不卡在线观看| 国产v大片淫在线免费观看| 99久国产av精品| 欧美 日韩 精品 国产| 亚洲国产成人一精品久久久| 色视频www国产| 女人被狂操c到高潮| 亚洲av电影不卡..在线观看| 久热久热在线精品观看| 99久国产av精品| 久久久久久久大尺度免费视频| 精品99又大又爽又粗少妇毛片| 99久国产av精品| 久久久久久久国产电影| 欧美日韩亚洲高清精品| 亚洲久久久久久中文字幕| 99热这里只有精品一区| 青春草国产在线视频| 亚洲国产色片| 亚洲最大成人手机在线| 五月天丁香电影| 五月天丁香电影| 一级毛片我不卡| 国产黄色小视频在线观看| 免费电影在线观看免费观看| 亚洲欧美成人综合另类久久久| 国产精品av视频在线免费观看| 男女下面进入的视频免费午夜| 91av网一区二区| 少妇被粗大猛烈的视频| 久久国产乱子免费精品| 国产精品无大码| 亚洲美女视频黄频| 亚洲av.av天堂| 一级毛片 在线播放| 亚洲av福利一区| 亚洲av成人av| 激情 狠狠 欧美| 亚洲精品久久午夜乱码| 天天躁日日操中文字幕| 亚洲va在线va天堂va国产| 欧美成人a在线观看| 午夜精品在线福利| 成人性生交大片免费视频hd| 国产成人aa在线观看| 国产成人aa在线观看| 日本黄色片子视频| 成年免费大片在线观看| 国产精品伦人一区二区| 如何舔出高潮| 欧美高清成人免费视频www| 精品不卡国产一区二区三区| www.av在线官网国产| 免费大片黄手机在线观看| 白带黄色成豆腐渣| 看免费成人av毛片| 国产成人精品福利久久| 欧美最新免费一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲乱码一区二区免费版| 日日啪夜夜撸| av在线观看视频网站免费| 中文欧美无线码| 男女下面进入的视频免费午夜| 免费不卡的大黄色大毛片视频在线观看 | 国产国拍精品亚洲av在线观看| 高清av免费在线| 亚洲欧洲日产国产| 国产综合精华液| 一级毛片久久久久久久久女| 一区二区三区四区激情视频| 亚洲精品国产av成人精品| 男人爽女人下面视频在线观看| 麻豆乱淫一区二区| 亚洲一区高清亚洲精品| 久久精品国产亚洲av天美| 国产综合懂色| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 欧美日本视频| 久久鲁丝午夜福利片| 国产熟女欧美一区二区| 久久久亚洲精品成人影院| 婷婷色综合大香蕉| 一边亲一边摸免费视频| 国产黄色小视频在线观看| 免费观看的影片在线观看| 免费黄色在线免费观看| 99久国产av精品| 高清毛片免费看| 真实男女啪啪啪动态图| 午夜视频国产福利| 精品少妇黑人巨大在线播放| 免费观看在线日韩| 蜜臀久久99精品久久宅男| 日本wwww免费看| 亚洲国产欧美人成| 色播亚洲综合网| 好男人在线观看高清免费视频| 建设人人有责人人尽责人人享有的 | 极品教师在线视频| av线在线观看网站| 国产午夜精品一二区理论片| 白带黄色成豆腐渣| 国产免费一级a男人的天堂| 欧美日韩在线观看h| 五月玫瑰六月丁香| 久久精品久久精品一区二区三区| av国产久精品久网站免费入址| 国产精品一区www在线观看| 国产精品国产三级国产专区5o| 直男gayav资源| 天堂影院成人在线观看| 波多野结衣巨乳人妻| h日本视频在线播放| 久久久久久久久久人人人人人人| 中文字幕av在线有码专区| 国产在视频线在精品| 亚洲成人一二三区av| 69人妻影院| 床上黄色一级片| 久久这里只有精品中国| 中文字幕av成人在线电影| 亚洲真实伦在线观看| 网址你懂的国产日韩在线| 国产成人freesex在线| 成人欧美大片| 国产大屁股一区二区在线视频| 国产精品国产三级国产专区5o| 亚洲四区av| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的 | 久久精品夜色国产| 欧美成人精品欧美一级黄| 国产又色又爽无遮挡免| 在线天堂最新版资源| 黄片wwwwww| 中国国产av一级| 日韩欧美精品免费久久| 午夜爱爱视频在线播放| 亚洲精品一区蜜桃| 内射极品少妇av片p| 午夜福利高清视频| 日韩不卡一区二区三区视频在线| 少妇的逼好多水| 男插女下体视频免费在线播放| 内地一区二区视频在线| 网址你懂的国产日韩在线| 亚洲精品久久久久久婷婷小说| www.