• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on Higher-Order Responses of Vortex-Induced Vibration for a Mounted Cylinder

    2018-10-12 06:27:58WANGRenfengCHENKeYOUYunxiangDUANJinlong
    船舶力學 2018年9期

    WANG Ren-feng,CHEN Ke,YOU Yun-xiang,DUAN Jin-long

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    Abstract:According to its significant effect on the structural vortex-induced vibration(VIV),higher-order responses of VIV on a mounted cylinder in a uniform flow is investigated on the basis of the classical Van der Pol wake oscillator.Both the first-order and higher-order responses are discussed for the interaction of a wake oscillator and a linear spring-mass-damper system.Equations are established to model the mechanism of VIV concerning the first-plus higher-order responses,and the analysis of the dynamical performance includes displacement,velocity and acceleration coupling terms.Moreover,comparison with the motion characteristics that only take the first-order response into account is made for various mass damping ratios.The results show that the new model based on the first-plus higher-order responses can characterize the behavior of VIV more precisely,such as the amplitudes of structural vibrations.The motion amplitudes of the wake oscillator and the cylinder enlarge to certain degrees,respectively.Although features of the higher-order responses including structural motion amplitude are several orders of magnitude smaller than that of the first-order response,it is not negligible according to its apparent influence on the first-order response.

    Key words:vortex-induced vibration(VIV);structure and wake oscillator coupling;Van der Pol oscillator;first-plus higher-order responses

    0 Introduction

    Because of its dramatic influence on ocean structures,vortex-induced vibration(VIV)has been investigated over the past several decades.When VIV occurs,complicated and drastic interactions between the fluid and the structure will be triggered.Specifically,when a cylin drical structure encounters VIV,as a result of the instability of fluid,boundary layer will separate from the structure at a certain velocity.Meanwhile,the periodic force generated by the fluid makes the structural vibration,and the motion of the structure influences the characteristics of the fluid simultaneously.Additionally,the vortex shedding frequency locked into the structural natural frequency leads the amplitudes of the structural motions into drastic increase until the peak value appears at lock-in[1].Consequently,potential fatigue damage is possibly involved in deep-sea exploration and production when VIV occurs.

    Numerous fundamental studies on VIV have been reported,and there are three major methods of the research on VIV:experimental method,semi-empirical method and computational fluid dynamics(CFD)method[2-3].As the most direct approach,experimental method can reproduce actual conditions.It focuses on structural motions,fluid forces and mode transition of VIV at different mass damping ratios[4-6].However,in some cases,experimental method is hardly available due to the restriction of experimental conditions.Although CFD method can reasonably simulate the hydrodynamic forces that act on a tensioned riser[7-8],it is difficult to be fully implemented in industrial design because of the insufficient understanding of turbulence.Especially,as a result of time-consuming,CFD method is barely practical for large aspect ratio risers.Semi-empirical models,on the contrary,are more feasible and efficient to calculate the hydrodynamic forces initiated by vortices[9-11].

    The original concept-Van der Pol equation-has been extensively discussed and utilized as an effective model[12-14].It is not only adopted to simulate the 3-D features of vortexes that shed off from stationary structures[15-16],but is also used to model VIV of slender structures in uniform and shear flows[17-19].Meanwhile,the forcing term,which is proportional to the displacement,velocity or acceleration in the Van der Pol equation,reflects the influence of structural motions on the wake[20].Modal analysis method has been widely utilized to investigate the characteristics of VIV[21-22].It shows that there are commonly multiple modes of response accompanying with VIV,and the effect of higher-order responses has been verified in a large number of studies[23-27].It is also worthwhile to note that peaks in the vibration spectrum mainly appear at the vortex shedding frequency(ω0)and its odd multiple harmonics(3ω0,5ω0,etc.),not at its even multiple harmonics(2ω0,4ω0,etc.).However,the solutions of structure and wake oscillator coupling vibration models have rarely concerned higher-order responses.

    Therefore,in order to distinguish from the models that only the first-order response is considered,a higher-order response(first-plus higher-order responses)is involved in coupled structure and wake oscillator models.Only one higher-order response is selected to avoid the model being complicated.As for wake oscillator,it is simulated with the effective Van der Pol equation.Specifically,a structural vibration model is combined with the Van der Pol equation to model the transverse VIV of a cylinder in a uniform flow,and the dynamic behaviors in different modes of coupling are discussed.Moreover,the results that include the first-plus higher-order responses are compared with that only the first-order response is included.It shows that the characteristics of VIV are obviously effected by the higher-order response,such as vibration amplitudes and lock-in behavior.The influence of the mass damping ratio on motion amplitudes is also considered.

