• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydroelasticity of a Barge with Varying Bathymetry

    2018-10-12 06:28:04LUYeTEMARELPandeliZHOUYeTIANChaoWUYousheng
    船舶力學(xué) 2018年9期

    LU Ye,TEMAREL Pandeli,ZHOU Ye,TIAN Chao,WU You-sheng

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.University of Southampton,Southampton SO16 7QF,UK)

    Abstract:The uneven and complex seabed bathymetry is the greatest feature of the marine environment close to the reefs.In this paper,the three-dimensional(3D)hydroelasticity analysis with varying shallow water depth is used to calculate the wave-induced motions and loads of a floating barge,considering the non-uniformity of the seabed.The influence of the complex seabed topography is investigated by comparison to uniform seabed representation.Through modal summation the 3D hy droelasticity analysis provides predictions of wave-induced loads,such as bending moments and stresses,in regular waves,as well as design waves.These predicted wave loads show that modelling the non-uniform seabed has a significant effect on the floating structures’service near islands,depending on water depth and seabed variability.Use of parallel computing which is very suitable in dealing with the large number of calculations involved in the hydrodynamic modelling of the complex fluid-structure interaction system,has significantly reduced CPU times.

    Key words:3D hydroelasticity;varying bathymetry;shallow water;parallel computing

    0 Introduction

    Accurate prediction of the responses of floating bodies in complex and variable environments is important for their safety assessment.This is particularly important for varying and complex bathymetry.Commercial hydrodynamic software,such as AQWA and SESAM,is not suitable for calculating the motions and loads of floating marine structures operating in environments with non-uniform water depth.In traditional potential analysis,bathymetry of the bottom is assumed to be uniform.However,the uneven seabed affects the motion and loads of the floating structures.Therefore,prediction of wave-induced motions and loads and structural safety evaluation need to be carried out under realistic environmental conditions.

    The theory of three-dimensional(3D)linear hydroelasticity has been proposed by Bishop,Price and Wu[1]and the 3D hydroelastic analysis is already mature in the case of infinite and uniform water depth.The influence of non-uniform seabed has been investigated by many researchers,beginning with simple submersible shapes.For example,a semi-cylindrical structure of 150 m length and 4m radius in uniform 6 m water depth,has been examined by Dewi et al[2].Athanassoulis and Belibassakis[3-4]calculated the two-dimensional(2D)hydroelastic characteristics of an elastic thin plate in shallow water with uneven seabed,while Gerostathis et al[5]studied its 3D characteristics.Adrianov and Hermans[6]assessed the influence of various parameters,such as wavelength and wave direction,on the 2D hydroelasticity of very large floating structures(VLFS)in infinite and shallow waters.Sun et al[7],Lv et al[8]and Song et al[9]carried out model tests of VLFS considering the impact of the underwater bathymetry in regular and irregular waves.The uneven seabed is modelled by using a variety of sand dunes,of cylindrical and elliptical form,in the bottom of the wave basin.Kyoung et al[10]designed four different seabed arrangements to calculate the hydroelastic effects of very large floating bodies.Buchner[11]studied the influence of the seabed topography on ship motions by modelling the seabed as a second fixed body.He discussed the importance of having sloping boundaries for this second body rather than vertical walls.Using the aforementioned model[11],the necessity for using sloping boundaries for the modelled seabed terrain was verified by Ferreira et al[12].Hauteclocque et al[13]also assumed that the seabed topography is modelled as a second body fixed in the hydrodynamic analysis and obtained more accurate results of the motions and responses of ships.Utsunomiya et al[14]compared the hydroelastic responses of a box-type VLFS in uniform seabed,a seabed with 1/75 slope and a seabed with variable depth.Pinkster[15]proposed a simplified method for the hydrodynamic calculation of single-slope submarine terrain boundary,suitable when the mooring of multiple ships near the dock can be divided into multiple areas.The aforementioned studies,as can be seen,have all used simple shapes for the bathymetry rather than more realistic seabed topography.

    Four decades after its inception,the software THAFTS(Three-dimension Hydroelastic Analysis of Floating and Translating Structures)has proved to be a powerful tool for predicting wave-induced motions and loads of floating structures and validated by full-scale measurements and model tests.Considering non-uniform environmental conditions,Wu et al[16-17]and Tian et al[18-19]have further developed the three-dimensional linear hydroelasticity of large-scale floating bodies to account for the wave inhomogeneity,the variable water depth and the multi-module fluid-structures interactions.Li et al[20]investigated the dynamic behaviour of a VLFS in the relatively flat sea region in the middle of a lagoon surrounded by reefs.Yang et al[21]and Lu et al[22]used the same method to examine the motions and loads of the floating structures in non-uniform water depth and near-island reef environment and pointed out that the design load prediction considering the complexity of the seabed topography was important.These results were obtained using parallel computing in conjunction with the Message Passing Interface(MPI)on the ‘Shenwei TaihuLight’ supercomputer.