色视频.com| 女人十人毛片免费观看3o分钟| 国产中年淑女户外野战色| 乱码一卡2卡4卡精品| 黄色一级大片看看| 国产三级在线视频| 亚洲av成人av| 亚洲av免费高清在线观看| 九九爱精品视频在线观看| 高清视频免费观看一区二区 | 男女视频在线观看网站免费| 99热这里只有是精品在线观看| 成年女人在线观看亚洲视频 | 尾随美女入室| 男女啪啪激烈高潮av片| 中文精品一卡2卡3卡4更新| 欧美成人a在线观看| 成年av动漫网址| 十八禁网站网址无遮挡 | 午夜福利在线观看免费完整高清在| 久久国产乱子免费精品| 国产 一区精品| 亚洲精品视频女| 中文天堂在线官网| 中文字幕av成人在线电影| freevideosex欧美| 久久99精品国语久久久| 黄片无遮挡物在线观看| 精品人妻视频免费看| 男女下面进入的视频免费午夜| 亚洲自拍偷在线| 国产精品无大码| 久久久久精品久久久久真实原创| 亚洲精品亚洲一区二区| 亚洲欧美精品自产自拍| 伦理电影大哥的女人| 国产伦一二天堂av在线观看| 丰满少妇做爰视频| 亚洲国产欧美人成| 国产精品三级大全| 最近最新中文字幕免费大全7| 国内揄拍国产精品人妻在线| 美女大奶头视频| xxx大片免费视频| 欧美成人a在线观看| 色视频www国产| av专区在线播放| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 国产在线一区二区三区精| 久久鲁丝午夜福利片| 全区人妻精品视频| 日韩精品有码人妻一区| 成人特级av手机在线观看| 午夜老司机福利剧场| 18禁动态无遮挡网站| 伊人久久精品亚洲午夜| 蜜臀久久99精品久久宅男| 狂野欧美激情性xxxx在线观看| 亚洲最大成人手机在线| 99热这里只有精品一区| 国产免费又黄又爽又色| 午夜爱爱视频在线播放| 亚洲av中文av极速乱| 久久精品夜色国产| 久久热精品热| 人妻制服诱惑在线中文字幕| 亚洲成人av在线免费| 国产一区二区三区av在线| 嫩草影院新地址| 婷婷色av中文字幕| 天天一区二区日本电影三级| 国产精品无大码| 91在线精品国自产拍蜜月| 久热久热在线精品观看| 九草在线视频观看| 久久久午夜欧美精品| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产| 免费看不卡的av| 精品人妻偷拍中文字幕| av一本久久久久| 国产69精品久久久久777片| 欧美日本视频| 亚洲自拍偷在线| 69人妻影院| 中文字幕免费在线视频6| 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 六月丁香七月| 老女人水多毛片| 精品一区二区三区人妻视频| 中文精品一卡2卡3卡4更新| 国产成人aa在线观看| 国产亚洲精品av在线| 午夜日本视频在线| 免费看美女性在线毛片视频| 嘟嘟电影网在线观看| 精品少妇黑人巨大在线播放| eeuss影院久久| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 亚洲成色77777| 3wmmmm亚洲av在线观看| 国产免费视频播放在线视频 | 国产黄频视频在线观看| 成人无遮挡网站| 18+在线观看网站| 亚洲欧美精品专区久久| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 人妻制服诱惑在线中文字幕| 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 成年女人在线观看亚洲视频 | 人人妻人人澡人人爽人人夜夜 | 日韩av在线大香蕉| 乱码一卡2卡4卡精品| 国产高潮美女av| 一级毛片久久久久久久久女| 中文字幕免费在线视频6| 插逼视频在线观看| 国产黄a三级三级三级人| 三级国产精品片| 成人亚洲精品一区在线观看 | 亚洲欧美日韩卡通动漫| av线在线观看网站| 永久免费av网站大全| 18禁在线播放成人免费| 欧美日韩亚洲高清精品| 99视频精品全部免费 在线| 2018国产大陆天天弄谢| 一级黄片播放器| 白带黄色成豆腐渣| 国产精品人妻久久久影院| 亚洲精品中文字幕在线视频 | 一二三四中文在线观看免费高清| 丰满少妇做爰视频| 成人亚洲精品av一区二区| av在线亚洲专区| 国产女主播在线喷水免费视频网站 | 亚洲激情五月婷婷啪啪| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 国产视频内射| 成人午夜精彩视频在线观看| 色网站视频免费| 亚洲成人精品中文字幕电影| 一二三四中文在线观看免费高清| 日日啪夜夜爽| 欧美xxⅹ黑人| 日韩成人伦理影院| 全区人妻精品视频| 男女下面进入的视频免费午夜| 亚洲国产色片| 不卡视频在线观看欧美| 色综合亚洲欧美另类图片| 99热6这里只有精品| 国产精品1区2区在线观看.