    1 Physical and numerical model

    1.1 Coupling model

    As is shown in Fig.1,the elastically supported rigid cylinder with a diameter D vibrates transversely in a uniform flow,and the velocity of flow is U.The relation of the dimensional in-plane crossflow displacement Y and force S is shown as follow[1]:

    where,overdot means the derivative with respect to time t.S=0.5 ρU2DCLindicates the influence of vortices on the structure,and CLis the lift coefficient.is structural angular frequency.ξ=3.1×10-3is structural reduced damping.r=rs+rfis viscous dissipation in the linear damping.rsis viscous dissipation in the support and rf=γρ ΩfD2is viscous dissipation in the fluid-added damping.is the fluid added-damping coefficient.CDis the drag coefficient,and CD=2.0 is determined to simplified the calculation according to Ref.[20].,and ρ is the density of fluid.S(Stt≈0.2)is the Strouhal number.is vortex shedding angular frequency.The mass m consists of two parts.One is the mass of structure ms,and the other is the fluid-added mass mfwhere CMstands for the added mass coefficient.

    Fig.1 Model of coupled structure and wake oscillator for 2-D vortex-induced vibrations

    The fluctuating nature of the vortex street is described with Van der Pol equation[28]

    where ε=0.3[20],and F reflects the influence of structure on the near wake.

    In order to couple the structural vibration equation and the wake oscillator equation,E-qs.(1)and(2)are written in a non-dimensional form:

    where,overdot indicates the derivative with respect to non-dimensional timeandis the reduced angular frequency of structure,andis the non-dimensional form of U.s=Mq represents the effect of fluid on the structure.M denotes the mass number and M=2×10-4is determined.

    Coupling interface f is defined on the basis of experimental values,that is,12y,andfor displacement,velocity and acceleration couplings,respectively.

    1.2 Higher-order responses

    Higher-order responses are mostly the odd multiple harmonics of the vortex shedding frequency.Thus,3ω (ω is time-independent first-order angular frequency)is chosen here to represent the higher-order angular frequency.No other higher-order responses are considered so as to simplify the equations and to clarify the computed results.The solution associated with the first-plus higher-order responses are as follows:

    where q0and y0are amplitudes corresponding to the first-order response,while,q1and y1are amplitudes corresponding to the higher-order response.φ0,φ1and θ are relative phases.

    Substituting Eqs.(5)and(6)into the structural vibration equation Eq.(3),then

    Substituting Eqs.(5)and(6)into the wake oscillator equation Eq.(4),then

    As is shown in Tab.1,the coupling parameters C1,C2,C3and C4depend on the mode of coupling.

    Tab.1 Coupling parameters C1-C4for different coupling modes

    Continue Tab.1

    Combining Eq.(7)and Eq.(8),the structure and wake oscillator coupling model is shown as follow:

    where the coupling parameters G1-G6are shown in Tab.2.

    Tab.2 Coupling parameters G1-G6for different coupling modes

    2 Results and discussion

    2.1 Amplitudes of the structural vibration

    The amplitudes of structural motions that consider only the first-order response y0(Fig.2a),that consider the first-plus higher-order responses y(Fig.2a)and that consider only the higher-order response y1(Fig.2b)are shown in Fig.2.In all the three couplings,the amplitude of structural motions amplifies in the situation of lock-in,while the structure is nearly static during lock-out(y?1).The higher-order response leads into new maximum values of the amplitudes in velocity and acceleration couplings.In acceleration coupling,the Urat which the peak value appears varies from 5 to 5.25 as ω decreases.And a small shift of the lock-in range also occurs for acceleration coupling,which is similar to the situation of q.However,there is no obvious distinction in the displacement coupling,even at lock-in.For y1,the variations of the amplitude occur at the same Uras the situation of q1(Fig.3b).The amplitude of the higher-order response is four orders of magnitude smaller than that of the first-order response.Although the higher-order response is not significant,it does play a major role in the effect of y.

    Fig.2 Variations of the amplitude of the structural vibration y0(a:—only the first-order response),y(a:—the first-plus higher-order responses)and y1(b:only the higher-order response)for different coupling modes as the reduced velocity Urincreases.(a1/b1:displacement model;a2/b2:velocity model;a3/b3:acceleration model.)