    In this paper,the 3D hydroelastic analysis software THAFTS,with the aforementioned parallel computing method,of floating structures in uneven seabed is demonstrated using a stationary barge as an example.The seabed is modelled as the second fixed body to solve the equations of motions of the stationary barge structure in this complex environment.Two cases of water depth are considered,namely 30 m and 10 m.For each of these cases the seabed is modelled as uniform using the relevant no flow condition at the seabed,and as non-uniform using the second fixed body.The predicted responses include heave and pitch motions and amidships vertical bending moment in regular head waves.Furthermore,the same method is applied using an Equivalent Design Wave(EDW)and illustrating direct stress distribution on the barge.

    1 Hydroelastic analysis method of a floating body

    1.1 Brief description of the 3D linear hydroelasticity theory

    The hydroelastic analysis of the barge is defined in a Cartesian coordinate system Oxyz,with x-axis positive to bow,x-y plane on the undisturbed water surface,z-axis pointing upwards and passing through the centre of gravity of the barge.Introducing the principal coordinates pr(t)(r=1,2,…,m),the displacementof the barge is expressed as a summation over the principal modes)of the floating structure in vacuo,namely.

    In this equation r=1,2,…6,correspond to rigid body motions of surge,sway,heave,roll,pitch and yaw respectively and m denotes the total number of principal modes allowed in the analysis.The generalized equations of motion are represented in terms of prin the matrix form as follows:

    where[a],[b]and[c]are the generalized mass,structural damping and stiffness matrices of the dry structure and[A],[B]and[C]are the generalized added inertia,hydrodynamic damping and fluid restoring matrices,respectively.{p}represents the principal coordinate vector and}is the generalized wave forcevector,containing both incident wave and wave diffraction contributions.

    The potentials Φ comprises the incident potential φI(t),diffraction potential φD(t)and radiation potentialAll potentials satisfy Laplace’s equation and the free surface,seabed,and far-field boundary conditions.The pulsation source Green’s function is used for the radiation potentials.

    The principal coordinates are obtained in regular waves(frequency domain analysis)and the deformations and internal forces,such as bending moments and stresses,are obtained using modal summation.For instance,the vertical bending moment about y-axis at a cross-section along the structure is

    and the longitudinal direct stress at a defined point (x,y,)zon the section is

    In these equations,σxrand Myrrepresent the modal longitudinal direct stress and modal vertical bending moment for the r th mode shape,respectively.

    When a floating structure is deployed in shallow water,the encountered wave conditions and the structural responses may be greatly influenced by the varied seabed topography.In such a complicated geographic environment,the characteristics of wave evolution must be clarified,and the corresponding hydroelastic analysis approaches must be developed.

    When the barge is deployed in shallow water close to the island,the complex seabed can be represented as a fixed boundary.To account for the influence on the diffraction and radiation,the boundary conditions on the non-uniform seabed,represented by the second fixed body,become:

    Equations(5-6),as can be seen,are applied to variable water depth and appropriate to the uneven seabed topography.

    1.2 Parallelization computing

    In addition to the complex shape of the floating structure,the fluid domain contains a nonuniform shallow water environment.Therefore,a large number of panels to discretise floating structure-fluid interface and non-uniform seabed are required.Usually,a larger extent of the seabed needs to be modelled by comparison to the floating structure.Furthermore,as the seabed does not possess port/starboard symmetry as typical conventional ships,the number of panels are much larger than those of the floating body,thus increase the calculation effort.Therefore,the analysis process is very slow when using a serial code,exacerbated by the number of distortion modes included and wave frequencies for which the analysis is carried out.

    Accordingly,the MPI and multi-level parallel programming model are used,focusing at the(wet)panels,the wave frequencies,and so on,rather than the existing serial THAFTS program.The calculations were performed on the ‘Sunway TaihuLight’,which is ranked 1 in the current TOP500 supercomputer list(top position in 06/2016,11/2016,06/2017 and 11/2017).This is a system developed by China’s National Research Center of Parallel Computer Engineering&Technology(NRCPC)and installed at the National Supercomputing Center in Wuxi.Using the aforementioned high-performance computing facilities,the calculation times decreased significantly for the 3D linear hydroelastic motions and structural dynamic responses of the barge with the non-uniform seabed conditions in the near-island environment.