| 国产亚洲最大av| 直男gayav资源| 免费高清在线观看视频在线观看| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 国产成人91sexporn| 少妇高潮的动态图| 高清视频免费观看一区二区 | 三级国产精品片| 老司机影院毛片| 欧美性猛交╳xxx乱大交人| 亚洲av在线观看美女高潮| av网站免费在线观看视频 | 美女高潮的动态| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 国产日韩欧美在线精品| 少妇人妻一区二区三区视频| 国产在视频线精品| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 欧美成人精品欧美一级黄| 1000部很黄的大片| 色播亚洲综合网| 少妇的逼水好多| 久久久久精品久久久久真实原创| 欧美xxxx性猛交bbbb| 网址你懂的国产日韩在线| 乱人视频在线观看| 免费观看精品视频网站| 免费播放大片免费观看视频在线观看| 三级毛片av免费| 国产精品久久久久久久电影| 免费大片18禁| 国产淫语在线视频| 精品一区二区免费观看| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 国精品久久久久久国模美| 美女被艹到高潮喷水动态| 精品久久久久久电影网| 亚洲一区高清亚洲精品| 22中文网久久字幕| 午夜福利在线观看吧| 国产伦理片在线播放av一区| 国产欧美另类精品又又久久亚洲欧美| 国产91av在线免费观看| 国产精品无大码| 国产成人aa在线观看| 国产av码专区亚洲av| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 99热网站在线观看| 91精品国产九色| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 久久久精品94久久精品| 亚洲天堂国产精品一区在线| av免费观看日本| 水蜜桃什么品种好| 欧美最新免费一区二区三区| 天美传媒精品一区二区| 免费看不卡的av| 午夜激情久久久久久久| 久久久久久久久久久丰满| 99久久精品热视频| 午夜精品国产一区二区电影 | 国产乱人偷精品视频| 日本与韩国留学比较| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆 | 极品少妇高潮喷水抽搐| 亚洲国产av新网站| 欧美高清性xxxxhd video| 只有这里有精品99| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 亚洲乱码一区二区免费版| 亚洲欧美日韩卡通动漫| 国产激情偷乱视频一区二区| www.色视频.com| 熟妇人妻不卡中文字幕| 久久久亚洲精品成人影院| 高清欧美精品videossex| 伦理电影大哥的女人| 青青草视频在线视频观看| 国产免费又黄又爽又色| 七月丁香在线播放| 午夜福利成人在线免费观看| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| 日本黄大片高清| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 深爱激情五月婷婷| 亚洲精品一二三| 有码 亚洲区| 免费观看精品视频网站| 亚洲精品色激情综合| 亚洲av在线观看美女高潮| av国产免费在线观看| 韩国av在线不卡| 国产亚洲5aaaaa淫片| 一级黄片播放器| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说| 午夜福利在线观看免费完整高清在| 最近手机中文字幕大全| 亚洲av二区三区四区| 69av精品久久久久久| 搞女人的毛片| 国产黄色小视频在线观看| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 联通29元200g的流量卡| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久 | 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 寂寞人妻少妇视频99o| 国产精品久久视频播放| 国内精品一区二区在线观看| 一个人免费在线观看电影| 久久久久久久久久成人| 国产精品女同一区二区软件| 91狼人影院| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 淫秽高清视频在线观看| 国产精品人妻久久久久久| 久久久久久久久中文| 国产成人精品婷婷| 夜夜爽夜夜爽视频| 精品午夜福利在线看| 精品一区二区三卡| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 国产一区二区亚洲精品在线观看| 午夜免费观看性视频| 一级片'在线观看视频| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 日韩一本色道免费dvd| 日韩一区二区三区影片| 国产真实伦视频高清在线观看| 亚洲成人一二三区av| eeuss影院久久| 精品亚洲乱码少妇综合久久| 在线免费观看的www视频|