    2.2 Motion amplitudes of the wake oscillator

    Generally,the change regulation of q(Fig.3a)for the first-plus higher-order responsesrelated coupling and for the higher-order response-related coupling q1(Fig.3b)are similar to the situation that only the first-order response is concerned q0(Fig.3a).q1is significantly smaller than q0and q.However,the higher-order response results in a symbolic amplification of q at lock-in for velocity and acceleration couplings.The Urwhere maximum amplitudes appear is larger in the velocity and acceleration couplings that the first-plus higher-order responses are considered.Moreover,a slight shift of the lock-in range occurs in the acceleration coupling.

    Fig.3 Variations of the motion amplitude of the wake oscillator q0(a:—only the first-order response),q(a:—the first-plus higher-order responses)and q1(b:only the higher-order response)for different coupling modes as the reduced velocity Urincreases.(a1/b1:displacement model;a2/b2:velocity model;a3/b3:acceleration model)

    Fig.4 Amplitudes of structural vibrations yM at lock-in for different modes of coupling:…displacement coupling;---velocity coupling;-acceleration coupling.Blue,considering only the first-order response;Red,considering the firstplus higher-order responses.Experimental data:○B(yǎng)alasubramanian and Skop(1997,in air);□Balasubramanian and Skop(1997,in water);◇Khalak and Williamson(1999,in water)

    2.3 Amplitudes of the structural vibration at lock-in

    The maximum amplitude of structural motion at lock-in is commonly represented with Skop-Griffin parameterFor displacement and acceleration couplings,the reference resonance state is defined by ω= δ=1 andThe condition is ω= δ≠1 for velocity coupling[20].Consequently,as is shown in Fig.4,the motion amplitudes in different modes of coupling at lockin can be depicted in a Griffin plot.The maximum amplitudes of structural vibrations at lock-in for velocity coupling and acceleration couplings are slightly closer to the experimental results by considering the first-plus higher-order responses than by considering only the first-order response.That is,the effect of the higher-order response partly raises the accuracy of calculation.On the other hand,probably because of the small-scale amplitude,the structural vibrations in displacement coupling during lock-in are irrelevant to the higher-order response.

    2.4 Influence of the mass damping ratio on motion amplitudes

    The amplitudes of the wake oscillator q(Fig.5a)and the structural amplitude y(Fig.5b)at various values of mass damping ratio m*ξ(m*is mass ratio,)are depicted in Fig.5.They are significantly larger during lock-in considering the first-plus higher-order responses than that only considering the first-order response,especially for a smaller m*ξ.As is specifically shown in Tab.3,q and y at m*ξ=0.010 8 enlarge by 11.48%and 7.93%,respectively.The increase of q and y at larger values of m*ξ are not significant,which indicates that the influence of the higher-order response expands as m*ξ decreases.

    Tab.3 Variations of q and y for different values of m*ξ

    Fig.5 Variations of the motion amplitudes of the wake oscillator q(a)and of the cylinder y(b)at different values of mass damping ratio m*ξ as the reduced velocity Urincreases

    Fig.6 Variations of the motion amplitude of the wake oscillator q1(a)and of the cylinder y1(b)at different values of mass damping ratio m*ξ as the reduced velocity Urincreases

    Fig.6 illustrates the motion amplitudes of the wake oscillator q1(Fig.6a)and of the cylinder y1(Fig.6b)at various values of m*ξ.Because the dominant influence of the first-order response on the higher-order response,whether consider the higher-order response or not does not change the variation regularities of q1and y1.However,q1is one order of magnitudes smaller than q during lock-in and nearly two order of magnitude smaller out of lock-in.The significant increase of q1does not occur at Ur=1.7,but occurs at Ur=5.7 because of the interaction between the first-order and the higher-order responses.The amplitude of y1around Ur=1.7 is approximately twice larger than that at Ur=5.7.The huge enlargement of y1possibly leads into the growth of y.Moreover,y1increases as m*ξ decreases.