    2 Structural and hydrodynamic modelling

    2.1 Structural model

    The principal particulars of the barge are shown in Tab.1.A typical fully loaded condition is selected for the analysis.The 3D structural model,as shown in Fig.1,was generated by suitable beam and shell finite elements.A total of 70029 elements were used for the whole barge structure,in the MSC.Patran software,to model major structural components such as deck,side shell,double bottom,transverse bulkheads,longitudinal girders,superstructures,etc.

    Fig.1Structural FE model of the barge comprising 70029 elements in total

    The Lanczos method was selected to obtain the eigenvalues and eigenvectors.The first four natural frequencies and mode shapes,of the vessel freely vibrating in vacuo,are shown in Fig.2.A total 30 distortion modes were included in the analysis,i.e.m=36.

    Tab.1 Principal particulars of the barge

    The vehicle ramp situated near the fore quarter,and the superstructure disrupt the port starboard symmetry,as can be seen in Fig.1.However,as can be seen from Fig.2,these small asymmetries have very little effect on the symmetric nature of the 2-node or 3-node vertical bending modes or the antisymmetry of the 1-node twisting and 2-node horizontal bending modes.Therefore,the conventional definition for port-starboard symmetric structures is still used.Accordingly,the principal mode shapes of this barge were defined as symmetric(2-node and 3-node vertical bending)and antisymmetric(1-node torsion and 2-node horizontal bending).The coupling between torsion and horizontal bending is relatively small and inherent in the 3D finite element model.

    Fig.2 The first four flexural mode shapes of the barge and corresponding nature frequencies(a)2-node vertical bending(r=7),2.038 Hz;(b)1-node torsion(r=8),3.024 Hz;(c)3-node vertical bending(r=9),4.475 Hz;(d)2-node horizontal bending(r=10),5.141 Hz

    2.2 Hydrodynamic model

    Located in shallow water near a reef,the seabed is non-uniform.In order to ascertain the effects of varying bathymetry on the dynamic behaviour of the floating barge,two models of the environment were used,i.e.(i)uniform seabed and(ii)seabed with varying topography modelled as a second fixed body.For the latter only the local terrain range was modelled,under the assumption that this is the seabed region which will affect the motions and loads of the floating body.This also reduces the amount of calculations performed.The selected seabed has length of 200 m and width of 120 m,along the x and y axes,respectively as per the floating barge.The topography of the seabed is completely submerged with the fixed body boundaries sloping smoothly.The seabed topography corresponds to real seabed data near reefs.Two depths are considered corresponding to vertical distances between the seabed and the barge centre of gravity of 30 m and 10 m.There are 3 476 four-cornered or three-cornered wet panels on the barge(whole of the barge)wetted interface.There are 9 792 panels on the seabed,as shown in Fig.3,nearly 3 times of the floating body.It should be noted that the normal points are out to the flow both for the barge and the second body representing the seabed.The hydrodynamic model of the barge/seabed system with complicated terrain is shown in Fig.3.

    Fig.3 Hydrodynamic model of a barge including bathymetry of seabed

    3 Results and discussion

    3.1 Influence of water depth and bathymetry

    For the analysis in this paper the barge is stationary in regular head waves.Using the serial code in a typical workstation requires 6.5 hours to complete the calculations for one wave frequency.On the other hand,the same calculation is carried out in 100 s CPU time on the supercomputer using parallel computing with MPI.

    Fig.4 Comparison RAOs of heave motion at different water depths

    Fig.5 Comparison RAOs of pitch motion at different water depths

    Fig.6 Comparison of RAOs of VBM at amidships at different uniform water depths

    Fig.7 Comparison of RAOs of VBM at amidships with uniform&non-uniform seabed

    The heave and pitch motions of the barge in head regular waves of unit amplitude are shown in Figs.4 and 5,respectively,as a function of the wave frequency ω.The response amplitude operator(RAO)of the amidships vertical bending moment(VBM)of the barge in head waves is shown in Figs.6 and 7.Both uniform and complex seabed topographies are included for 30 m and 10 m water depths.