    3 Conclusions

    In addition to the first-order response,a higher-order response is observed with different structure and wake oscillator coupling models to validate the influence of higher-order responses on the characteristics of VIV.By considering the first-plus higher-order responses,more accurate results can be obtained,including lock-in range and maximum amplitude of vibration.Another important distinction between different modes of coupling is that acceleration coupling is better at computing the amplitude and lock-in range than displacement and velocity couplings.Moreover,comparison of the behaviors of VIV such as structural amplitude and Griffin plot are made between the model that only the first-order response is considered and the model with the first-plus higher-order responses.It shows that the latter is more available for a wide range of mass damping ratios,especially for a low mass damping ratio.On the other hand,computed results are closer to experimental data according to the amplitudes of structural vibrations shown in the Griffin plot,which confirms the effect of higher-order responses.

    Therefore,it is a proper way to calculate the behavior of VIV with wake oscillator model that the first-plus higher-order responses are considered.And high-order responses are indispensable in the prediction of structure fatigue damage.However,the error of the computed values is still relatively excessive,which needs to be solved in further investigation.

    国产高清激情床上av| 亚洲国产精品合色在线| 看片在线看免费视频| 中文在线观看免费www的网站| 直男gayav资源| 男人狂女人下面高潮的视频| 蜜桃亚洲精品一区二区三区| 韩国av在线不卡| 欧美丝袜亚洲另类 | 国产伦在线观看视频一区| 亚洲精华国产精华液的使用体验 | 午夜福利在线观看吧| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩卡通动漫| 狠狠狠狠99中文字幕| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久 | 国产成人a区在线观看| 欧美潮喷喷水| 亚洲国产精品合色在线| 大型黄色视频在线免费观看| 国产精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 久久欧美精品欧美久久欧美| 欧美日韩精品成人综合77777| 美女免费视频网站| 免费电影在线观看免费观看| 亚洲无线在线观看| 日韩强制内射视频| 亚洲熟妇熟女久久| 乱人视频在线观看| 丰满乱子伦码专区| 日本免费a在线| 少妇猛男粗大的猛烈进出视频 | 国产精品亚洲美女久久久| 看免费成人av毛片| 特级一级黄色大片| 成年版毛片免费区| 国产视频一区二区在线看| 动漫黄色视频在线观看| 亚洲精品亚洲一区二区| 午夜福利18| 国产蜜桃级精品一区二区三区| 天堂动漫精品| 制服丝袜大香蕉在线| 日本a在线网址| 免费人成视频x8x8入口观看| 毛片女人毛片| 国产69精品久久久久777片| 欧美极品一区二区三区四区| 麻豆精品久久久久久蜜桃| 国产伦人伦偷精品视频| 一个人免费在线观看电影| 97热精品久久久久久| 亚洲国产色片| 国产69精品久久久久777片| 亚洲人成网站高清观看| 美女被艹到高潮喷水动态| 国产免费男女视频| 亚洲av二区三区四区| 成人毛片a级毛片在线播放| av国产免费在线观看| 又紧又爽又黄一区二区| 搞女人的毛片| 亚洲电影在线观看av| 村上凉子中文字幕在线| 日韩欧美三级三区| 极品教师在线免费播放| 亚洲五月天丁香| 在线免费十八禁| 最新在线观看一区二区三区| 亚洲国产精品久久男人天堂| 免费人成在线观看视频色| 伊人久久精品亚洲午夜| 日本黄色视频三级网站网址| 悠悠久久av| 精华霜和精华液先用哪个| 亚洲一级一片aⅴ在线观看| a级毛片a级免费在线| 亚洲七黄色美女视频| 亚洲四区av| 久久久久久久精品吃奶| 日日干狠狠操夜夜爽| 九色成人免费人妻av| 狠狠狠狠99中文字幕| 成年女人看的毛片在线观看| 亚洲av中文av极速乱 | 99热这里只有精品一区| 99久久精品一区二区三区| 国产精品国产高清国产av| 午夜福利高清视频| 一区福利在线观看| 有码 亚洲区| 免费人成视频x8x8入口观看| 国产美女午夜福利| 国产亚洲av嫩草精品影院| 狂野欧美白嫩少妇大欣赏| 免费黄网站久久成人精品| 成人欧美大片| 国内精品一区二区在线观看| 身体一侧抽搐| 最新中文字幕久久久久| 亚洲精品色激情综合| 女生性感内裤真人,穿戴方法视频| 中文字幕熟女人妻在线| 夜夜爽天天搞| 亚洲性夜色夜夜综合| 哪里可以看免费的av片| 国产高清激情床上av| 九九久久精品国产亚洲av麻豆| 亚洲熟妇熟女久久| 男女之事视频高清在线观看| 夜夜爽天天搞| 午夜精品久久久久久毛片777| 欧美3d第一页| 精品日产1卡2卡| 亚洲天堂国产精品一区在线| 亚洲av中文字字幕乱码综合| 亚洲国产日韩欧美精品在线观看| 免费在线观看日本一区| 啦啦啦观看免费观看视频高清| 精品久久久久久久人妻蜜臀av| 国产伦一二天堂av在线观看| 九九在线视频观看精品| 欧美三级亚洲精品| 12—13女人毛片做爰片一| 日本免费一区二区三区高清不卡| 精品国产三级普通话版| 色综合亚洲欧美另类图片| 精品久久久久久久久av| 亚洲国产精品成人综合色| 亚洲欧美日韩高清专用| 特大巨黑吊av在线直播| 午夜久久久久精精品| 在线国产一区二区在线| 精品一区二区三区视频在线观看免费| 美女大奶头视频| 舔av片在线| 春色校园在线视频观看| 精品午夜福利视频在线观看一区| 99热这里只有是精品50| 少妇高潮的动态图| 中文字幕av成人在线电影| 免费电影在线观看免费观看| 久久久久久久精品吃奶| 两人在一起打扑克的视频| 国产综合懂色| 免费av观看视频| 成年女人看的毛片在线观看| 久久精品国产亚洲av香蕉五月| 欧美bdsm另类| 欧美+亚洲+日韩+国产| 亚洲18禁久久av| 久久精品国产亚洲av天美| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 免费搜索国产男女视频| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 少妇高潮的动态图| 免费看a级黄色片| 男女边吃奶边做爰视频| videossex国产| 亚洲精品456在线播放app | 久久人人爽人人爽人人片va| 国产精品久久视频播放| 性欧美人与动物交配| 少妇的逼水好多| 亚洲国产精品合色在线| 亚洲美女黄片视频| 国产一区二区激情短视频| 国产淫片久久久久久久久| 日本一本二区三区精品| 国产av一区在线观看免费| 九九爱精品视频在线观看| 校园春色视频在线观看| 赤兔流量卡办理| 婷婷精品国产亚洲av| 久久精品人妻少妇| 午夜福利在线观看吧| 国产激情偷乱视频一区二区| 亚洲美女黄片视频| a在线观看视频网站| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 国产人妻一区二区三区在| 久久久久久久久久成人| 亚洲自偷自拍三级| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 十八禁网站免费在线| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 久久国内精品自在自线图片| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 最新中文字幕久久久久| 亚洲成人久久爱视频| 人妻制服诱惑在线中文字幕| 琪琪午夜伦伦电影理论片6080| 免费在线观看成人毛片| 成人国产综合亚洲| 成人国产麻豆网| АⅤ资源中文在线天堂| 禁无遮挡网站| 最新在线观看一区二区三区| 国产精品人妻久久久久久| 午夜免费成人在线视频| 亚洲av成人av| 国产亚洲av嫩草精品影院| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 日韩中字成人| 极品教师在线免费播放| 日本黄色片子视频| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 亚洲av一区综合| 国产单亲对白刺激| 亚洲,欧美,日韩| 亚洲精品日韩av片在线观看| а√天堂www在线а√下载| 18禁黄网站禁片午夜丰满| 午夜激情欧美在线| 精品一区二区三区av网在线观看| 夜夜看夜夜爽夜夜摸| 天堂动漫精品| 精品人妻熟女av久视频| 亚洲av中文字字幕乱码综合| 男女啪啪激烈高潮av片| 18禁在线播放成人免费| 国产日本99.免费观看| 中国美白少妇内射xxxbb| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 91麻豆av在线| 伦理电影大哥的女人| 九九久久精品国产亚洲av麻豆| 久久天躁狠狠躁夜夜2o2o| 国产大屁股一区二区在线视频| 黄色日韩在线| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| 高清在线国产一区| 亚洲中文字幕日韩| 国产男人的电影天堂91| 可以在线观看的亚洲视频| 99久久精品一区二区三区| 日日啪夜夜撸| 偷拍熟女少妇极品色| 女的被弄到高潮叫床怎么办 | 日日撸夜夜添| 国产精品久久久久久av不卡| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 波多野结衣高清作品| 麻豆国产av国片精品| 麻豆一二三区av精品| 97碰自拍视频| 观看美女的网站| 