    Considering uniform seabed,heave RAOs show a decrease with decreasing water depth in low wave frequencies.Pitch RAO peaks appear to be unaffected by changes in the uniform water depth.Similar trends for heave and pitch RAOs were observed by Feng et al[23]who investigated the influence of depth using the commercial software WADAM,as well as Buchner’s calculations[11].On the other hand,amidships VBM RAO peaks increase with decreasing uniform water depth.Furthermore,the peak of VBM and pitch RAOs are observed at lower wave frequencies with decreasing uniform water depth.This implies that the conventional ship-wave matching concept in infinite water depth,is affected considerably by decreasing water depth.

    The influence of the non-uniformity of the seabed is dependent on the water depth itself,as can be seen from Figs.4,5 and 7.For the 30 m water depth the non-uniformity of the seabed has small influences on heave and pitch RAOs.This is also true for the amidships VBM RAO,which has a smaller peak for the non-uniform seabed compared to the uniform seabed case.At this depth the non-uniformity of the terrain does not influence the wave frequency at which pitch and VBM RAOs peak.On the other hand,for the 10m water depth significant increases are observed in the heave and pitch RAOs and amidships VBM RAOs,the former almost doubling the heave and pitch RAO peak and the latter showing a nearly 50%increase in the peak value.It should be noted that the numerical predictions by Buchner[11],for 15 m nonuniform water depth also show similar increases in heave and pitch RAOs in relatively low wave frequencies.It is also observed that the non-uniformity of the seabed results in a peak for the heave RAO,albeit at a wave frequency lower than that for the peak pitch RAO.The wave frequencies at which the pitch and amidships VBM RAOs peak also become smaller as a result of the non-uniformity.

    3.2 Short-term extreme value forecast

    According to measured data in the target sea area,the Jonswap wave spectrum is applicable to the limited wind area,namely

    where the generalized constant of Jonswap spectrumis the significant wave height,ω and ωpare the wave and peak frequencies,respectively,and g is the gravitational acceleration.γ is a non-dimensional peak shape parameter which follows a Gaussian distribution with mean value of 2.0,according to the measured statistical data and σ is a numerical parameter,σ=0.07( ω≤ωp).

    Although this barge may be subjected to a variety of external loads,the wave-induced load is the main part of the external loading and plays a decisive role in the assessment of the longitudinal strength.In this paper,the wave load is calculated by the equivalent design wave method.

    The design parameters of the barge for three peak periods Tpare given in Tab.2,for significant wave height Hs=4 m.Head and following waves are denoted by 180°and 0°,respectively.The peak RAO of vertical bending moments and shear forces(VSF),amongst different wave directions,always occurred at 0°and 180°;hence,only these two angles are compared in Tab.2.The EDW parameters are also provided in Tab.2.

    Tab.2 Equivalent design wave parameters

    3.3 Stress distribution

    Using the equivalent design wave parameters,the stress analysis of the barge is carried out directly by hydroelastic method.It is not necessary to apply the corresponding external load to the structural model,basically,used in the traditional method.A hydroelastic analysis is carried out using the properties of the EDW,in water depth of 30 m with non-uniform seabed,and evaluating the stresses using Eq.(4).

    The results,presented in Fig.8,show that the direct stresses at amidships are larger than other positions along the barge.In addition,considering EDW2 shear forces,hence shear stresses,at the aft quarter section(L/4)are maximum.

    Fig.8 Direct stress distribution of the barge in EDW2(a)The whole structure;(b)The structures under the deck;(c)Longitudinal bulkheads;(d)Transverse bulkheads

    4 Conclusion and discussion

    In this paper,the subject of a floating body operating near islands together with non-uniform seabed topography is investigated by using 3D linear hydroelasticity.This is an important problem,considering increases in offshore operations and the associated complexity of the seabed.

    In the absence of commercial software which can predict the performance of floating marine structures operating near reefs,including varying bathymetry,3D hydroelastic software THAFTS has been further developed to perform such an analysis.

    In this paper,the motions and vertical bending moments of the barge,stationary in head waves,in uniform and non-uniform seabed terrains were compared.Based on these predictions,it is concluded that the influence of the uneven seabed is significant enough to be considered when marine structures are deployed near islands and reefs in shallow water,e.g.of the order of 0.1L.Further investigations are necessary to understand the influence of the seabed topography on different wave-induced motions and loads,particularly as a function of the amount of non-uniformity in the seabed topography.

    Furthermore,the current method,which allows for non-uniformity of seabed,has been applied to an equivalent design wave showing the complexities involved in EDW parameters in terms of bending moments,shear forces and wave direction.

    The hydrodynamic models used include complex bathymetry,hence require very large number of panels when modelling the floating body and the seabed,the latter as a second fixed body.Use of the Sunway TaihuLight supercomputer,currently having the fastest computing speed,has significantly improved the CPU time used combined with parallel computing and the MPI method.

    Acknowledgment

    The work was supported by the Ministry of Science and Technology with the research project(Grant No.2017YFB0202700)and the Ministry of Industry and Information Technology with the research project in the field of high-tech ships.

    亚洲国产高清在线一区二区三| 欧美日韩福利视频一区二区| 欧美黑人欧美精品刺激| av免费在线观看网站| 精品久久久久久成人av| 狠狠狠狠99中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久人人人人人| 免费观看精品视频网站| 99热6这里只有精品| 国产精品爽爽va在线观看网站| 好男人电影高清在线观看| 午夜日韩欧美国产| 桃色一区二区三区在线观看| 人成视频在线观看免费观看| 国内揄拍国产精品人妻在线| 老司机深夜福利视频在线观看| 美女扒开内裤让男人捅视频| 男人的好看免费观看在线视频 | 欧美一级毛片孕妇| 啪啪无遮挡十八禁网站| 日韩精品免费视频一区二区三区| 一边摸一边做爽爽视频免费| 啦啦啦观看免费观看视频高清| 国产成人av教育| 男女之事视频高清在线观看| 国产又色又爽无遮挡免费看| 在线观看66精品国产| 国产精品爽爽va在线观看网站| 全区人妻精品视频| 久久人妻av系列| 国产精品美女特级片免费视频播放器 | 可以免费在线观看a视频的电影网站| 久久精品91无色码中文字幕| 天堂动漫精品| 97碰自拍视频| 特级一级黄色大片| 级片在线观看| 一进一出抽搐动态| 国产伦人伦偷精品视频| 国产精品久久久人人做人人爽| 老汉色∧v一级毛片| 亚洲av成人一区二区三| 成熟少妇高潮喷水视频| 午夜免费激情av| 久久久久久久午夜电影| 丁香欧美五月| 精品国产亚洲在线| 搡老熟女国产l中国老女人| 成人18禁在线播放| 在线观看免费午夜福利视频| 欧美日韩乱码在线| 精品国产美女av久久久久小说| 精品电影一区二区在线| 欧美性长视频在线观看| 最新美女视频免费是黄的| 免费在线观看亚洲国产| 老鸭窝网址在线观看| 国产午夜精品久久久久久| 色噜噜av男人的天堂激情| 我的老师免费观看完整版| 国产伦在线观看视频一区| 中文字幕最新亚洲高清| 99热6这里只有精品| 丝袜人妻中文字幕| 天天添夜夜摸| 免费av毛片视频| 亚洲真实伦在线观看| 精品少妇一区二区三区视频日本电影| 精品高清国产在线一区| 国产av一区在线观看免费| 麻豆国产av国片精品| 日本a在线网址| 19禁男女啪啪无遮挡网站| 一a级毛片在线观看| 午夜福利高清视频| 曰老女人黄片| 一区二区三区国产精品乱码| 法律面前人人平等表现在哪些方面| 在线观看免费午夜福利视频| 日本 欧美在线| 欧美性猛交╳xxx乱大交人| 久久婷婷人人爽人人干人人爱| 又粗又爽又猛毛片免费看| 麻豆成人av在线观看| 久久久久免费精品人妻一区二区| 成人18禁高潮啪啪吃奶动态图| 成人国语在线视频| 久久午夜亚洲精品久久| 狠狠狠狠99中文字幕| 久久精品综合一区二区三区| 久久精品国产清高在天天线| 亚洲国产精品999在线| 一区二区三区高清视频在线| 婷婷精品国产亚洲av| 搡老熟女国产l中国老女人| 日韩大尺度精品在线看网址| 欧美另类亚洲清纯唯美| 免费在线观看成人毛片| tocl精华| 久久精品91无色码中文字幕| 欧美日韩亚洲综合一区二区三区_| 欧美黑人欧美精品刺激| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品一区二区三区四区久久| 国产在线观看jvid| 天天躁夜夜躁狠狠躁躁| 日本黄色视频三级网站网址| 国产精品一区二区三区四区免费观看 | 亚洲成av人片免费观看| 成人午夜高清在线视频| 欧美性猛交黑人性爽| 久久热在线av| 久久久久久亚洲精品国产蜜桃av| 一本一本综合久久| 一级片免费观看大全| 国产伦人伦偷精品视频| 亚洲av日韩精品久久久久久密| 1024香蕉在线观看| 男人舔女人下体高潮全视频| 日本五十路高清| 黄色 视频免费看| 变态另类成人亚洲欧美熟女| 成人永久免费在线观看视频| 麻豆一二三区av精品| 人妻丰满熟妇av一区二区三区| 亚洲国产中文字幕在线视频| 女人被狂操c到高潮| 久久这里只有精品19| av福利片在线| 黄片大片在线免费观看| 精品久久久久久久末码| 午夜亚洲福利在线播放| 亚洲av电影在线进入| 哪里可以看免费的av片| 亚洲成人国产一区在线观看| 国内揄拍国产精品人妻在线| 精华霜和精华液先用哪个| 亚洲精品一区av在线观看| 亚洲 国产 在线| 人妻夜夜爽99麻豆av| 欧美成人午夜精品| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区免费观看 | 亚洲免费av在线视频| 国产成人av教育| 国产精品美女特级片免费视频播放器 | 日本 av在线| 在线观看一区二区三区| 无遮挡黄片免费观看| 久久久久亚洲av毛片大全| 三级国产精品欧美在线观看 | 成年版毛片免费区| 色老头精品视频在线观看| 国产伦一二天堂av在线观看| 99久久99久久久精品蜜桃| 精品高清国产在线一区| 亚洲精品av麻豆狂野| 高潮久久久久久久久久久不卡| 九色国产91popny在线| 亚洲av电影不卡..