精品99又大又爽又粗少妇毛片 | 日韩高清综合在线| 精品一区二区三区av网在线观看| 22中文网久久字幕| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 婷婷亚洲欧美| 亚洲av免费在线观看| 亚洲国产色片| 中国美白少妇内射xxxbb| 色噜噜av男人的天堂激情| 性色avwww在线观看| 精品久久久久久久久久免费视频| 一区二区三区高清视频在线| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 97超视频在线观看视频| 精品人妻熟女av久视频| 国产精品亚洲美女久久久| 日本 av在线| 免费观看的影片在线观看| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 99国产精品一区二区蜜桃av| 久久久久久久久久久丰满 | or卡值多少钱| 99久国产av精品| 亚洲中文字幕日韩| 亚洲无线在线观看| 人妻久久中文字幕网| 欧美区成人在线视频| 亚洲av美国av| 国产麻豆成人av免费视频| 亚洲最大成人中文| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 欧美精品啪啪一区二区三区| 亚洲综合色惰| 午夜激情欧美在线| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 亚洲最大成人手机在线| 老女人水多毛片| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 老熟妇仑乱视频hdxx| 床上黄色一级片| 99久国产av精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 91麻豆av在线| 人妻夜夜爽99麻豆av| 69人妻影院| 久久久久久久亚洲中文字幕| 欧美日本亚洲视频在线播放| 日本 欧美在线| 免费一级毛片在线播放高清视频| 久久国产乱子免费精品| 日本欧美国产在线视频| 99久久成人亚洲精品观看| 日日摸夜夜添夜夜添av毛片 | 精品日产1卡2卡| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 老女人水多毛片| 亚洲乱码一区二区免费版| 性色avwww在线观看| 亚洲精华国产精华液的使用体验 | 看黄色毛片网站| 日本 av在线| 国产精品一区www在线观看 | 欧美zozozo另类| 中文字幕久久专区| av国产免费在线观看| 成人av在线播放网站| 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 精品无人区乱码1区二区| 99久久九九国产精品国产免费| АⅤ资源中文在线天堂| 婷婷丁香在线五月| 欧美区成人在线视频| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 美女大奶头视频| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 久久精品夜夜夜夜夜久久蜜豆| 久99久视频精品免费| 日韩,欧美,国产一区二区三区 | 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 哪里可以看免费的av片| 亚洲久久久久久中文字幕| 日韩一本色道免费dvd| 精品久久久久久久末码| 亚洲无线观看免费| 国产成年人精品一区二区| 欧美丝袜亚洲另类 | 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 2021天堂中文幕一二区在线观| 丰满的人妻完整版| 婷婷精品国产亚洲av在线| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久一区二区三区 | 久久草成人影院| 我的老师免费观看完整版| 免费搜索国产男女视频| 国产伦精品一区二区三区四那| eeuss影院久久| 麻豆国产av国片精品| .国产精品久久| 极品教师在线免费播放| 国内精品久久久久精免费| 亚洲欧美日韩无卡精品| 毛片女人毛片| 看十八女毛片水多多多| 欧美性感艳星| 可以在线观看毛片的网站| 久久99热这里只有精品18| 美女高潮的动态| 91久久精品电影网| 18禁裸乳无遮挡免费网站照片| 老司机深夜福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 99久久成人亚洲精品观看| 日本色播在线视频| 国产麻豆成人av免费视频| 免费观看在线日韩| 久久6这里有精品| 看黄色毛片网站| 欧美精品国产亚洲| 中文字幕免费在线视频6| 男人舔奶头视频| 亚洲va在线va天堂va国产| 91在线观看av| 99在线人妻在线中文字幕| 亚洲久久久久久中文字幕| 国产一级毛片七仙女欲春2| 免费大片18禁| 十八禁国产超污无遮挡网站| av天堂在线播放| 嫁个100分男人电影在线观看| 中文资源天堂在线| 五月玫瑰六月丁香| 日本三级黄在线观看| av在线观看视频网站免费| 春色校园在线视频观看| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 亚洲在线观看片| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 亚洲黑人精品在线| 在线观看舔阴道视频| 国产高清视频在线观看网站| 直男gayav资源| 成人三级黄色视频| 亚洲人成伊人成综合网2020| 欧美区成人在线视频| 嫩草影院新地址| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 一本精品99久久精品77| 