在线观看| 老司机福利观看| 夜夜夜夜夜久久久久| 欧美色欧美亚洲另类二区| 亚洲人成伊人成综合网2020| 欧美日韩一级在线毛片| 亚洲色图 男人天堂 中文字幕| 国产亚洲av嫩草精品影院| 嫁个100分男人电影在线观看| 丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 久久精品成人免费网站| 最近最新免费中文字幕在线| 99国产精品一区二区蜜桃av| 两个人视频免费观看高清| 大型av网站在线播放| 啪啪无遮挡十八禁网站| 老鸭窝网址在线观看| 国产精品 国内视频| 1024视频免费在线观看| 大型av网站在线播放| 久久亚洲真实| 久久精品成人免费网站| 日本一二三区视频观看| 亚洲色图 男人天堂 中文字幕| 1024手机看黄色片| 久9热在线精品视频| 日本一区二区免费在线视频| 亚洲人成伊人成综合网2020| 国产亚洲欧美98| 老司机午夜福利在线观看视频| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 在线播放国产精品三级| 久久午夜综合久久蜜桃| 九色国产91popny在线| 一级毛片女人18水好多| 脱女人内裤的视频| 亚洲中文日韩欧美视频| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 国产乱人伦免费视频| 小说图片视频综合网站| 亚洲中文字幕一区二区三区有码在线看 | 色综合欧美亚洲国产小说| 精品久久久久久久久久久久久| 中文字幕最新亚洲高清| 50天的宝宝边吃奶边哭怎么回事| 一级毛片精品| 女人爽到高潮嗷嗷叫在线视频| www日本在线高清视频| 欧美日韩精品网址| 亚洲中文字幕日韩| 麻豆久久精品国产亚洲av| 好男人电影高清在线观看| 国产三级在线视频| 一a级毛片在线观看| 免费电影在线观看免费观看| 国产欧美日韩精品亚洲av| 久久精品综合一区二区三区| 日韩欧美免费精品| av视频在线观看入口| 国产精品久久视频播放| tocl精华| 两人在一起打扑克的视频| 99久久综合精品五月天人人| 高清在线国产一区| 脱女人内裤的视频| 国产熟女xx| 白带黄色成豆腐渣| 精品国产超薄肉色丝袜足j| 12—13女人毛片做爰片一| 久久久久久人人人人人| 亚洲自拍偷在线| 日本 av在线| АⅤ资源中文在线天堂| 亚洲九九香蕉| 亚洲五月天丁香| 久久香蕉激情| 桃色一区二区三区在线观看| 亚洲男人的天堂狠狠| 精品第一国产精品| 亚洲 欧美一区二区三区| 久久久久免费精品人妻一区二区| 欧美不卡视频在线免费观看 | 51午夜福利影视在线观看| www.www免费av| 热99re8久久精品国产| 成人三级做爰电影| 亚洲人成网站高清观看| 亚洲av成人一区二区三| 精品福利观看| 老熟妇仑乱视频hdxx| 无遮挡黄片免费观看| 午夜免费观看网址| 亚洲国产欧美人成| 欧美zozozo另类| 久久久国产成人免费| 成年女人毛片免费观看观看9| 91大片在线观看| 91在线观看av| 麻豆成人av在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产看品久久| 长腿黑丝高跟| 欧美成人性av电影在线观看| 香蕉国产在线看| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| 搡老熟女国产l中国老女人| 麻豆成人av在线观看| av天堂在线播放| 黄色女人牲交| 久久久久久国产a免费观看| 免费搜索国产男女视频| 可以在线观看的亚洲视频| 色av中文字幕| 国产探花在线观看一区二区| 欧美 亚洲 国产 日韩一| 国产99白浆流出| 啦啦啦免费观看视频1| 一二三四社区在线视频社区8| 日本免费a在线| 亚洲成a人片在线一区二区| www.精华液| 一区二区三区国产精品乱码| 一二三四在线观看免费中文在| 精品电影一区二区在线| 亚洲片人在线观看| 久久香蕉国产精品| 啪啪无遮挡十八禁网站| 非洲黑人性xxxx精品又粗又长| 丰满人妻熟妇乱又伦精品不卡| 亚洲成av人片在线播放无| 又紧又爽又黄一区二区| 2021天堂中文幕一二区在线观| 欧美午夜高清在线| 成在线人永久免费视频| 两性夫妻黄色片| 欧美黄色淫秽网站| 淫妇啪啪啪对白视频| 婷婷亚洲欧美| 精品人妻1区二区| 99热只有精品国产| 成人午夜高清在线视频| 亚洲人与动物交配视频| 91大片在线观看| 亚洲国产精品合色在线| 男人舔奶头视频| 中文字幕人妻丝袜一区二区| 欧美在线一区亚洲| 午夜老司机福利片| 欧美大码av| 在线十欧美十亚洲十日本专区| 精品电影一区二区在线| 免费电影在线观看免费观看| 国产高清有码在线观看视频 | 最近视频中文字幕2019在线8| 亚洲五月婷婷丁香| 99久久综合精品五月天人人| 一区二区三区国产精品乱码| 精品国产亚洲在线| 一区福利在线观看| 国产精品av久久久久免费| 欧美色视频一区免费| 国产高清videossex| www日本在线高清视频| 国产精品影院久久| 亚洲精品美女久久av网站| 久久久久久久精品吃奶| 最新在线观看一区二区三区| 一级毛片精品| 国产一级毛片七仙女欲春2| 两个人免费观看高清视频| 黄频高清免费视频| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清| 小说图片视频综合网站| 一a级毛片在线观看| 久久人妻福利社区极品人妻图片| 一进一出抽搐动态| 啦啦啦观看免费观看视频高清| 女同久久另类99精品国产91| 搡老岳熟女国产| 国产精品av久久久久免费| bbb黄色大片| 精品国内亚洲2022精品成人| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 国产高清有码在线观看视频 | 看片在线看免费视频| 欧美日韩黄片免| 久久中文看片网| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 亚洲va日本ⅴa欧美va伊人久久| 91字幕亚洲| 亚洲熟妇熟女久久| 国产av又大| 99热这里只有是精品50| 全区人妻精品视频| 久久精品国产清高在天天线| 日本 欧美在线| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区免费观看 | 女人爽到高潮嗷嗷叫在线视频| 97碰自拍视频| videosex国产| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| 麻豆久久精品国产亚洲av| 国产成年人精品一区二区| 午夜福利视频1000在线观看| 一本精品99久久精品77| 在线观看66精品国产| 两个人免费观看高清视频| 男女视频在线观看网站免费 | 亚洲乱码一区二区免费版| 亚洲性夜色夜夜综合| 在线看三级毛片| 欧美日本视频| 免费看a级黄色片| 午夜福利免费观看在线| 三级毛片av免费| 午夜日韩欧美国产| 久久久久亚洲av毛片大全| 淫秽高清视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| or卡值多少钱| 中文字幕精品亚洲无线码一区| 人人妻人人看人人澡| 国产精品影院久久| 亚洲九九香蕉| 精品久久蜜臀av无| 超碰成人久久| 日韩精品免费视频一区二区三区| 男女视频在线观看网站免费 | 巨乳人妻的诱惑在线观看| 岛国在线免费视频观看| 午夜成年电影在线免费观看| 三级男女做爰猛烈吃奶摸视频| 婷婷六月久久综合丁香| 欧美zozozo另类| 亚洲国产精品久久男人天堂| 国产亚洲av高清不卡| 国产精品,欧美在线| 成年人黄色毛片网站| 啦啦啦韩国在线观看视频| 久久久久久人人人人人| 90打野战视频偷拍视频| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| av在线播放免费不卡| 色精品久久人妻99蜜桃| 欧美久久黑人一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱| 男人的好看免费观看在线视频 | 亚洲激情在线av| 国产欧美日韩一区二区精品| 中文字幕av在线有码专区| 国产亚洲精品第一综合不卡| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 国产亚洲精品久久久久久毛片| 美女高潮喷水抽搐中文字幕| 欧美人与性动交α欧美精品济南到| 久久久久久久久中文| 巨乳人妻的诱惑在线观看| 久久精品91无色码中文字幕| 黄色a级毛片大全视频| 日韩精品青青久久久久久| 51午夜福利影视在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美久久黑人一区二区| 最新美女视频免费是黄的| 国产精品综合久久久久久久免费| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 国产精品免费视频内射| 天堂动漫精品| 夜夜夜夜夜久久久久| 国产精品99久久99久久久不卡| 国产高清视频在线观看网站| 国产日本99.