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 蜜桃久久精品国产亚洲av| 国产亚洲精品久久久久久毛片| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 少妇被粗大猛烈的视频| 色视频www国产| 亚洲中文字幕一区二区三区有码在线看| 欧美激情在线99| 欧美日本视频| 国产欧美日韩精品亚洲av| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 桃红色精品国产亚洲av| 99久久九九国产精品国产免费| 日韩欧美免费精品| 在线国产一区二区在线| 哪里可以看免费的av片| 免费观看精品视频网站| 亚洲av.av天堂| 成人亚洲精品av一区二区| 国产av在哪里看| 人妻少妇偷人精品九色| 身体一侧抽搐| 免费观看的影片在线观看| 日韩国内少妇激情av| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 高清日韩中文字幕在线| 日本在线视频免费播放| 国产不卡一卡二| 特大巨黑吊av在线直播| 亚洲乱码一区二区免费版| 久久久久性生活片| 全区人妻精品视频| 日韩强制内射视频| 99久久精品一区二区三区| 亚洲自偷自拍三级| 观看免费一级毛片| 99久久精品热视频| 成人亚洲精品av一区二区| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 亚洲精品一区av在线观看| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 男人的好看免费观看在线视频| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 欧美潮喷喷水| 99在线人妻在线中文字幕| 大又大粗又爽又黄少妇毛片口| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 热99在线观看视频| 欧美成人免费av一区二区三区| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| 97人妻精品一区二区三区麻豆| 极品教师在线视频| 欧美日韩精品成人综合77777| 久久久国产成人精品二区| 日韩欧美精品v在线| 免费看日本二区| 97人妻精品一区二区三区麻豆| 老司机午夜福利在线观看视频| 欧美+亚洲+日韩+国产| 人妻少妇偷人精品九色| 国产精品一区二区性色av| 国产精品一区www在线观看 | 久久午夜福利片| 免费看光身美女| а√天堂www在线а√下载| 成人国产综合亚洲| 嫩草影院入口| 在线观看免费视频日本深夜| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 12—13女人毛片做爰片一| 午夜精品在线福利| 免费观看在线日韩| 亚洲国产色片| 12—13女人毛片做爰片一| 给我免费播放毛片高清在线观看| 亚洲成av人片在线播放无| 露出奶头的视频| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 不卡视频在线观看欧美| 久久久久久久精品吃奶| 亚洲经典国产精华液单| 日本 欧美在线| 欧美区成人在线视频| 男插女下体视频免费在线播放| 全区人妻精品视频| 久久久色成人| 在线观看av片永久免费下载| 日韩 亚洲 欧美在线| 亚洲精品一区av在线观看| 91精品国产九色| 亚洲美女视频黄频| 又爽又黄a免费视频| 亚洲精品色激情综合| 99精品在免费线老司机午夜| 亚洲精品国产成人久久av| 亚洲精华国产精华液的使用体验 | 麻豆成人av在线观看| 高清毛片免费观看视频网站| 日本成人三级电影网站| 亚洲欧美清纯卡通| 日本黄大片高清| 乱系列少妇在线播放| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 国产爱豆传媒在线观看| 精品人妻熟女av久视频| 国产三级中文精品| 18禁黄网站禁片午夜丰满| 亚洲电影在线观看av| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 免费在线观看成人毛片| 日本色播在线视频| 色尼玛亚洲综合影院| 亚洲精品色激情综合| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 欧美激情国产日韩精品一区| 久久亚洲真实| 午夜福利在线观看免费完整高清在 | 中国美白少妇内射xxxbb| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 成人国产一区最新在线观看| 99热这里只有是精品在线观看| 亚洲精品一区av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 他把我摸到了高潮在线观看| 国产成人a区在线观看| 九九热线精品视视频播放| 日韩在线高清观看一区二区三区 | 国产精品久久久久久久久免| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久免费视频| 久久久久久久午夜电影| 亚洲性久久影院| 久久6这里有精品| 日韩中文字幕欧美一区二区| 男人的好看免费观看在线视频| 一进一出抽搐gif免费好疼| 国产日本99.免费观看| 成人国产麻豆网| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 亚洲专区国产一区二区| 亚洲精品久久国产高清桃花| ponron亚洲| xxxwww97欧美| avwww免费| 成人美女网站在线观看视频| 国产精品精品国产色婷婷| 国产黄片美女视频| 日本欧美国产在线视频| 国产三级中文精品|