免费观看| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 成年版毛片免费区| 免费高清视频大片| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 亚洲中文av在线| 老司机福利观看| 日本黄大片高清| 丝袜美腿诱惑在线| 亚洲第一电影网av| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 最近最新中文字幕大全电影3| 97碰自拍视频| 母亲3免费完整高清在线观看| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 久久精品91无色码中文字幕| 天堂av国产一区二区熟女人妻 | 黄色视频,在线免费观看| 成人18禁在线播放| 亚洲 国产 在线| 夜夜爽天天搞| 精品久久久久久久人妻蜜臀av| 亚洲国产看品久久| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 美女黄网站色视频| 两人在一起打扑克的视频| 国产亚洲av高清不卡| 最近视频中文字幕2019在线8| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 欧美黑人巨大hd| 国产成人精品久久二区二区免费| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 在线十欧美十亚洲十日本专区| 国内揄拍国产精品人妻在线| 日本a在线网址| 一级毛片女人18水好多| 国产野战对白在线观看| 这个男人来自地球电影免费观看| www.精华液| 女同久久另类99精品国产91| 国产三级黄色录像| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 日本一本二区三区精品| 日韩成人在线观看一区二区三区| 在线观看免费日韩欧美大片| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 日韩免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲国产日韩欧美精品在线观看 | 成年版毛片免费区| 精品久久久久久久末码| 色老头精品视频在线观看| 久久中文看片网| 中文在线观看免费www的网站 | 亚洲人成网站高清观看| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 女警被强在线播放| 波多野结衣高清无吗| 久久久国产成人免费| 日韩欧美 国产精品| 制服诱惑二区| 亚洲成人免费电影在线观看| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 亚洲欧美激情综合另类| 男人舔奶头视频| 欧美一级毛片孕妇| 不卡av一区二区三区| 久久中文字幕人妻熟女| 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 在线播放国产精品三级| 五月伊人婷婷丁香| 99热这里只有精品一区 | 国产高清视频在线播放一区| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看 | 小说图片视频综合网站| 欧美zozozo另类| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 亚洲 欧美一区二区三区| 欧美性猛交黑人性爽| 50天的宝宝边吃奶边哭怎么回事| 88av欧美| 法律面前人人平等表现在哪些方面| 午夜免费观看网址| 日韩大尺度精品在线看网址| 午夜福利免费观看在线| 不卡av一区二区三区| 免费看十八禁软件| 我的老师免费观看完整版| 免费看十八禁软件| 一级毛片精品| 亚洲美女黄片视频| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 此物有八面人人有两片| www国产在线视频色| 美女午夜性视频免费| 精品久久久久久久久久久久久| 久久精品影院6| 亚洲av片天天在线观看| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 久久久久国产精品人妻aⅴ院| 丝袜人妻中文字幕| 久久久久性生活片| 色噜噜av男人的天堂激情| 久久热在线av| av有码第一页| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 日韩成人在线观看一区二区三区| e午夜精品久久久久久久| av国产免费在线观看| 色尼玛亚洲综合影院| 欧美午夜高清在线| 亚洲在线自拍视频| 十八禁网站免费在线| 91在线观看av| 国产黄色小视频在线观看| 变态另类成人亚洲欧美熟女| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 国产成人av教育| 美女免费视频网站| 中文字幕精品亚洲无线码一区| 色噜噜av男人的天堂激情| 50天的宝宝边吃奶边哭怎么回事| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 我的老师免费观看完整版| 操出白浆在线播放| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 久久中文字幕一级| 亚洲欧美精品综合久久99| 黄色女人牲交| 国产片内射在线|